V. Firsov and A. A. , Electric field effect in atomically thin carbon films, Science, vol.306, issue.5696, pp.666-669, 2004.

Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater, issue.35, pp.22-3906, 2010.

F. Reale, K. Sharda, and C. Mattevi, From bulk crystals to atomically thin layers of group VItransition metal dichalcogenides vapour phase synthesis, Applied Materials Today, vol.2016, issue.3, pp.11-22

S. Huang, J. Ismach, A. F. Johnston-halperin, E. Kuno, M. Plashnitsa et al., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, pp.2898-2926

A. Mishchenko, S. Amemiya, A. J. Bard, F. R. Fan, M. V. Mirkin et al., Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics, Nat Nano Scanning Electrochemical Microscopy. Annu. Rev. Anal. Chem. J, vol.2013, issue.1, pp.100-103, 2008.

Y. X. Wang, Scanning Electrochemical Microscopy in the 21st century, Update, vol.1

S. Amemiya, R. Chen, N. Nioradze, J. Kim, A. J. Bard et al., Scanning electrochemical microscopy. Introduction and principles, 1099A-1104. 8. (a) Lefrou, C.; Cornut, R., Analytical Expressions for Quantitative Scanning Electrochemical Microscopy (SECM), pp.21196-21212, 1989.

J. Mauzeroll, Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015 In-Situ Imaging of Ionic Crystal Dissolution Using an Integrated Electrochemical/AFM Probe, Chem. Rev. J. Am. Chem. Soc, vol.2016, issue.11622 927, pp.13234-13278, 1996.

J. V. Macpherson, P. R. Unwin, A. J. Wain, A. J. Pollard, C. Richter et al., High- Resolution Electrochemical and Topographical Imaging Using Batch-Fabricated Cantilever Probes Visualizing Zeptomole (Electro)Catalysis at Single Nanoparticles within an Ensemble Localized High Resolution Electrochemistry and Multifunctional Imaging: Scanning Electrochemical Cell Microscopy, Anal. Chem. Anal. Chem. J. Am. Chem. Soc. Anal. Chem, vol.72, issue.1332822 11, pp.276-285, 2000.

P. S. Toth, A. T. Valota, S. D. Worrall, and R. A. Dryfe, Electron Transfer Kinetics on Mono-and Multilayer Graphene, ACS Nano, vol.2014, issue.12, pp.10089-10100

W. Kinloch, I. A. Novoselov, K. S. Georgiou, T. Britnell, L. Dryfe et al., Electron transfer kinetics on natural crystals of MoS2 and graphite Pristine Basal-and Edge- Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties Advanced Carbon Electrode Materials for Molecular Electrochemistry Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects, Nanotrench Arrays Reveal Insight into Graphite Electrochemistry, pp.17844-17853, 1992.

A. Anne, E. Cambril, A. Chovin, C. Demaille, C. Goyer et al., Electrochemical Atomic Force Microscopy Using a Tip-Attached Redox Mediator for Topographic and Functional Imaging of Nanosystems, ACS Nano, vol.3, issue.10, pp.2927-2940, 2009.
DOI : 10.1021/nn9009054

P. R. Unwin, Scanning Micropipet Contact Method for High-Resolution Imaging of Electrode Surface Redox Activity, Anal. Chem, vol.81, issue.7, pp.2486-2495, 2009.

A. S. Cuharuc, K. Mckelvey, P. R. Unwin, S. C. Lai, A. N. Patel et al., 16 Definitive Evidence for Fast Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical Imaging A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite Nanoscale Electrochemistry of sp2 Carbon Materials: From Graphite and Graphene to Carbon Nanotubes Reactivity of Monolayer Chemical Vapor Deposited Graphene Imperfections Studied Using Scanning Electrochemical Microscopy Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene Electrochemistry of well-defined graphene samples: role of contaminants The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet, Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. J. Am. Chem. Soc. 2014, pp.11444-11451, 2013.

N. Aluru, R. Bashir, W. Li, C. Tan, M. A. Lowe et al., Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore Electrochemistry of Individual Monolayer Graphene Sheets, Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions, pp.834-843, 2011.

A. Ambrosi, A. Bonanni, M. Pumera, A. G. Güell, N. Ebejer et al., Electrochemistry of folded graphene edges, R., Structural Correlations in Heterogeneous Electron Transfer at Monolayer and Multilayer Graphene Electrodes, pp.2256-2260, 2011.
DOI : 10.1002/cphc.200600098

A. G. Güell, A. S. Cuharuc, Y. Kim, G. Zhang, and S. Tan, Redox-Dependent Spatially Resolved Electrochemistry at Graphene and Graphite Step Edges, ACS Nano, vol.9, issue.4, pp.7258-7261
DOI : 10.1021/acsnano.5b00550

S. Dryfe and R. A. , Photoelectrochemistry of Pristine Mono-and Few-Layer MoS2, Nano Lett, vol.2016, issue.163, pp.2023-2032

R. A. Dryfe, R. Chen, N. Nioradze, P. Santhosh, Z. Li et al., Electrochemical investigation of chemical vapour deposition monolayer and bilayer graphene on the microscale, Electrochim. Acta Angewandte Chemie International Edition, vol.110, issue.201550, pp.9-15, 2013.

J. Hui, X. Zhou, R. Bhargava, A. Chinderle, J. Zhang et al., Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation, Electrochim. Acta Chem. Commun. Angewandte Chemie International Edition, vol.211, issue.201440, pp.1016-1023, 2016.

