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ABSTRACT

Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during
stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the
chemical enrichment of the universe. It is therefore important to constrain the physical parameters and internal angular momentum
distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through
asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive
than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two
low-mass companions orbiting with periods of about 3.3 and 154 days.
Aims. Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion.
Methods. We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to
identify a representative stellar model, and to determine the internal rotation profile of the star.
Results. Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on
board the Coriolis satellite, high-resolution spectroscopy, and more than 96 years of radial velocity measurements. We identify a
sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period
spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297±76
days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor
of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the statistically
significant decrease of the orbital period of about 0.9 s during the last 96 years.
Conclusions. Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner
binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the
orbit. They have, however, not yet aligned all spins of the system and have just begun to synchronise rotation.

Key words. asteroseismology - stars: individual: HD 201433 - stars: oscillations - stars: interior - stars: rotation - stars: binaries:
general
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⋆ Based on data collected by the BRITE - Constellation satellite mis-

sion, built, launched and operated thanks to support from the Austrian
Aeronautics and Space Agency and the University of Vienna, the Cana-

dian Space Agency (CSA), and the Foundation for Polish Science &
Technology (FNiTP MNiSW) and National Science Centre (NCN), the
Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the
Spanish Observatorio del Roque de los Muchachos of the Instituto de
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1. Introduction

Massive stars are important for the chemical enrichment of the
universe. Slowly pulsating B (SPB) stars are not amongst the
most massive stars, but they share a similar internal structure
and are therefore ideal to improve our understanding of massive
stars.

Slowly pulsating B stars (SPB) were introduced to the zoo
of variable stars by Waelkens (1991). They are non-radial multi-
periodic oscillators on the main sequence between spectral type
B3 and B9, with an effective temperature ranging from about
11,000 to 22,000 K, and a mass between 2.5 and 8 M⊙ (e.g.
Aerts et al. 2010). They oscillate in high-order gravity (g) modes
with frequencies typically ranging from 0.5 to 2 d−1, which are
driven by the κ-mechanism acting due to the iron-group element
opacity bump (e.g. Dziembowski et al. 1993). Consecutive ra-
dial order n gravity modes of the same spherical degree l are ex-
pected to be equally spaced in period, and deviations from this
regular pattern carry information about physical processes in the
near-core region (e.g. Miglio et al. 2008).

SPB stars are expected to be dominated by a convective core
and a radiative envelope, and therefore experience internal mix-
ing processes, which have a significant influence on the lifetime
of the star by enhancing the size of the convective region in
which mixing of chemical elements occurs. Such a mixing might
be induced by convective core overshooting but also by internal
differential rotation (e.g. Aerts et al. 2003; Dupret et al. 2004).
Despite their importance for realistic stellar structure and evo-
lution models of massive stars, the physical details describing
these processes are hardly known. This is mainly because of the
small number of detailed investigations of SPB stars, partly due
to the few identified modes in these studies (for a recent review
see Aerts 2015).

The Canadian space telescope MOST (Walker et al. 2003;
Matthews et al. 2004) was very successful in providing the high
quality data of SPB stars that are necessary to challenge theory
(e.g. Walker et al. 2005; Aerts et al. 2006; Gruber et al. 2012;
Jerzykiewicz et al. 2013). The breakthrough in observing SPB
stars came, however, with the Kepler mission. Only recently,
Pápics et al. (2014, 2015) reported on the detection of a rotation-
ally affected series of g-modes in the two SPB stars KIC 7760680
and KIC 10526294 that show clear signatures of chemical mix-
ing and rotation and which enabled the first actual seismic mod-
elling of SPB stars. A limitation in this respect is that Kepler can
only observe fairly faint stars, for which additional observational
constraints (e.g., from high resolution spectroscopy or interfer-
ometry) are difficult to obtain.

HD 201433 (HR 8094, V389 Cyg) is one of the brightest
stars (V≃5.61 mag) suspected to be a SPB star (due to its position
in the Hertzsprung-Russel diagram). The B9V star is known to
be member of a single-line spectroscopic triple system (Barlow
1989). The most recent determinations of Teff = 12193±360K,
log g = 4.24±0.2, and v sin i = 15 km/s were published by
Takeda et al. (2014). Its Hipparcos parallax is 8.64 ± 0.55 mas
(van Leeuwen 2007), from which we obtain an absolute visual
magnitude of MV = 0.29 ± 0.14 mag. Interpolation in the tables
of Lejeune & Schaerer (2001) for [Fe/H] = 0.0 (see Sec. 9.3) in-
dicates a bolometric correction of BCV = −0.70 ± 0.05. With
Mbol,⊙ = 4.76 mag (Kopp & Lean 2011) we then obtain L/L⊙ =

Astrofísica de Canarias, and the Solar Mass Ejection Imager, which is
a joint project of the University of California San Diego, Boston Col-
lege, the University of Birmingham (UK), and the Air Force Research
Laboratory.

Fig. 1. Point spread function (PSF) positions for the BTr observations
(during observing setup 3) in the CCD subraster. The red ellipses in-
dicate the limit outside of which data points are eliminated for further
analysis (light grey points). We note that even though the ellipse on the
left hand side appreas to be misaligned it correctly reflects the distribu-
tion of the PSF positions.

115 ± 15. These parameters locate HD 201433 close to the cool
border of the SPB domain.

In this paper we report high-precision photometric observa-
tions of HD 201433 with BRITE - Constellation1, which is an ar-
ray of five nanosatellites devoted to high-precision, long-term
photometry of bright stars as is described by Weiss et al. (2014).
Our photometric analysis is primarily based on 156 days of
BRITE-Toronto (BTr) observations supplemented by about 13
days of BRITE-Lem (BLb) data (see Tab. 1). The data prod-
ucts and necessary post-processing are described in Sec. 2 & 3.
The Bayesian frequency analysis (Sec. 4) reveals a sequence of
nine significant close pairs of frequencies, consistent with ro-
tationally split dipole modes, from which we extracted an av-
erage period spacing and rotational splittings (Sec. 5). In Sec. 6
we demonstrate that our interpretation of the BRITE photome-
try is fully consistent with the signal found in the almost eight-
year long SMEI observations. We then construct a dense stellar
model grid and search for a representative model of HD 201433
(Sec. 7), which we use in Sec. 8 to infer the internal rotation pro-
file. To complement the space photometry we obtain new high-
resolution spectra which extend the time base to slightly more
than 96 years with a total of 231 spectra usable for an orbital
analysis. Based on an entirely Bayesian analysis of the radial ve-
locity measurements we improve the published orbital elements
and find evidence for a continuously decreasing orbital period.
Putting this in context of our asteroseismic and spectroscopic
results we conclude that the main component of HD 201433 is a
SPB star of about three solar masses showing no significant rota-
tional gradient throughout most of its interior. However, we find
indications for tidal interaction with a close companion, causing
an acceleration of the outermost envelope. We discuss our find-
ings for HD 201433 in a broader astrophysical context in Sec. 10
and summarise our analysis in Sec. 11.

2. BRITE photometry of HD 201433

The photometric observations used in this study were carried
out with two of the five BRITE - Constellation satellites. Each
1 http://www.univie.ac.at/brite-constellation/
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Table 1. Overview of the photometric observations of HD 201433 obtained with BRITE-Toronto2, BRITE-Lem3, and the Coriolis/SMEI satellite.
The last three columns give the number of data points of the raw, reduced, and subsequently binned data set.

Satellite Orbital period Duty cycle Cadence HJD start HJD end Range in CCDT raw reduced binned
[min] [%] [min] -2 450 000 [◦C] data points

BTr 98.2 ∼16 0.338 7 184.66 7 340.63 4 – 24 105 326 102 339 4 225
BLb 99.6 ∼10 0.338 7 273.78 7 286.93 29 – 39 1 741 1 321 87

SMEI 101.6 ∼68 101.6 2 675.44 5 561.41 – 33 412 27 863 –

of the 20×20×20 cm satellites hosts an optical telescope of 3 cm
aperture, feeding an uncooled CCD, and is equipped with a sin-
gle filter. Three nanosats have a red filter (550–700 nm) and two
have a blue filter (390–460nm). The orbital periods are close to
100 min, enabling continuous observations of the chosen target
fields for about 5–30 min per orbit.

The detector is a Kodak KAI-11002M CCD with about 11
million 9 × 9 µm pixels (plate scale of 27.3′′ per pixel), a 14-
bit A/D converter, an inverse gain of about 3.5 e−/ADU, and a
readout noise and dark current of about 16 e− and 20 e−/s per
pixel, respectively, at +20◦C. The saturation limit of the pixels
at this temperature is about 13 000 ADU, with the response being
linear up to about 9 000 ADU. Further details about the detector
and data acquisition of BRITE - Constellation are described by
Pablo et al. (2016)

A problem affecting the BRITE nanosatellites is the higher-
than-expected sensitivity of the CCDs to particle radiation,
which posed a major threat to the lifetime and effectiveness of
the BRITE mission. The impact of high-energy protons causes
the emergence of hot and warm pixels at a rate much higher
than originally expected. The affected pixels more easily gen-
erate thermal electrons and thereby significantly impair the pho-
tometric precision of the observations. An additional important
problem that appeared after several months of operation was the
charge transfer inefficiency also caused by the protons. There
were serious problems in the early phase of the mission, but
thanks to slowing the readout time and adopting a chopping tech-
nique for data acquisition, the effect of CCD radiation damage
on the photometry is now significantly reduced (Popowicz et al.
2017).

Satellite pointing is adjusted slightly between consecutive
exposures in the chopping mode, so that the target PSFs alter-
nate between two positions (about 20 pixels apart) on the CCD.
This means that the PSF-free part of a given subraster image acts
as a dark image for the subsequent exposure and subtracting con-
secutive exposures results in an image with one negative and one
positive target PSF. The background defects are thereby almost
entirely removed. More details about this technique are given by
Popowicz et al. (2017).

