S. J. Zinkle and J. Busby, Structural materials for fission & fusion energy, Materials Today, vol.12, issue.11, p.12, 2009.
DOI : 10.1016/S1369-7021(09)70294-9

URL : http://doi.org/10.1016/s1369-7021(09)70294-9

D. Duffy, Fusion power: a challenge for materials science, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.191, issue.365, p.3315, 2010.
DOI : 10.1098/rsta.2010.0060

R. González-arrabal, M. Panizo-laiz, N. Gordillo, E. Tejado, F. Munnik et al., Hydrogen accumulation in nanostructured as compared to the coarse-grained tungsten, Journal of Nuclear Materials, vol.453, issue.1-3, p.287, 2014.
DOI : 10.1016/j.jnucmat.2014.06.057

H. Zhou, Y. Liu, J. Shuo, Y. Zhang, G. Luo et al., Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism, Nuclear Fusion, vol.50, issue.2, p.25016, 2010.
DOI : 10.1088/0029-5515/50/2/025016

L. Kristinsdottir and E. Skulason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surface Science, vol.606, issue.17-18, p.1400, 2012.
DOI : 10.1016/j.susc.2012.04.028

T. Jones, T. Rocha, A. Knop-gericke, C. Stampp, R. Schlogl et al., Adsorbate induced vacancy formation on silver surfaces, Physical Chemistry Chemical Physics, vol.96, issue.19, p.9002, 2014.
DOI : 10.1063/1.3364132

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:2023948/component/escidoc:2029272/c4cp00778f.pdf

A. Akbarzadeh, Z. Chen, and N. Kioussis, Crucial role of surface in stability and mobility of vacancy clusters in metals, Physical Review B, vol.337, issue.19, p.195404, 2009.
DOI : 10.1038/35088026

D. Johnson and E. Carter, Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion, Journal of Materials Research, vol.25, issue.02, p.315, 2010.
DOI : 10.1557/JMR.2010.0036

A. Nojima and K. Yamashita, A theoretical study of hydrogen adsorption and diffusion on a W(110) surface, Surface Science, vol.601, issue.14, p.3003, 2007.
DOI : 10.1016/j.susc.2007.05.019

K. Kwak, M. Chou, and M. Troullier, First-principles study of the H-induced reconstruction of W(110), Physical Review B, vol.37, issue.288, p.13734, 1996.
DOI : 10.1103/PhysRevB.37.8491

A. Moitra and K. Solanki, Adsorption and penetration of hydrogen in W: A first principles study, Computational Materials Science, vol.50, issue.7, p.2291, 2011.
DOI : 10.1016/j.commatsci.2011.02.036

P. W. Tamm and L. Schmidt, Binding States of Hydrogen on Tungsten, The Journal of Chemical Physics, vol.286, issue.11, p.4775, 1971.
DOI : 10.1016/0021-9517(62)90092-1

N. Fernandez, Y. Ferro, and D. Kato, Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models, Acta Materialia, vol.94, pp.307-325, 2015.
DOI : 10.1016/j.actamat.2015.04.052

URL : https://hal.archives-ouvertes.fr/hal-01455202

Y. Liu, H. Zhou, and . Zhang, Investigating behaviors of H in a W single crystal by first-principles: From solubility to interaction with vacancy, Journal of Alloys and Compounds, vol.509, issue.33, p.8277, 2011.
DOI : 10.1016/j.jallcom.2011.03.117

C. Becquart and C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.255, issue.1, p.23, 2007.
DOI : 10.1016/j.nimb.2006.11.006

J. Soler, E. Artacho, J. Gale, A. Garcia, J. Junquera et al., materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, p.2745, 2002.
DOI : 10.1088/0953-8984/14/11/302

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, p.1758, 1999.
DOI : 10.1103/PhysRevB.55.13479

N. Gordillo, Morphological and microstructural characterization of nanostructured pure ?-phase W coatings on a wide thickness range, Applied Surface Science, vol.316, p.1, 2014.
DOI : 10.1016/j.apsusc.2014.07.061

C. Guerrero, S. Cuesta-lopez, and J. Perlado, Ab initio molecular dynamics: Relationship between structural phases and the sound velocity in dense hydrogen, EPL (Europhysics Letters), vol.108, issue.2, p.26001, 2014.
DOI : 10.1209/0295-5075/108/26001

J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, vol.100, issue.13, p.136406, 2008.
DOI : 10.1021/jp0379190

J. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, p.3865, 1996.
DOI : 10.1063/1.446965

P. Blöchl, Projector augmented-wave method, Physical Review B, vol.44, issue.24, p.17953, 1994.
DOI : 10.1103/PhysRevB.44.13063

H. Monkhorst and J. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.10, issue.12, p.5188, 1976.
DOI : 10.1016/0021-9991(72)90046-0

