Production of H2 by water radiolysis in cement paste under electron irradiation: A joint experimental and theoretical study
Abstract
Long-term confinement of nuclear waste is one of the main challenges faced by the nuclear industry. Fission products such as 90 Sr and 137 Cs, both β − emitters known to induce serious health hazards, represent the largest fraction of nuclear waste. Cement is a good candidate to store them, provided it can resist the effects of irradiation over time. Here, we have investigated the effects of β − decay on cement by performing electron irradiation experiments on different samples. We show that H 2 production in cement, the main effect of water radiolysis, depends strongly on composition and relative humidity. First-principles calculations indicate that the water-rich interlayer regions with Ca 2+ ions act as electron traps that promote the formation of H 2. They also show that holes localize in water-rich regions in low Ca content samples and are then able to participate in H 2 production. This work provides new understanding of radiolysis effects in cements.