HD 201433 was one of the targets in the BRITE -
Constellation Cygnus II field and was observed with BRITE-
Toronto2 for about 156 days in June–November 2015 typically
48 times per BRITE orbit with an average cadence of 5 s ex-
posures every 20.3 s. A significantly shorter data set was ob-
tained with BRITE-Lem3, which observed HD 201433 for about
13 days in September 2015 for typically 30 times per orbit (see
Tab. 1).

2 The Canadian satellite BRITE-Toronto was launched on June 19,
2014, into a slightly elliptical and almost Sun-synchronous orbit and
is equipped with a red filter.
3 The Polish BRITE-Lem was launched on September 21, 2013, into
an elliptical orbit and is equipped with a blue filter.

Fig. 2. Correlations between HD 201433 flux measurements and BTr
housekeeping parameters (CCD temperature and the X and Y positions
of the PSF) as obtained during observing setup 3. The left and right
panels correspond to flux measurements extracted from the “left” and
“right” part of the subraster image (see Fig. 1). The bottom panels show
the residual time series phased with the satellite’s orbital period. Red
lines indicate linear (top panel) and polynomial (middle panels) fits and
a boxcar filter (bottom panel).

As the stellar flux is extracted from differential images
(chopping mode) no bias, dark, and background corrections
are necessary. The remaining main step is to identify the op-
timal apertures and to extract the flux within these apertures
(Popowicz et al. 2017). The light curves resulting from this
pipeline reduction are deposited in the BRITE - Constellation
data archive from where we extracted the data of HD 201433
and applied some post-processing routines, as are described in
the following.
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Fig. 3. Final light curve of HD 201433 as obtained with BTr. The grey and black dots in the top panel represent the full and binned data, respectively.
The bottom panels show enlargements of the full data set (red boxes in the top panel) with the red and blue symbols indicating flux measurements
extracted from the “left” and “right” part of the subraster frame (see Fig. 1). Black filled circles correspond to data binned into two bins per orbit.

3. BRITE data post-processing

The raw stellar flux still includes instrumental effects and obvi-
ous outliers and therefore needs some post-processing. The BTr
data came in two different setups4 and five data blocks of approx-
imately equal length, which we treated independently. The first
setup at the beginning of the observing run addressed 24 stars in
the field but had to be reduced to 18 stars (2nd setup), because of
data transfer limitations. Subdivision of the dataset into blocks
was required due to a limit of typically 30 000 frames for the
standard data reduction software.

Adapting the recipe of Pigulski et al. (2016) we perform the
following steps for each of the five blocks:

– Divide the data set into two sets corresponding to the alter-
nating PSF position on the CCD subraster. (see Fig. 1).

– Compute a 2D histogram of the X/Y positions and fit a 3D
multivariate Gaussian to it. Measurements that were obtained
with the PSF centre positioned outside three times the widths
of the Gaussian (see Fig. 1) are eliminated from further pro-
cessing. This procedure identifies most of the outliers (about
2.5% of the original data) and rejects them.

– The procedure resumes with the “cleaned" data set and ap-
plies a 4σ-clipping to the whole data set, where σ was de-
termined from the complete set. The procedure results in the
elimination of additional ∼0.3% of all data points.

– To better access the instrumental correlations we first pre-
whiten the two highest amplitude frequencies (see Sec. 4),
which are subsequently added back after post-processing of
the data.

– In the case of HD 201433 the instrumental flux increases typ-
ically by 5 – 7 ADU/s per ◦C with increasing CCD temper-
ature. A quadratic fit with the CCD temperature is sufficient
to correct for this temperature correlation (see top panel of
Fig. 2).

– Pixel-to-pixel sensitivity variations of the detector are re-
flected in correlations between the instrumental flux and the

4 Setup refers here to a set of camera parameters but also to subraster
positions on the CCD. Setups may change at the begining of a run (dur-
ing optimising of the observations) or due to adding/removing a star
during the run, where for each parameter change a whole new setup is
generated with unique ID.

PSF position on the CCD (about 3 – 5 ADU/s per pixel). We
correct for this with polynomial fits (middle panels of Fig. 2).

– Residual instrumental signal is apparent when phasing the
instrumental flux with the satellite’s orbital period. We cor-
rect for the high-overtone signal with a 200 point box-car
filter in the phase plot (bottom panels of Fig. 2).

– The residual instrumental flux is then divided by its average
value for conversion to relative flux.

The ten reduced data sets (two for each setup) are then sim-
ply stitched together, where no significant offsets at the subset
interfaces are found. The final light curve of HD 201433 con-
sists of about 102 000 individual measurements and is shown
in Fig. 3. The post-processing reduces the point-to-point scatter
of the BTr data of HD 201433 from about 46 to 34 ADU/s (or
∼0.9%).

The intrinsic variability of HD 201433 acts on time scales of
no shorter than a few hours; hence, the average cadence of about
20.3 s (which corresponds to a Nyquist frequency of ∼2130 d−1)
is unnecessarily short. Given this and because the frequency
analysis (see Sec. 4) requires good estimates for the uncertainties
of the individual measurements we bin the light curve. To keep
the dominant cadence short enough (i.e., the Nyquist frequency
high enough) we bin the typically 48 measurements per BRITE
orbit into two bins, where the standard deviation of the origi-
nal measurements within a given bin provides a good estimate
for the photometric accuracy. The binned light curve consists
of about 4 200 data points with a median cadence of ∼8.13 min
( fnyq ≃ 89 d−1) and an average error of about 2.1 ppt.

The BLb raw dataset of HD 201433 has a considerably
shorter time base than the BTr observations and is due to the
higher CCD temperature also much noisier. The original ∼1 700
measurements reduce to about 1 300 useful data points in the
post-processed light curve (see Fig. 4). Binning of the typically
30 measurements per BRITE orbit results in 87 data points with
a median cadence of ∼5.4 min and an average error of about
16 ppt.

4. Frequency analysis

SPB stars are expected to show long-period g modes in a fre-
quency range of up to a few cycles per day. This is well sepa-
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Fig. 4. Final light curve (top) of HD 201433 as obtained by BLb, with
black and blue symbols corresponding to the binned and unbinned ver-
sion, respectively. The bottom panel show the Fourier amplitude spectra
of the binned BLb (black dashed line) and BTr (grey line) light curves.

rated from residual instrumental signal and alias peaks due to the
orbital frequency of BTr of ∼14.7 d−1 (and multiples of it). We
compute the Fourier amplitude spectrum of the unbinned light
curve and find no significant peak between 2 d−1and the Nyquist
frequency which cannot be attributed to the satellite’s orbital fre-
quency. The pulsation spectrum (see Fig. 5) of HD 201433 shows
the strongest peaks between about 0.5 – 1 d−1, and another group
of peaks between about 1.5 – 2 d−1. Above that no significant
power can be found.

An unusual feature in the Fourier spectrum of HD 201433
is that some peaks appear slightly broader than expected from
the spectral window function (see insert in Fig. 5). This indi-
cates the presence of close frequencies that are separated by less
than (or close to) the formal frequency (Rayleigh-) resolution
of 1/T ≃ 0.0064 d−1. Such features are problematic for a stan-
dard frequency analysis (based on a strict pre-whitening proce-
dure) because assuming a mono-periodic signal in the vicinity of
the considered Fourier peak yields a frequency that corresponds
to the weighted average of the intrinsic frequency multiplet and
pre-whitening this “wrong” signal causes artificial peaks in the
spectrum. Furthermore, it is difficult (or often impossible) to ob-
jectively rate the significance of the result and its uncertainties.

We use a probabilistic approach to tackle this problem.
Kallinger & Weiss (2016) have developed a fully automated
Bayesian algorithm that searches for close frequencies in time
series data and tests their statistical significance by comparison
to a fit with constant (i.e., no periodic) signal and a fit with
a mono-periodic signal. The procedure performs the following
steps:

– Compute the Fourier amplitude spectrum up to 2 d−1 and de-
termine the frequency with the highest amplitude.

– Fit N functions, F(t,n) =
∑n

i=1 Ai sin [2π( fit + Φi)] + c, to the
time series, where n incrementally increases from 1 to N so
that, in total, N models with 1, 2, ..., N sinusoidal compo-
nents are fit to the data. A, f , and Φ are the amplitude, fre-
quency, and phase of the ith component, respectively. The
parameter c serves as an offset to ensure that

∫

T
F(t)dt = 0

even if the duration T of the time series is not an integer
multiple of the signal period. For the fit we use a Bayesian
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Fig. 5. Fourier amplitude spectrum of the binned BTr light curve of
HD 201433. The two middle panels show the amplitude spectrum af-
ter pre-withening of the given frequencies. The bottom panel gives the
residual amplitude spectrum after pre-withening with all significant fre-
quenices. The right insert in the top panel shows the spectral window
function of the BTr dataset. The left insert gives the original spectrum
(black line) and the spectral window (red dashed line) centered on the
main peak. The green and blue peaks indicate the posterior parameter
distributions (arbitralily scaled in amplitude for better visibility) of a
single and multiple sine fit with MultiNest, respectively.

nested sampling algorithm (MultiNest; Feroz et al. 2009),
and allow the individual frequencies to vary around the ini-
tial frequency by ±2/T , and the amplitudes between 0 and
50 times the initial amplitude from the amplitude spectrum.
Phases have no initial constraints and can vary from 0 to 1.