S. Xin, Z. Liu, L. Ma, Y. Sun, C. Xiao et al., Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction Identification of Active Edge Sites for Electrochemical H<sub>2</sub> Evolution from MoS<sub>2</sub> Nanocatalysts, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today 2016, pp.3795-3811, 2007.

H. Li, M. Du, M. J. Mleczko, A. L. Koh, Y. Nishi et al., Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy, J. Am. Chem. Soc, vol.2016, issue.15, pp.138-5123

H. S. Ahn and A. J. Bard, Electrochemical Surface Interrogation of a MoS2 Hydrogen-Evolving Catalyst, Situ Determination of the Surface Hydride Coverage and the Hydrogen Evolution Kinetics

X. Hu, K. Kontturi, B. Liu, and H. H. Girault, Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems Scanning Photocurrent Microscopy -New Technique to Study Inhomogenously Distributed Recombination Centers in Semiconductors Solid-State Electron, Chem. Commun, vol.2012, issue.34, pp.48-6484, 1978.

R. Graham and D. Yu, SCANNING PHOTOCURRENT MICROSCOPY IN SEMICONDUCTOR NANOSTRUCTURES, Modern Physics Letters B, vol.13, issue.25, p.27, 1519.
DOI : 10.1021/nl300262j

S. Ardo, M. P. Soriaga, B. S. Brunschwig, and N. S. Lewis, A scanning probe investigation of the role of surface motifs in the behavior of p-WSe2 photocathodes, Energy Environ. Science, vol.2016, issue.91, pp.164-175

J. Azevedo, C. Bourdillon, V. Derycke, S. Campidelli, C. Lefrou et al., Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy, Analytical Chemistry, vol.85, issue.3, pp.85-1812
DOI : 10.1021/ac303173d

T. Bourgeteau, S. Le-vot, M. Bertucchi, V. Derycke, B. Jousselme et al., New Insights into the Electronic Transport of Reduced Graphene Oxide Using Scanning Electrochemical Microscopy, The Journal of Physical Chemistry Letters, vol.5, issue.23, pp.5-4162
DOI : 10.1021/jz502224f

URL : https://hal.archives-ouvertes.fr/hal-01156580

S. Pei, J. Zhao, J. Du, W. Ren, and H. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy, Carbon J. Am. Chem. Soc, vol.48, issue.201214, pp.4466-4474, 2010.

J. Zou, C. Sole, N. E. Drewett, M. Velický, L. J. Hardwick et al., In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses, Lithium Ion Quantification Using Mercury Amalgams as in Situ Electrochemical Probes in Nonaqueous Media, pp.4291-4296
DOI : 10.1021/acs.jpclett.6b01886

J. Hui, M. Burgess, J. Zhang, and J. Rodríguez-lópez, Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid???Electrolyte Interphase Evolution, ACS Nano, vol.10, issue.4, pp.4248-4257
DOI : 10.1021/acsnano.5b07692

F. O. Laforge, M. V. Mirkin, A. J. Giesbers, U. Zeitler, S. Neubeck et al., Scanning electrochemical microscopy in the 21st century Nanolithography and manipulation of graphene using an atomic force microscope Atomic force microscope local oxidation nanolithography of graphene, Chem. Soc. Rev. Phys. Chem. Chem. Phys. Solid State Communications Applied Physics Letters, vol.201510, issue.14799, pp.2702-2712, 2007.

T. R. Albrecht, M. M. Dovek, M. D. Kirk, C. A. Lang, C. F. Quate et al., Nanometer???scale hole formation on graphite using a scanning tunneling microscope, Applied Physics Letters, vol.152, issue.17, pp.1727-1729, 1989.
DOI : 10.1111/j.1365-2818.1988.tb01383.x

M. Ahmad, Y. Seo, and Y. J. Choi, Nanographene device fabrication using atomic force microscope Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography, 04DJ06. 51, pp.422-425

A. Gomez, Nanofabrication of TaS2 conducting layers nanopatterned with Ta2O5 insulating regions via AFM, Journal of Materials Chemistry C, vol.2013, issue.146, pp.7692-7694

F. M. Espinosa, Y. K. Ryu, K. Marinov, D. Dumcenco, A. Kis et al., Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography Nanoscale reduction of graphene oxide thin films and its characterization Local Current Mapping and Patterning of Reduced Graphene Oxide Nanoscale reduction of graphene oxide under ambient conditions Electrochemistry-assisted microstructuring of reduced graphene oxide-based microarrays with adjustable electrical behavior, 285301. 54, pp.103503-53, 2014.

S. Campidelli, R. Cornut, S. Palacin, C. Bureau, J. Charlier et al., Molecule-to-metal bonds: Electrografting polymers on conducting surfaces Electrografting: a powerful method for surface modification Spatial and Temporal Control of the Diazonium Modification of sp2 Carbon Surfaces, J. Am. Chem. Soc. ChemPhysChem Chem. Soc. Rev. J. Am. Chem. Soc. E. B, vol.2014, issue.1361, pp.4833-4836, 2004.

K. Daasbjerg, Patterned Carboxylation of Graphene Using Scanning Electrochemical Microscopy, Langmuir, vol.2015, issue.15, pp.31-4443

J. R. Brent, S. J. Haigh, P. O-'brien, and R. A. Dryfe, Asymmetric MoS2/Graphene/Metal Sandwiches: Preparation, Characterization, and Application, Symmetric and Asymmetric Decoration of Graphene: Bimetal-Graphene Sandwiches. Adv. Func. Mater. 2015, pp.8256-8264