Critical properties of the Anderson localization transition and the high dimensional limit

Abstract : In this paper we present a thorough study of transport, spectral and wave-function properties at the Anderson localization critical point in spatial dimensions $d = 3$, $4$, $5$, $6$. Our aim is to analyze the dimensional dependence and to asses the role of the $d\rightarrow \infty$ limit provided by Bethe lattices and tree-like structures. Our results strongly suggest that the upper critical dimension of Anderson localization is infinite. Furthermore, we find that the $d_U=\infty$ is a much better starting point compared to $d_L=2$ to describe even three dimensional systems. We find that critical properties and finite size scaling behavior approach by increasing $d$ the ones found for Bethe lattices: the critical state becomes an insulator characterized by Poisson statistics and corrections to the thermodynamics limit become logarithmic in $N$. In the conclusion, we present physical consequences of our results, propose connections with the non-ergodic delocalised phase suggested for the Anderson model on infinite dimensional lattices and discuss perspectives for future research studies.
Type de document :
Article dans une revue
Physical Review B : Condensed matter and materials physics, American Physical Society, 2016, 95, pp.094204 〈10.1016/S0370-1573(01)00098-9〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01545377
Contributeur : Emmanuelle De Laborderie <>
Soumis le : jeudi 22 juin 2017 - 15:23:00
Dernière modification le : vendredi 16 novembre 2018 - 01:54:29
Document(s) archivé(s) le : mercredi 10 janvier 2018 - 15:58:11

Fichier

1612.04753.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Elena Tarquini, Giulio Biroli, Marco Tarzia. Critical properties of the Anderson localization transition and the high dimensional limit. Physical Review B : Condensed matter and materials physics, American Physical Society, 2016, 95, pp.094204 〈10.1016/S0370-1573(01)00098-9〉. 〈cea-01545377〉

Partager

Métriques

Consultations de la notice

156

Téléchargements de fichiers

109