– To rate if a signal is statistically significant (i.e., not due to
noise) and if so, which model best represents the data, we
compute the model probability (pn) by comparing the global
evidences5 (zn) of the fits to those of a fit with a constant
factor (zc). If p =

∑

zn/(zc +
∑

zn) > 0.95 we consider the
solution as real6 and not to be due to noise. If so, the best-
fit model is then the model with pn = zn/

∑

zn > 0.95. This
means that in order to be accepted, a multiperiodic solution
needs to fit the data considerably better than the monochro-
matic solution. Our approach for the statistical significance
of a signal compares well to classical approaches like a SNR
> 4 (e.g. Breger et al. 1993; Kuschnig et al. 1997) but has the
advantage of providing an actual statistical statement that is
based only on the data and that allows us to discriminate be-
tween mono- and multi-periodic solutions for closely sepa-
rated frequencies. In the present case we tested models with

5 The global evidence is a normalised logarithmic probability delivered
by MultiNest describing how good the model fits the data with respect
to the uncertainties, parameter ranges, and the complexity of the model.
6 In probability theory an odds ratio of 10:1 (i.e., p=0.9) is considered
already as strong evidence (Jeffreys 1998).
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up to three components but find that for none of the identified
multiplets is a solution with N = 3 statistically significant.

– The best-fit parameters and their 1σ uncertainties are then
computed from the marginalised posterior distribution func-
tions as delivered by MultiNest.

– The best-fit model is subtracted from the time series and the
procedure starts from the beginning.

We stop the procedure when p drops below 0.66 (correspond-
ing to weak evidence) but we accept only those frequencies with
p > 0.95. We note that the frequency, amplitude, and phase
uncertainties that are computed from the posterior probability
distributions compare well with uncertainties determined from
other criteria (e.g. Kallinger et al. 2008).

Based on extensive tests with synthetic data (with the sam-
pling and noise characteristics of the BTr data of HD 201433)
Kallinger & Weiss (2016) have shown that the algorithm is capa-
ble to reliably (>99.9%) distinguish between a single frequency
and a pair of close frequencies if the frequencies are separated
by more than ∼ 0.5/T and their amplitudes are larger than about
1 ppt. The uncertainties of the individual frequencies are thereby
only slightly larger than for an unperturbed mono-periodic signal
but rarely exceed 0.1/T .

4.1. Frequencies and frequency combinations in the BTr data

Our Bayesian frequency analysis algorithm identified 9 “fea-
tures” in the binned BTr data of HD 201433 that consist of statis-
tically significant closely separated frequencies in addition to a
further 11 single frequencies. An example for a pair of close fre-
quencies is illustrated in the left insert in Fig. 5, where we show
the posterior parameter distributions of the one-frequency and
two-frequency model fits for the highest-amplitude peak in the
BTr spectrum of HD 201433. The evidence of the two-frequency
model is orders of magnitude better than for the one-frequency
model (despite the Bayesian “penalty” for introducing additional
free model parameters), which indicates – based on solid statis-
tical grounds – that more than one frequency is needed to repro-
duce the data in this frequency range.

The 29 significant frequencies detected in the BTr data set
are listed in Tab. 2. After pre-whitening them from the data, the
residual spectrum (see Fig. 5) has an average amplitude of about
110 ppm. The “bump” around 1 d−1, however, indicates that there
is still some undetected signal left (which can well be of in-
strumental origin). We searched for linear combinations among
all significant frequencies. Out of the 29 detected frequencies
we find 22 independent frequencies. The remaining peaks cor-
respond to first-order linear combination frequencies (where
fi = f j ± fk). In order to be identified as a linear combination a
frequency has to fulfil the criterion ( fi− f j∓ fk)2 < σ2

fi
+σ2

f j
+σ2

fk

and its amplitude must be smaller than the amplitudes of its par-
ent frequencies ( f j and fk). We also searched for higher-order
combinations but found none. A schematic view of the indepen-
dent and combination frequencies is shown in Fig. 6 indicating
that all peaks above 1 d−1 are actually combination frequencies
and that 18 of the 19 peaks between 0.4 and 1 d−1 are part of a
pair of close frequencies fully consistent with rotationally split
dipole modes.

4.2. Frequencies in the BLb data

The BLb data set has a much shorter time base and is noisier than
the BTr dataset. Consequently, the frequency analysis is more

Table 2. Significant frequencies in the BTr observations of HD 201433.
Uncertainties for the frequency f , amplitude A, and phase Φ are given
in parentheses in units of the last digit. The phase is defined for the be-
ginning of the data set (mHJD = 184.6694) The frequencies listed in
the bottom part are combination frequencies, where ǫ gives the devia-
tion between the observed frequency and the combination of its parental
frequencies in units of the uncertainties (e.g., ǫ < 1 means a difference
within 1σ of the formal uncertainties).

ID f (d−1) A (ppt) Φ (1) p SNR ǫ

f1 0.83881(9) 16.99(38) 0.555(6) 1.000 34.4
f2 0.84398(17) 8.47(38) 0.192(13) 1.000 17.2
f3 0.88363(29) 7.04(64) 0.462(23) 1.000 19.1
f4 0.88831(14) 14.68(66) 0.077(12) 1.000 39.8
f5 0.97975(10) 8.22(17) 0.213(9) 1.000 31.6
f6 0.98431(29) 2.70(17) 0.576(26) 1.000 10.3
f7 0.69813(32) 3.68(25) 0.885(25) 0.999 17.9
f8 0.7045(11) 1.11(24) 0.406(81) 0.999 5.4
f9 0.59867(30) 2.13(13) 0.539(26) 0.972 11.6
f10 0.60535(92) 0.724(12) 0.142(70) 0.972 3.9
f11 0.92511(63) 1.29(26) 0.833(53) 1.000 7.2
f12 0.92901(31) 2.25(25) 0.106(26) 1.000 12.6
f13 0.55775(38) 1.60(13) 0.686(35) 1.000 9.7
f14 0.56476(52) 1.07(13) 0.367(43) 1.000 6.5
f15 0.4173(11) 1.17(27) 0.87(10) 0.999 7.4
f16 0.4234(14) 0.96(26) 0.407(89) 0.999 6.1
f17 0.6440(13) 0.89(17) 0.435(95) 0.999 5.8
f18 0.65052(73) 1.25(18) 0.040(46) 0.999 8.2
f19 0.03933(46) 1.44(13) 0.873(43) 1.000 9.8
f20 0.06500(41) 0.94(13) 0.591(47) 1.000 6.4
f21 0.7967(12) 0.60(14) 0.469(11) 0.999 4.6
f22 0.09564(83) 0.62(13) 0.871(86) 0.999 4.6

f1+7 1.53632(50) 2.07(13) 0.421(22) 1.000 10.8 1.03
f1+4 1.72670(51) 1.09(13) 0.704(44) 0.997 7.5 0.78
f3+6 1.86678(85) 0.82(13) 0.479(51) 1.000 6.0 1.23
f1+2 1.68194(71) 0.73(13) 0.944(66) 0.999 5.5 1.14
f1+6 1.8219(11) 0.49(12) 0.512(93) 0.999 4.1 1.07
f7−18 0.04765(63) 0.81(13) 0.273(48) 0.985 5.8 0.04
f3+4 1.77067(91) 0.60(13) 0.736(78) 0.999 4.7 1.32

challenging (see the amplitude spectrum in Fig. 4). An indepen-
dent analysis gives only one significant peak with a frequency of
0.852±0.003d−1, which represents a weighted average of f1 and
f4 of the formally unresolved frequencies in BLb. We can, how-
ever, fix the frequency to the values determined for the BTr data
and fit only the amplitude and phase. We tried various combina-
tions of the three largest amplitude frequencies in the BTr data
( f1, f4, f5, f1 ∧ f4, f1 ∧ f5, f4 ∧ f5, and f1 ∧ f4 ∧ f5) and find that
a fit with f1 and f4 gives the (by far) the best model evidence.
The resulting amplitudes and phases are given in Tab. 3. The two
frequencies have very similar amplitude ratios and phase differ-
ences in the two BRITE passbands, indicating that they have the
same spherical degree (e.g. Daszyńska-Daszkiewicz 2008).

Table 3. Amplitude and phases of f1 and f4 in the BTr and BLb pass-
bands and the corresponding amplitude ratios and phase differences.

ID BTr BLb
A (ppt) Φ (1) A (ppt) Φ (1) Ab/Ar Φb − Φr

f1 16.99(38) 0.555(6) 30.2(3) 0.579(14) 1.78(4) 0.02(2)
f4 14.68(66) 0.08(1) 24.6(3) 0.198(16) 1.69(8) 0.12(2)
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Fig. 6. Schematic view of all significant frequencies in BTr observations of HD 201433. Grey squares and circles give two period spacings (see
text and Fig. 7). The identified rotational doublets are labeled with νi. Blue circles indicate the non-adiabatic frequencies of a representative MESA
model. The insert shows the full frequency range, with independent frequencies in red and combination frequencies in blue.

5. Period spacings and rotational splittings

From our list of significant independent frequencies we can iden-
tify 9 rotationally split doublets (ν1 – ν9 in Fig. 6), which indi-
cates that all modes have the same spherical degree of l = 1.
Our mode identification is summarised in Tab. 4, where we as-
sume symmetric triplets with the unobserved (i.e., unresolved)
central (m = 0) component being located half way between the
|m| = 1 components. There are obviously some modes miss-
ing so that measuring the period spacing is not straightforward.
If we define the period spacing as dPi = 1/νi−1 − 1/νi and
assume that between ν5 and ν6 two modes are missing (i.e.,
dP6 ≃ [1/ν5 − 1/ν6]/3) we find the period spacings presented
in Fig. 7 as solution S 1. There is a strong gradient of dP with
the period, which is not consistent with theory (e.g. Miglio et al.
2008). A more realistic solution (S 2 in Fig. 7) is found when as-
suming 3 modes missing between ν5 and ν6 and one mode miss-
ing between ν2 – ν3, ν3 – ν4, and ν4 – ν5. The resulting period
spacings are quite uniform with only small deviations from the
median value of about 5030 s, which is a typical value for a star
like HD 201433 (see KIC 10526294; Pápics et al. 2014). Our as-
sumption of filling missing modes might appear unrealistic but
in fact alternating high- and low-amplitude modes were already
observed in KIC 10526294, so that it is not surprising that some
modes between detected modes fall below the detection limit of
our observations (∼0.5 ppt). In Fig. 6 we show predictions of the
mode sequences based on both solution but note that we cannot
distinguish between them based on the observations alone.