M. Methfessel and A. Paxton, High-precision sampling for Brillouin-zone integration in metals, Physical Review B, vol.12, issue.6, p.3616, 1989.
DOI : 10.1103/PhysRevB.12.3060

S. F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, vol.2, issue.4, p.553, 1970.
DOI : 10.1002/qua.560020714

C. Lambert-mauriat and V. Oison, Density-functional study of oxygen vacancies in monoclinic tungsten oxide, Journal of Physics: Condensed Matter, vol.18, issue.31, p.7361, 2006.
DOI : 10.1088/0953-8984/18/31/028

R. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.207, issue.10, p.1833, 1955.
DOI : 10.1063/1.1747438

C. Guerrero, study of tungsten defects near the surface, Modelling and Simulation in Materials Science and Engineering, vol.24, issue.4, p.45006, 2016.
DOI : 10.1088/0965-0393/24/4/045006

URL : https://hal.archives-ouvertes.fr/cea-01550346

D. Nguyen-manh, A. P. Horsseld, and S. Dudarev, Self-interstitial atom defects in bcc transition metals: Group-specific trends, Physical Review B, vol.69, issue.70, p.20101, 2006.
DOI : 10.1103/PhysRevB.69.075113

S. Nagata, S. Yamamoto, K. Tokunaga, B. Tuschiya, K. Toh et al., Hydrogen up-take in noble gas implanted W, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.242, issue.1-2, p.553, 2006.
DOI : 10.1016/j.nimb.2005.08.068

C. González, M. A. Cerdeira, S. Palacios, and R. Iglesias, Reduction of the repulsive interaction as origin of helium trapping inside a monovacancy in BCC metals, Journal of Materials Science, vol.457, issue.10, p.3727, 2015.
DOI : 10.1016/j.jnucmat.2014.10.038

K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Hydrogen interaction with point defects in tungsten, Physical Review B, vol.21, issue.9, p.94102, 2010.
DOI : 10.1016/j.jnucmat.2007.01.110

C. Guerrero, C. Gonzalez, R. Iglesias, J. M. Perlado, and G. Arrabal, First principles study of the behavior of hydrogen atoms in a W monovacancy, Journal of Materials Science, vol.25, issue.391, p.1445, 2016.
DOI : 10.1557/JMR.2010.0036

Y. Liu, Y. Zhang, H. Zhou, G. Lu, F. Liu et al., Vacancy trapping mechanism for hydrogen bubble formation in metal, Physical Review B, vol.390, issue.391, p.172103, 2009.
DOI : 10.1103/PhysRevLett.92.175503

K. Ohsawa, J. Goto, M. Yamakami, M. Yamaguchi, and M. Yagi, Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles, Physical Review B, vol.137, issue.18, p.184117, 2010.
DOI : 10.1016/j.scriptamat.2008.12.009

B. Jiang, F. Wan, and W. Geng, Strong hydrogen trapping at helium in tungsten: Density functional theory calculations, Physical Review B, vol.81, issue.13, p.134112, 2010.
DOI : 10.1103/PhysRevB.64.224112

J. Wang, Y. Zhang, H. Zhou, J. S. Lu, and G. , First-principles investigation of helium dissolution and clustering at a tungsten (110) surface, Journal of Nuclear Materials, vol.461, p.230, 2015.
DOI : 10.1016/j.jnucmat.2015.03.026

L. Chen, Y. Liu, H. Zhou, J. S. Zhang, Y. et al., Stability and diffusion properties of self-interstitial atoms in tungsten: a first-principles investigation, Science China Physics, Mechanics and Astronomy, vol.69, issue.70, p.614
DOI : 10.1016/0022-3115(78)90261-1

J. Yang, W. Hu, and J. Tang, Surface self-diffusion behavior of individual tungsten adatoms on rhombohedral clusters, Journal of Physics: Condensed Matter, vol.23, issue.39, p.395004, 2011.
DOI : 10.1088/0953-8984/23/39/395004

C. Wang, D. Chang, C. Tang, J. Su, Y. Zhang et al., Single Adatom Adsorption and Diffusion on Fe Surfaces, Journal of Modern Physics, vol.02, issue.09, p.1067, 2011.
DOI : 10.4236/jmp.2011.29130

URL : http://doi.org/10.4236/jmp.2011.29130

A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Computational Materials Science, vol.28, issue.2, p.155, 2003.
DOI : 10.1016/S0927-0256(03)00104-6

O. El-atwani, K. Hattar, J. Hinks, G. Greaves, S. Harilal et al., Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions, Journal of Nuclear Materials, vol.458, p.216, 2015.
DOI : 10.1016/j.jnucmat.2014.12.095

C. González, H trapping and mobility in nanostructured tungsten grain boundaries: a combined experimental and theoretical approach, Nuclear Fusion, vol.55, issue.11, p.113009, 2015.
DOI : 10.1088/0029-5515/55/11/113009