The average rotational splittings are determined as <δfrot>=

(ν+1 − ν−1)/2 (with the indices of ν indicating the m value
of the mode). This means that we again assume symmetric
triplets, which contradicts the findings of Pápics et al. (2014),
but given the missing m = 0 components this is the only pos-
sibility we have. Our splittings are, however, similar to what
was reported for KIC 10526294 and have an average value of
∆ f = 0.0028 d−1. Even the trend of increasing splittings towards
higher periods can be observed (bottom panel in Fig. 7), which
implies a non-rigid internal rotation profile of the star. For solid
body rotation the rotational splitting of l = 1 gravity modes is
equal to half the rotation rate of the star, so that we can estimate
the average rotation period of HD 201433 to be about 177 d.
Since the assumption of a solidly rotating star is likely wrong,
this value represents the average rotation period dominated by
the near-core region, where the g modes have the largest contri-
bution to the splittings.
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Fig. 7. Measured period spacings (top) and rotational split frequencies
(bottom). The period spacings are shown for two different solutions (see
text). While for S 1 (open squares) dPi = 1/νi−1 − 1/νi is plotted as ob-
served (only for ν6 the measured spacing is divided by 3), for S 2 (filled
circles) we divide the measured spacing for ν3−5 by two and for ν6 by
4 (ν7−9 are the same as for S 1). Diamond symbols (connected with a
dashed line) represent period spacings of a representative MESA model.
Triangle symbols in the bottom panel give the rotational splittings for
KIC 10526294 (Pápics et al. 2014), where we exclude the two measure-
ments with the largest uncertainties (for better visibility).

6. Coriolis/SMEI photometry of HD 201433

Even though the frequency doublets identified in the BTr data set
represent a statistically solid result, as is demonstrated in Sec. 4,
the separations of the individual components are close to the for-
mal frequency resolution of the time series. Such a result might
be considered at first glance questionable as it disagrees with the
Loumos & Deeming (1978) criterion, which requires two close
peaks to have a minimal separation of ∼1.5 times the frequency
resolution to avoid influence on their apparent frequencies when
applying the classical Fourier technique. In our case we have the
fortunate situation that we can test our claims with a data set
long enough to provide the required frequency resolution. These
data are provided by the Solar Mass Ejection Imager (SMEI)
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Table 4. Rotationally split triplets based on BTr and SMEI observations,
In the case of BTr, the unresolved central (m = 0) component f0 is
determined from the midpoint of the observed f±1 components and P0

is the corresponding period. The split frequency <δfrot> is then half the
difference between the m = 1 and m = −1 component and ng gives
the radial order of the best-fit model frequency (see Sec. 7). In the case
of SMEI (labeled by an arrow in the first column), f0 and <δfrot> are
determined from a Lorentzian fit to the data. Frequencies and periods
are given in units of d−1 and d, respectively.

ID IDobs m fm P0 <δfrot> ng

f15 -1 0.4173(11)
ν1 0 0.42031(89) 2.3997(51) 0.00302(88) 39

f16 1 0.4234(14)

f13 -1 0.55775(38)
ν2 0 0.56125(32) 1.7818(10) 0.00351(33) 29

f14 1 0.56476(52)

f9 -1 0.59867(30)
ν3 0 0.60201(50) 1.6611(14) 0.00333(50) 27

f10 1 0.60535(92)

f17 -1 0.6440(13)
ν4 0 0.64727(75) 1.5449(18) 0.00325(71) 25

f18 1 0.65052(73)

f7 -1 0.69813(32)
ν5 0 0.70132(56) 1.4259(11) 0.00319(54) 23

f8 1 0.7045(11)

f1 -1 0.83881(9)
ν6 0 0.84139(10) 1.1885(1) 0.00258(10) 19

f3 1 0.84398(17)

→ 0 0.84086(16) 1.1893(2) 0.00246(15)

f3 -1 0.88363(29)
ν7 0 0.88597(16) 1.1287(2) 0.00233(16) 18

f4 1 0.88831(14)

→ 0 0.88578(13) 1.1289(2) 0.00243(12)

f11 -1 0.92511(63)
ν8 0 0.92706(36) 1.0787(4) 0.00193(36) 17

f12 1 0.92901(31)

f5 -1 0.97975(10)
ν9 0 0.98203(15) 1.0183(2) 0.00229(15) 16

f6 1 0.98431(29)

→ 0 0.98164(15) 1.0187(2) 0.00257(16)

on board the Coriolis satellite (Eyles et al. 2003; Jackson et al.
2004).

SMEI comprises three wide-field cameras, which are aligned
such that the total field of view is a 180 deg and about 3 deg
wide arc, so that a near-complete image of the sky is obtained
after about every 102 min orbit. A detailed description of the
data analysis pipeline used to extract light curves from these data
is provided by Hick et al. (2007). The data of HD 201433 were
taken from the SMEI website7 and contain about 33 400 mea-
surements covering almost eight years of near-continuous obser-
vations. The classical frequency resolution therefore is ten times
better than the frequency splittings which we are discussing for
HD 201433 (see Tab. 4). Details about the data set are given in
Tab. 1.

7 http://smei.ucsd.edu/new_smei/index.html
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Fig. 8. Fourier amplitude spectrum of the SMEI data set of HD 201433.
The top panel gives the original spectrum (grey line) with the red and
blue lines indicating the significant frequenices in the BTr data set
(Tab. 2) and their mid-point, respectively. The insert shows the full fre-
quency range. The middle panel shows the same spectrum along with
a sequence of Lorentzian profiles (red line) fitted to the spectrum. The
bottom panel shows the (color-coded) amplitude at the central frequen-
cies of the Lorentzians as a function of time. The amplitudes are de-
termined within a 720 d long subset moved across the full time series
in 100 d steps. The horizontal dotted lines separate fully independent
parts.

The SMEI photometric time series are subject to strong in-
strumental effects, such as large yearly flux fluctuations, which
obviously are due to an insufficient background correction. As a
remedy we phased the data with a period of one year and com-
puted the median flux in 200 phase sub-intervals and find an an-
nual amplitude of about 0.8 mag. We applied an Akima spline
fit and computed the residuals to the smooth one-year variation.
Back in the time domain one sees outliers, jumps, irregular inten-
sity changes and low frequency variations in the residuals which
have to be removed in order to make the very low amplitude fre-
quencies in question detectable. This “cleaning" was achieved
via iterative spline interpolation anchored on the median flux in
2–3 day intervals (in other words applying a high–pass filter) by
3–5σ clipping to remove outliers and repeating this procedure
20 times. As a result of this rather arbitrary procedure any signal
is gradually suppressed towards low frequencies.

The resulting SMEI time series of HD 201433 is homoge-
neously sampled without significant aliasing. The median ca-
dence of about 101.6 min results in a Nyquist frequency of
∼7 d−1, which is high enough to cover the intrinsic variability
of HD 201433. The Fourier amplitude spectrum of the SMEI
data set is shown in Fig. 8. Compared to the BTr spectrum,
the formal frequency resolution is more than 18 times better
(∼0.00035 d−1compared to 0.0064 d−1 for the BTr data), while
the noise level in the Fourier domain is obviously much higher
(∼0.53 ppt compared to 0.11 ppt in the BTr data). The photo-
metric precision is, however, sufficient to clearly detect the three
largest-amplitude doublets ν6, ν7, and ν9 found in the BTr obser-
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vations. In fact, the doublets turn out to be triplets with the cen-
tral component having a smaller (or comparable) amplitude than
the wing components. This clearly indicates that the BTr obser-
vations are not long enough to resolve all three components of
the intrinsic triplets even when using our present frequency anal-
ysis method. The frequencies (and even the amplitudes) of the
wing components (red vertical lines in the top panels of Fig. 8)
agree well, however, with the signal found in the SMEI spec-
trum. Also the central components, which were estimated from
the midpoints of the (BTr) wing components, are in good agree-
ment.

To quantify the agreement we tried to extract the individ-
ual frequencies from the SMEI observations but find a classical
pre-whitening sequence to be insufficient as the individual fre-
quencies split up in many components indicating strong ampli-
tude modulations. This is already visible in the actual spectrum
showing multiple side-lobes around the expected positions of the
frequencies. Such a structure reminds of the pattern of intrinsi-
cally damped and stochastically excited modes (so-called solar-
like oscillations) produce in the Fourier spectrum. This is why
we fit a sequence of three Lorentzian triplets to the spectrum,

P( f ) = P0 +
∑

n

1
∑

m=−1

hnζm(i)
1 + 4 [πτ ( f − fn − m · δ frot,n)]2

, (1)

where P is the Fourier power, fn is the frequency of the central
component of the n-th triplet and δ frot,n is its rotational splitting.
For simplicity we use a single lifetime parameter τ for all modes.
The mode height hn scales with a geometric factor ζm(i), which
depends on m and the inclination i at which the pulsation axis is
seen. According to Gizon & Solanki (2003) this geometric fac-
tor is cos2 i for the m = 0 component and 0.5 sin2 i for the |m| = 1
components of a dipole mode. More details about the detec-
tion of Lorentzian profiles are given by, e.g., Gruberbauer et al.
(2009). We again use MultiNest for the fit and find a best-fit
inclination and mode lifetime of 68±5◦ and 680±110 d, respec-
tively. The central mode frequencies and rotational splittings are
listed in Tab. 4 and the best-fit sequence of Lorentzian triplets is
shown in the middle panels of Fig. 8. The triplets at about 0.88
and 0.98 d−1 are well defined so that we can test the assump-
tion of symmetric splittings for them. A fit with a modified Eq. 1
(where we allow for individual splittings) indeed shows that the
wing components are equally separated from the central compo-
nent within the uncertainties of about 5%.

We emphasise here that it does not necessarily mean that
modes have indeed a stochastic nature, if Lorentzians work well
in extracting the mode frequencies from the SMEI observations.
In fact, this is very difficult to prove, because one has to show
that the signal phase is not coherent, which requires continuous
observations that cover many lifetime cycles of the mode. The
SMEI data cover about five lifetime cycles (if the modes were
stochastic), which is likely not enough to verify a stochastic na-
ture. We do, however, find a strong amplitude modulation for the
individual frequencies. To quantify this we fit a sine function to a
720 d long subset of the time series, where we fix the frequency
to the value determined earlier by the Lorentzian fit. Moving the
subset across the SMEI data in steps of 100 d gives the amplitude
(and phase) of a given frequency as a function of time. This is
shown in the bottom panel of Fig. 8. We tested various window
sizes but always find the same general behaviour. The strongest
modulation is found for the triplet at about 0.84 d−1. While the
amplitude of the central component is fairly constant, the wing
components vary in amplitude by a factor of more than four. Also
interesting is that the variations are periodic with a timescale of

about 1 500 d and that they are in anti phase. The amplitude min-
imum of the m = −1 component coincides approximately in time
with the largest amplitude of the m = +1 component, and vice
versa. A similar but less pronounced behaviour can be found for
the triplet at about 0.98 d−1. Only the triplet at 0.88 d−1 is dif-
ferent. The timescale of its modulation is much longer and the
wing components vary approximately in phase. The physical ori-
gin for this phenomenon is unknown to us but we note that some-
thing similar is seen in the Kepler observations of KIC 10526294
(Pápics et al. 2014). Even though the authors did not follow up
on this, many modes illustrated in their Fig. 9 show a multiple
peak structure typical for amplitude modulation.

Apart from the three triplets shown in Fig. 8 and a single
sharp peak at 0.40013 d−1 (for which we have no explanation at
this point) we do not find any further significant variability in the
SMEI data. The data set does, however, allow us to verify several
assumptions made during the analysis of the BTr observations:

– Our interpretation of the nine pairs of close frequencies in the
BTr data as symmetrically split doublets is confirmed by the
independent SMEI observations. Even though we can only
verify the three largest-amplitude multiplets, the remaining
doublets follow the same statistical criteria and only their
amplitudes are smaller, but still significant in the BTr time
series.

– The frequencies of the central components and rotational
splittings agree on average within ∼1.8σ and 0.8σ, respec-
tively, between BTr and SMEI.

– The interpretation of individual frequencies extracted from
the BTr observations as independent oscillations requires ap-
proximately stable signal amplitudes. Even though we defi-
nitely find amplitude modulations, their timescales are long
enough to consider the oscillations in first approximation to
be stable during the 156 d long BTr observations. Even for
shorter lengths of the subsets, which are used for the bot-
tom panel of Fig. 8, we do not find evidence for significant
amplitude modulations shorter than those mentioned above.

– The amplitude modulations also provide a reasonable expla-
nation for the missing modes (Sec. 5) as it might well be that
their amplitudes were below the detection threshold of the
BTr observations.

Finally we note that we cannot straightforwardly constrain
the inclination angle of HD 201433 since the observed frequen-
cies are heat-driven modes. In this case, the 2l + 1 compo-
nents of a rotationally split non-radial mode are not excited
to the same amplitude, contrary to solar-like oscillators (e.g.
Gizon & Solanki 2003). However, the formally best-fit value of
68±5◦gives an amplitude ratio between the central and wing
components which is at least not inconsistent with the observed
ones. It seems to be plausible that we see the star more equator-
on than pole-on.

7. Asteroseismic analysis

To interpret the observed rotational splittings in terms of inter-
nal differential rotation we need a representative stellar model
for HD 201433. We therefore compare the observed g modes to
non-adiabatic pulsation modes computed with the GYRE stellar
oscillation code (Townsend & Teitler 2013) for a grid of non-
rotating equilibrium stellar models along stellar evolutionary
tracks that pass through the spectroscopic error box (see Tab. 7
and Sec. 1). The models are calculated with the MESA stellar
structure and evolution code (Paxton et al. 2011, 2013). As we
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Fig. 9. Visualisation of the multi-dimensional χ2 (left axis; black sym-
bols) and probability (right axis; grey symbols) space that results from
the comparsion of the observed and computed MESA/GYRE modes.
Red circles mark the two best-fit models.

are for the time being only interested in a representative model
we restrict the models to a single initial chemical composition of
(Y, Z) = (0.28, 0.02) and turn off convective core overshooting.
We evolve a set of zero-age main-sequence models with masses
ranging from 2.9 to 3.225 M⊙ (with steps of 0.025 M⊙) until their
core hydrogen mass fraction drops below Xc = 0.3. To achieve
sufficient resolution along the tracks we limit the evolutionary
time steps to 0.2 Myr, which results in about 5 200 models with
a typical resolution in Xc of 0.002 close to the ZAMS to 0.004
for the most evolved models.

We then compute l = 1 modes with non-adiabatic fre-
quencies ranging from 0.3 to 1.2 d−1. To search for a best-fit
model we compare the observed frequencies (νobs) to the the-
oretical ones (νmodel) by computing the reduced χ2 value (e.g.
Pamyatnykh et al. 1998; Guenther & Brown 2004),

χ2 =
1
N

N
∑

i=1

(νi,obs − νi,model)2

σ2
i,obs
+ σ2

model

, (2)

where N and σobs are the total number of observed modes and
their frequency uncertainties. The typical numerical uncertainty
of the model frequencies (σmodel) is estimated from following
the frequency of a specific mode (i.e., with a given radial order)
during stellar evolution. We thereby assume the actual numer-
ical uncertainty to be of the order of the point-to-point scatter
after subtracting a running average. We find a value of about
0.00003 d−1, which is comparable to σobs in some cases and
therefore not negligible.

The resulting multi-dimensional χ2 space is shown in Fig. 9
and illustrates that while the grid resolution along the evolution-
ary tracks is sufficient (indicated by the smooth decrease and
increase of χ2 around the best-fit model when plotted, e.g., as
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Fig. 10. HR diagram showing the model grid that is used to search for a
representative stellar model of HD 201433. The models are color-coded
according to their χ2 value and shown with thick lines when at least
one mode excited (i.e., with a positive work integral) and with thin lines
when all modes are damped. The two best-fit models are marked with
black circles. The black rectangle indicates the spectroscopic error box
(see Tab. 7 and Sec. 1).

a function of R) the resolution in mass is still too low to find
a model whose frequencies agree within the observational un-
certainties. We can, however, identify a model that fulfils our
requirements (approximately representing the internal structure
of HD 201433). The best-fit model has a χ2 value of about 6.3,
which means that its frequencies matches the observed ones on
average within 2.5 (i.e., square root of 6.3) times the average
observational errors. The best-fit model parameters are listed in
Tab. 5 and its frequencies and period spacings are compared to
the observational values in Fig. 6 and 7, respectively. We fur-
ther note that increasing the mass resolution would not allow
us to improve the situation without simultaneously computing
models with various chemical compositions and convective core
overshoot parameters. Pápics et al. (2014) and Moravveji et al.
(2015) found strong correlations between the mass, the over-
shoot parameter, and the chemical composition in their seis-
mic analysis of KIC 10526294 (a star that is very similar to
HD 201433 in mass and chemical composition, but less evolved),
from which we can estimate that turning on core overshooting
could potentially increase the mass of the best-fit model by up to
0.1 M⊙. They do, however, also find that models with a low over-
shoot parameter fits the observations best. Also the fact that our
best-fit model is outside the expected range from spectroscopy in
the HR diagram (see Fig. 10) is not really troubling since chang-
ing the chemical composition would again slightly change the
mass and therefore the position in the HR diagram.

A disadvantage of the χ2 method is its inability to pro-
vide uncertainties and therefore to set a limit on which models
(within the grid) represent the observations and which do not.
The “second-best”-fit model M2 (with its position in the HR di-
agram significantly different from M1) has a χ2 of about 7.85
and therefore fits the observed frequencies marginally less well.
We therefore follow the approach of Kallinger et al. (2010) to
determine the Bayesian model probability and find that for our
model grid about 99.9% of the total probability is concentrated
in the close vicinity (about ±15 K) of the best-fit model M1 (M1
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Fig. 11. Normalised integrated rotational kernels for the nine dipole
modes in model M1 representing best the observed frequencies in
HD 201433. The insert shows how the mass is distributed in the model.
The vertical dashed lines represent the boundaries of the sharp spike in
the Brunt-Väisälä frequency (see Fig. 12) with the inner one marking
the boundary of the convective core.

itself has a p of about 0.15) and that there is only a marginal
probability that M2 provides the best representation of the ob-
servations (see Tab. 5). Even though this would already rule out
M2 we further investigate it in order to check if a slightly dif-
ferent internal structure (M2 is more evolved than M1 and has a
smaller relative core size) affects the further analysis.

8. Internal rotation profile

Building on the measurements of Pápics et al. (2014) for
KIC 10526294, Triana et al. (2015) provided the first internal
rotation profile of an unevolved intermediate-mass B-type star.
They found the star to rotate near its core-envelope boundary
with a period of about 71 d and while their seismic data point
towards a counter-rotating profile within the radiative envelope
they cannot rule out rigid rotation. Such results are key to tackle
one of the big open questions in stellar evolutionary theory: the
transport of angular momentum inside stars. With the nine ro-
tationally split g modes identified in HD 201433 we are able to
provide another example of an internal rotation profile for a star
very similar to KIC 10526294.

If we assume that the cyclic rotation frequency Ω depends
only on the radial coordinate r, then the frequency splitting δfrot

Table 5. Properties of the two best fitting models. See text for details.
Teff is given in K, M, L, and R in solar units, and the age in Myr. The
hydrogen mass fraction in the core Xc is given in units of 1.

Teff M L R χ2 p
log g Xc age

M1 11363 3.05 100.4 2.589 6.30 0.15
4.096 0.464 145

M2 10854 3.05 108.7 2.953 7.85 1.5e-4
3.982 0.338 199

of a mode with degree l and radial order n can be written as,

δfrot(n, l) =
1

2πIn,l

∫ R∗

0
Kn,l(r)Ω(r)dr, (3)

where In,l is the mode inertia and Kn,l(r) gives the unimodular
mode kernel, that is a function of the mode’s displacement am-
plitudes (e.g. Cox 1980). R∗ is the radius of the model.

Normalised integrated versions of the rotation kernels of
HD 201433 are given in Fig. 11 and basically show how a rota-
tionally split frequency is accumulated throughout the star. Ob-
viously, different modes are more or less sensitive to rotation in
different regions of the star. The mode ν9, e.g., gains about 10%
of its frequency splitting from rotation in the thin layer above the
convective core, where N2 spikes (see Fig. 12). The mode ν7, on
the other hand accumulates almost three times more of its rota-
tional splitting in the same region. This “differential” sensitivity
to different parts of the star allow us to resolve the stellar rotation
profile.

From the fact that the modes ν7 and ν9 have practically the
same observed rotational splitting we can already conclude that
HD 201433 is either a rigid rotator or it rotates much faster in
the outer layers than the inner ones (because otherwise the split
frequencies of ν7 and ν9 would be different). Several inversion
techniques have been developed in the past aiming to determine
the internal rotation profile of the Sun. The inversion of Eq. 3
is, however, a highly ill-conditioned problem that requires, e.g.,
numerical regularisation. Beck et al. (2014) found that classi-
cal approaches like the RLS method (e.g. Christensen-Dalsgaard
1990) or the SOLA technique (e.g. Schou et al. 1998) are not
well-suited for stars with only a few observed rotational split-
tings (like red giant stars, but also SPB stars) and easily become
numerically unstable or it is very difficult to evaluate the accu-
racy and especially the reliability of the result.

8.1. Forward-modelling of the rotation profile

We therefore follow the forward modelling approach developed
by one of us (TK in Beck et al. 2014). The algorithm computes
synthetic rotational splittings for a parameterised rotation profile
and compares them to the observed splittings. The form of the
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Fig. 12. Squared Brunt-Väisälä N2 (solid lines) and Lamb S 2 (dashed
lines) frequency as a function of the fractional radius for model M1
(black lines) and M2 (grey lines). The blue lines indicate regions where
N2 is negative, and are therefore convective. The insert shows the out-
ermost region and the frequency range of the observations (grey-shaded
area between the red lines).
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profile is thereby very flexible. One can, e.g., implement a lin-
ear piece-wise model or a functional form (like a Gaussian or
a polynomial). The profile parameters are again fitted with the
Bayesian nested sampling algorithm MultiNest. These parame-
ters are Ωn in the case of a zonal model with n zones, or the co-
efficients of a chosen function. The advantage of this approach
is again to provide realistic uncertainties and its capability to
compare different models and rate which one best represents the
observations (e.g., differential rotation vs. rigid rotation). The
algorithm was developed to handle the few available rotational
splittings in red giants and has proven to give reliable results that
are fully consistent with other methods (e.g. Beck et al. 2014,
Beck et al., in prep.).

The modes that are accessible to our analysis probe the radia-
tive envelope of HD 201433 from the boundary of the convective
core (at a radius and mass fraction of ∼0.11 and 0.15, respec-
tively) up to about r = 0.98R∗ (m > 0.9999M∗), above which all
frequencies fall above the Lamb frequency (see Fig. 12), which
sets the upper limit for g modes to propagate. We can therefore
not expect to directly get information about the core rotation rate
and the outer ∼2% of the star. We tried various models for the ro-
tation profile to fit the observed splittings, ranging from rigid ro-
tation, over linear piece-wise models (with up to 9 zones), poly-
nomial functions, Gaussians, multi-Gaussians, to Lorentzian and
error functions. A selection of the resulting rotation profiles are
shown in Fig. 13 and more details are given below:

(a) Rigid rotation: Assuming rigid rotation we find a rotation pe-
riod of 201±5 d (=̂ 0.0050±0.0001d−1). However, as can be
seen in the insert of panel (a) in Fig. 13, the synthetic split-
tings that result from integrating the mode kernels, folded
with the rotation profile, do not fit the observed splittings at
all. In comparison with other fits the model probability of
about 10−7 is extremely low. We can therefore rule out an
entirely rigidly rotating radiative envelope for HD 201433.

(b) and (c) Multi-zonal rotation profiles: We test various zonal
models with a fixed position of the zone boundary, i.e.,
“hard-wired” in the model and find the best formal model
probability (p = 0.515) for a fit with a two-zone model
with the zone boundary set at a radius fraction of 0.9
(panel (b) in Fig. 13). The inner and outer zones rotate with
a period of 314±43 d−1(=̂ 0.0033±0.0005d−1) and 14±3 d
(=̂ 0.076±0.018d−1), respectively. We do not find another
model, even with more zones, that comes close in model
probability. As an example we show a three-zone model in
panel (c) of Fig. 13, where we add an inner zone (0 - 0.2R∗)
but find it to rotate with practically the same rotation rate as
the middle zone. This indicates that the data do not support
differential rotation in the radiative envelope of HD 201433
below a radius fraction of about 0.9. The very low model
probability compared to model (b) results from the additional
parameter in the fit8.

(d) Two-zone profile with variable zone boundary: In a next step
we tried to locate the transition region between the inner slow
and outer fast rotating zone. In contrast to the fixed location
of the zone boundary in the original two-zone model we now
leave it as a free parameter in the fit. The result is shown
in panel (d) locating the zone boundary at a radius fraction
of r/R∗ = 0.93±0.02. While the rotation period of the inner

8 Roughly spoken, in a Bayesian concept a model gets assigned a
penalty for its complexity so that a model with n + 1 parameters has
to fit the data significantly better than a model with n parameters to get
assigned the same (or even higher) model evidence. More details are
provided by Jeffreys (1998).
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Fig. 13. Internal rotation profiles from our forward-modelling approach
using various models (panel (a): constant rotation; (b): two-zone model
with fixed zone boundary; (c): three-zone model with fixed boundary;
(d): two zone model with variable zone boundary; (e): Gaussian pro-
file centered at the surface; (f ): error function profile). Red and blue
lines indicate rotation profiles resulting from mode kernels of the best-
fit models M1 and M2, respectively. The uncertainties (black dashed
lines) are only plotted for M1-based profiles for better visibility but are
similar for the M2-based profiles. The inserts show the observed (grey
symbols) and best-fit (red symbols) rotational splittings as a function of
the mode frequency with the axes in d−1.

zone remains almost the same, the outer zone now rotates
with a period of about 5.5 d (=̂ 0.182 d−1) significantly faster
than for the original two-zone model. However, due to the ro-
tational splittings containing less and less information about
rotation when approaching the surface, the uncertainties start
to dramatically increase.

(e) Gaussian rotation profile: So far, the analysis points towards
a slowly and rigidly rotating zone that contains almost the en-
tire mass of the radiative envelope, topped by a thin and sig-
nificantly more rapidly rotating surface layer. The assump-
tion of a sudden increase in rotation speed (by a factor of
20 or so) at the zone boundary seems, however, physically
not very plausible. We therefore use a Gaussian rotation pro-
file in which it turns out that we get the best results (i.e.,
the best model probability) when fixing the centre of the
Gaussian to the stellar surface. While the inner rotation pe-
riod of 292±76 d (=̂ 0.0034+0.0012

−0.0007 d−1) agrees well with the
two-zone models, the surface rotation rate is 0.30±0.21 d−1

(=̂ 3.33+7.78
−1.37 d) – larger than those of the two-zone models.
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Since the latter do, however, only give average rotation rates
within the zones, we consider the models as equivalent. Also
the width of the Gaussian (it drops to half its maximum at
r/R∗ = 0.96±0.01) is consistent with the zone boundary of
the variable two-zone model. From a statistical point of view
the probability contrast between the two-zone models and
the Gaussian (about 1:2 for model e:b and 5:2 for model e:d)
is not enough to prefer any of them.

(f ) Error function rotation profile: Even though more physical
than a two-zone model, the Gaussian model is not as capa-
ble of reproducing the observed rotational splittings, indicat-
ing that the transition from the rapidly rotating surface to the
slowly rotating interior might not be Gaussian. We therefore
fit an error function Ω(r) = Ω0 + 0.5Ω1(1 + erf([r − r1]/k))
to the observed splittings, where r1 gives the location where
Ω has risen to half its maximum value (Ω1) and k controls
the slope of the increase. The advantage of this function is
that it can reproduce very steep to shallow transitions from
slow to fast rotation. Interestingly, the fit gives the best-fit pa-
rameters Ω1 = 0.26±0.17 d−1(=̂ 3.85+7.26

−1.52 d), r1 = 0.97±0.02,
and k = 0.06±0.03, which results in a rotation profile that is
very similar to the Gaussian profile. Even though the error
function profile is more complex than the Gaussian (it has 4
instead of 3 free parameters) the model probability is 0.112
– high enough to be considered a reasonable representation
of the data.

Note that we limit the rotation rates to values between −1 and
1 d−1 for all our fits, hence allowing for counter-rotation (as in-
dicated by Triana et al. 2015, for KIC 10526294). However, we
did not find a single model that includes a statistically significant
counter-rotating zone in HD 201433.

The basic result of the rotation analysis is that the mea-
sured rotational splittings are inconsistent with the entire radia-
tive envelope rotating at a constant rate, providing instead strong
evidence (in a statistical sense) for a slowly and rigidly rotat-
ing envelope topped by a thin and significantly more rapidly
rotating surface layer. There is some weak evidence that this
layer reaches about 4% down in radius (< 0.001% in mass) and
that the transition between the slow and rapidly rotating zone is
Gaussian-like. It is interesting to mention that the short rotation
period is compatible – within the large uncertainties – with the
orbital period of the innermost companion of HD 201433, sug-
gesting angular momentum transfer from the companion star to
the outer envelope of HD 201433, causing its acceleration.

An important question is how these results depend on the
mode kernels used and therefore the specific best-fit stellar
model. We repeated the entire rotation analysis with model M2
and find no significant difference to our original analysis with
model M1. The only difference is that the rapidly rotating outer
layer seems to reach further down (see panels (d) to (f ) in
Fig. 13), but the deviations are still within the uncertainties.

Finally we test the reliability of our approach, i.e., how well
can we reconstruct the internal rotation profile? We therefore
compute synthetic rotational splittings based on the M1 mode
kernels and arbitrarily assumed rotation profiles (ranging from
solid-body rotation, multi-zonal profile, the Gaussians with the
centre set to the core and to envelope) and add noise to them.
As an example, we show in Fig. 14 the result of our forward-
modelling approach for a simulated Gaussian rotation profile,
similar to what we find for HD 201433. The simulation demon-
strates that we can indeed reconstruct the input rotation profile
within the limits of the chosen model. This cannot, however, be
directly compared to the real data. In the case of the simulation
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Fig. 14. Same as Fig. 13 but for synthetic rotational splittings that are
computed from a Gaussian rotation profile (blue line). Panels from top
to bottom: two-zone model with fixed boundary at r/R∗ = 0.9, Gaussian
profile, and an error function profile.

we know the functional form of the profile and therefore “only”
reconstruct its parameters. For the real data, this is not the case
and the relatively large uncertainties (compare panels (e) and (f )
in Fig. 13 to the respective profiles in Fig. 14) do also reflect that
the model does not perfectly match the functional form of the
real rotation profile. The data do not, however, allow one to bet-
ter constrain the real form of the rotation profile without over-
fitting.

9. Multiplicity of HD 201433

HD 201433 has been known for almost a century to be a grav-
itationally bound multiple system. Young (1921) measured the
radial velocity (RV) of the system 54 times during 1920/21 and
found the RV’s to be consistent with a 3.3137 d circular binary
orbit. The residuals to the fit were, however, much larger than
the uncertainties of the measurements, which is why the sys-
tem was found to be “peculiar”. Guthnik (1938, 1939, 1942)
picked up on the peculiarity and improved the original orbital el-
ements of Young (based on 90 new measurements between 1936
and 1940) but also had no explanation for the persistent large
residuals. He also detected photometric variability that was not
compatible with the binary orbit. Two Cepheid-like frequencies,
0.838026 d−1and 0.885645 d−1, which are consistent with f1 and
f4 of the BTr observations (see Tab. 2), were found in these old
photoelectric data, interrupted by periods of irregular variations
or constant brightness. Hoffleit (1977) noted that the difference
between these two periods is exactly 1/21 d but had no interpre-
tation for this. In fact, 1/21 d corresponds to about 4100 s and is
therefore a reasonable estimate for the g-mode period spacing in
HD 201433.

Gieseking & Seggewiss (1978) obtained 60 new RV mea-
surements in 1975-77 and improved the original orbital period to
3.3131168±0.000008d using the combined data set, which was
finally large enough to discover the second companion with a pe-
riod of 154.09±0.02d, assuming circular orbits. Barlow (1989)
re-reduced the observations of Young (1921) and used all avail-
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Fig. 15. Line profile of the Fe ii (4233.1Å) line. The top panel shows the
individual (grey lines) and average (black line) line profiles corrected
for the orbital motion. The bottom panels show the individual profiles
arbitrarily scaled and vertically shifted according to their orbital (left)
and pulsation (right) phase ( f1 from Tab. 2).

able data to find a new solution for the triple system with pe-
riods of 3.31311718±0.0000045 and 154.072±0.018d, and also
found that the long-period (LP) companion is in a non-circular
orbit with an eccentricity of 0.311±0.057.

9.1. New spectroscopy of HD 201433

Motivated by the fact that the earliest RV measurements date
back almost a century and that no high-resolution spectrum of
HD 201433 was available for a spectroscopic analysis we organ-
ised new spectroscopic observations. A total of 26 spectra (see
Tab. 6) were obtained in May and August 2016 with the Her-
mes spectrograph (Raskin et al. 2011; Raskin 2011), mounted
on the 1.2 m Mercator telescope on La Palma, Canary Islands,
Spain. The Hermes spectra cover a wavelength range between
375 and 900 nm with a spectral resolving power of R ≃ 85 000.
The wavelength reference was obtained from emission spectra of
thorium-argon-neon reference frames in close proximity to the
individual exposures. The extraction and the data reduction of
the observed stellar spectra were performed with the instrument-
specific pipeline (Raskin et al. 2011). Additionally we obtained
a single spectrum in late April 2016 with the echelle spectro-
graph NES (R ≃ 43 000) mounted to the 6 m SAO telescope of
the Russian Academy of Sciences.

The radial velocities were extracted by cross-correlating the
individual spectra with a template spectrum and fitting a Gaus-
sian to the response function. The RV measurements include the
combined orbital motions as well as a component from the sur-
face oscillations of HD 201433 (see Fig. 15). As the latter will
influence our orbital solution we have to correct for them. In a
first step we increased the formal estimates of the uncertainties
by a factor of five (σ̄RV = 0.13 → 0.65 km/s) to make them
compatible with the scatter of the first three RV values, which
were obtained within a few minutes with Hermes at Mercator
and which should practically have the same orbital velocity. The
resulting RV uncertainties are still much smaller than the typi-
cal uncertainties of the old measurements of about 2.8 km/s. The
new data should therefore help to significantly improve the or-
bital elements of the triple system and allow us to search for
changes in the orbital periods of the system.

9.2. Line profile variations

A closer look at the individual spectra reveals that the line pro-
files are in many cases asymmetric and that the profile of a given
spectral line changes from spectrum to spectrum. This can be
due to the spectral signature of an unresolved companion, but
– in our case – is more likely due to non-radial oscillations
in HD 201433, which can be best tested with a strong and un-
blended spectral line. Even though HD 201433 is a relatively
hot star, such lines are rare. A good candidate is the Fe ii line
at 4233.1 Å. In Fig. 15 we plot the individual spectra corrected
for the orbital motions and vertically shifted according to orbital
phase (bottom left) and pulsation phase (bottom right) with PSP
from Tab. 8 and f1 from Tab. 2, respectively. If the line profile
variations are due to unresolved spectral lines of the compan-
ion star the asymmetries in the spectra would be in phase and
the “motions” across the line profile would show some structure.
This is clearly not the case. If we phase-fold the spectra with
the period of the strongest photometric frequency (1.19217 d;
Tab. 2), the asymmetries are now much more in phase. For ex-
ample, the line profiles of the two spectra at a phase of about
0.55 are almost identical even though they were obtained almost
6 days apart. Furthermore, the line profile variations show some
systematics, e.g, a “bump” at a phase of about 0.4 moving to-
wards higher RV half a period later (i.e., at a phase of 0.9). Un-
fortunately, the spectra are too noisy and the phase coverage is
not complete enough for a detailed pulsation mode identification.
The available spectra do, however, indicate that the line profile
variations are due to non-radial oscillations and that their mor-
phology is not inconsistent with l = 1 modes (e.g. Aerts et al.
2010).

9.3. Atmospheric parameters and v sin i

It is evident that the shape and depth of spectral lines in a sin-
gle spectrum are strongly affected by oscillations, impeding the
determination of atmospheric parameters and the rotational line
broadening. We can, however, minimise this effect by averag-
ing all spectra with the additional benefit of increasing the SNR
and wavelength resolution. We therefore oversample the individ-
ual Hermes spectra, correct them for the orbital motions (origi-
nal RV in Tab. 6), and compute a weighted average, where the
weights are given by the SNR of the individual spectra. The re-
sulting average Hermes spectrum has a SNR of at about 700 (at
4700 Å).
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Table 6. Journal for the SAO (first line) and Mercator observations
with the original and pulsation-corrected radial velocity measurements
(RV and RVcor, respectively). The listed uncertainties are multiplied by
a factor of five to account for the line profile variations.

BJD - 2 420 000 ExpTime S/N RV RVcor σRV

(d) (s) (km/s)

37 506.54653 1200 50 −26.80 - 0.30

37 521.71877 300 96 −25.04 −27.00 0.38
37 521.72340 400 117 −24.68 −26.53 0.33
37 521.72803 300 106 −24.39 −26.13 0.39
37 525.73500 120 70 −11.88 −7.60 0.32
37 526.56969 130 63 −28.05 −27.55 0.63
37 526.73557 110 60 −38.95 −35.07 0.46

37 605.52232 450 111 −4.93 −5.68 0.24
37 605.70650 500 124 0.01 −4.21 0.64
37 606.39134 600 123 −36.07 −31.43 0.38
37 606.66337 450 109 −40.15 −39.78 0.20
37 607.46975 450 98 −38.04 −34.02 0.97
37 607.68725 450 115 −25.31 −21.55 0.26
37 608.48371 450 115 −0.85 −0.25 0.39
37 608.68911 450 131 −1.29 3.07 1.02
37 609.45007 600 106 −20.29 −24.30 0.69
37 610.44661 900 114 −41.82 −45.95 0.79
37 610.68638 248 31 −32.51 −35.77 0.86
37 611.45103 400 126 −12.79 −13.38 0.25
37 611.70037 450 122 6.29 1.68 0.76
37 612.41983 450 134 −19.94 −15.96 0.60
37 613.47615 400 125 −52.73 −48.13 1.28
37 613.66746 400 132 −47.51 −44.48 0.23
37 614.41879 400 128 −28.29 −27.70 1.64
37 614.68173 300 113 −19.71 −15.07 1.02
37 615.40370 600 107 −3.51 −7.27 0.19
37 615.66289 600 124 −13.84 −11.90 1.87

Table 7. Atmospheric parameters of HD 201433, derived with the SME
package, using a mean of the Hermes spectra.

LLmodels ATLAS models Takeda et al.

Teff (K) 11950±200 12000±200 12193±350
log g 4.15±0.07 4.13±0.07 4.24±0.2
Metallicity 0.02±0.16 0.02±0.15
ve sin i (km/s) 9.8±2.2 15

The atmospheric parameters of HD 201433 were then de-
rived using the SME (Spectroscopy Made Easy) spectral pack-
age (Valenti & Piskunov 1996; Piskunov & Valenti 2016), de-
signed to perform an analysis of stellar spectra using spectral
fitting techniques in the LTE (local thermodynamic equilibrium)
approximation. We choose five large spectral regions 4000-
4200 Å, 4200-4400 Å, 4400-4700Å, 4700-5200Å, and 5200-
5600 Å for the fitting procedure. They include three hydrogen
lines, Hδ, Hγ, and Hβ, which are more sensitive to surface
gravity than to effective temperature, as well as a large num-
ber of lines from light and Fe-peak elements. Few lines of the
elements He i, Si ii, Mg ii that are influenced by NLTE (devia-
tions from the local thermodynamic equilibrium) effects were
excluded from the fitting. The atomic parameters for all spectral
lines were taken from the third version of the VALD database
(Ryabchikova et al. 2015a). SME allows one to automatically
derive fundamental parameters of a stellar atmosphere: effective
temperature, surface gravity, metallicity, radial and projected ro-
tational velocities, micro- and macroturbulent velocities. These

parameters are determined by interpolation in a grid of LLmod-
els (Shulyak et al. 2004; Tkachenko et al. 2012), which are most
suitable for the analysis of A to late B-type stars. SME-derived
parameters in BAFGK-stars were checked by a comparison with
other spectroscopic or independent (e.g., interferometry) deter-
minations (Ryabchikova et al. 2015b, 2016) and were found to
agree within 1-2% in effective temperature and ±0.1 dex in sur-
face gravity. We also run SME with Kurucz’s model grid9. The
final determinations are given in Tab. 7 together with the results
of Takeda et al. (2014), which were derived from calibrations of
Strömgren photometric indices.

Fig. 16. Comparison of observed line profiles (asterisks) with syn-
thetic profiles (full line), which are rotationally broadened with ve sin i
= 9.8 km/s and with synthetic profiles convolved with ve sin i = 7.9 km/s
and Vmac= 7.2 km/s (dashed line).

We find that the spectroscopically derived Teff and log g val-
ues agree well with those derived from photometry. However,
the error for the rotational velocity is rather large, obviously due
to pulsation. In Fig. 16 we compare the observed line profiles
of a rather strong (4555 Å) and weak (4556 Å) Fe ii line with
synthetic profiles. While the latter, only broadened by rotation,
does not reproduce the observations very well, a combination of
rotation and macro-turbulence broadening gives a significantly
better fit. There is of course no classical macro-turbulence in the
atmosphere of a main-sequence B-star; hence, for HD 201433
the extra broadening is likely due to pulsation. Such an ex-
tra broadening is also observed in the atmospheres of, e.g., δ
Sct stars (Mittermayer & Weiss 2003) and rapidly oscillating Ap
stars (Ryabchikova et al. 2007; Sachkov et al. 2008) but also for
SPB stars (De Cat & Aerts 2002). Following the approach of
Murphy et al. (2016) we estimate the pulsational broadening to
be of the order of 5.5 km/s, which reduces the true projected ro-
tational velocity ve sin i to about 8±2 km/s.

9.4. A new solution for the triple system

With a total of 231 spectra covering slightly more than 96 years
we try to derive a new orbital solution for HD 201433. In a basic
Keplerian model for a triple system the primary’s radial velocity
RV at an epoch t can be computed according to,

RV(t) = γ +

2
∑

i=1

Ki [cos(ωi + ϕ(ei ,t,Ti,Pi)) + ei, cosωi], (4)

9 http://kurucz.harvard.edu/grids.html
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Fig. 17. Keplerian fits to the corrected radial velocity measurements
for the short-period (left) and long-period (right) companions. The data
and fits in the left panels are corrected for the LP orbit and vice versa.
The epoch of the observations is colour-coded and black symbols cor-
respond to the best-fit model. The upper and middle panels correspond
to fits with a fixed period and a changing period (for the short-period
orbit), respectively. The inserts give the residuals. The bottom panels
show the Fourier amplitude spectra of the residuals to the initial fit for
the 1920-1976 (left) and 2016 (right) data with the dash-dotted hor-
izontal lines indicating the noise level. Vertical dashed lines give the
long-period and second harmonic (left) and short-period orbital period
(right), respectively. Significant signal is indicated by red arrows.

where ϕ is the true anomaly, which depends on t, the eccentricity
e, the epoch of the periastron T , and P, the orbital period. γ,
K, and ω give the systemic velocity, the semi-amplitude of the
visible component, and the longitude of periastron, respectively.
For a first fit to the observations we again use MultiNest and find
a solution which is consistent with the results of Barlow (1989).

We then compute the Fourier power spectrum of the resid-
ual velocities (see bottom panels in Fig. 17). There is significant
variability in the residuals, but remarkably different for the old
and new data sets. While we find a peak at about 1.3130 d−1with
a SNR of 4.8 in the residuals of the old data, there is essentially
no power at this frequency in the 2016 data. Contrary to this, we
find the strongest peak at about 0.84 d−1with a SNR of about 3.7
in the 2016 data, which is not detectable in the old data. While
this peak can clearly be attributed to pulsation, we have no ex-
planation for the 1.31 d−1 periodicity. We note that also a 1 d−1

alias of the SP orbital frequency can be excluded. To improve
the orbital solution, we correct for both periodicities according

Table 8. Orbital solutions for the HD 201433 triple system. Given are
the systemic velocity (γ), the epoch of periastron (T ), the orbital period
(P), the period change rate (1/P · dP/dt), the longitude of the periastron
(ω), the orbital eccentricity (e), the radial velocity semi amplitude (K) of
the visible component, the mass function ( f(m)), and the projected semi-
major axis (a sin(i)). For the variable-period fit PSP is defined for TSP

and rms corresponds to the standard deviation of the residuals with the
bracketed value computed for the 2016 measurements. The probability
is calculated from the Bayesian model evidence (z) according to p =
zn/

∑

z.

constant Period variable Period

short-period (SP) orbit

TSP (d) 2 457 613.15±0.08 2 457 613.14±0.15
PSP (d) 3.3131662±0.0000004 3.3131574±0.0000028
1
P

dP
dt

(yr−1) - 3.2±1.0e-8
ωSP (rad) 2.38±0.16 2.36±0.29
eSP 0.015±0.003 0.015±0.005
KSP (km/s) 20.09±0.04 20.07±0.08
f(m) (M⊙) 0.00278±0.00002 0.00277±0.00003
aSP,1 sin(i) (R⊙) 1.316±0.003 1.314±0.005

long-period (LP) orbit

TLP (d) 2 457 592.7±0.5 2 457 593.8±0.7
PLP (d) 154.119±0.008 154.151±0.005
ωLP (rad) 0.27±0.05 0.11±0.04
eLP (1) 0.377±0.026 0.499±0.015
KLP (km/s) 8.51±0.10 8.52±0.17
f(m) (M⊙) 0.0078±0.0003 0.0065±0.0005
aLP,1 sin(i) (R⊙) 25.9±0.3 25.9±0.5

γ (km/s) -25.78±0.11 -26.05±0.23
rms (km/s) 4.68(2.83) 4.67(2.82)
probability 0.002 0.998

to:

RVcor = RV − A sin

[

2π

(

mBJD
Φ
+ φ

)]

(5)

where {A, Φ, φ} = {3.22 km/s, 0.7616 d, 0.763} and {4.64 km/s,
1.1871 d, 0.584} for the old (mBJD < + 24 000) and new (mBJD
> + 37 000) data, respectively. The corrected radial velocities
from 2016 are listed in Tab. 6.

In a next step we repeat the fit of Eq. 4 to the corrected radial
velocities. As usual the best-fit parameters and their 1σ uncer-
tainties are determined from the posterior probability distribu-
tions delivered by MultiNest. The resulting orbital elements are
listed in Tab. 8 and agree with those of the previous fit, but are
typically twice as precise as before and are significantly more
precise (up to a factor of ten) compared to the solution of Barlow
(1989). Most notably, the period of the short-period (SP) orbit
is now precise to about 8 ppm (or 0.034 s). This might appear
unrealistically small but one has to keep in mind that the data
cover more than 10 000 revolutions. While in previous analyses
the SP orbit was assumed to be circular we do actually allow
also for elliptic orbits, but find the eccentricity to be close to
zero (eSP = 0.015 ± 0.003).

Close binary systems are subject to several physical pertur-
bations, like tidal friction, magnetic braking, mass transfer, etc.
(see, e.g., Eggleton 2006) that increase/decrease the angular mo-
mentum of the system and therefore affect the orbital period.
In fact a number of close binaries are known that show period
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changes of the order of some ten milliseconds per year for or-
bital periods of a few hours (e.g. Lohr et al. 2012). The orbital
period of the SP companion of HD 201433 is much longer, but
given the long time base of the observations we might be able to
find a period change. We therefore replace the constant orbital
period PSP in Eq. 4 by the following expression:

P′(t) = PSP

[

1 +
1
P

dP

dt
(TSP − t)/365.25

]

, (6)

where PSP gives the orbital period at TSP and 1/P·dP/dt is the
relative change rate per year. A fit with MultiNest gives a sta-
tistically significant period change rate of (3.2±1.0)×10−8. The
model evidences of the fits with constant and variable PSP have
an odds ratio of about 1:500, clearly favouring the variable-
period fit. Both fits are shown in Fig. 17 and their orbital ele-
ments are listed in Tab. 8. We find only PLP and eLP to differ
by more than 3σ between the two models, with the variable-
period model resulting in a slightly longer and more eccentric
orbit for the long-period companion. Remarkably, the rms scat-
ter of the residuals is still much larger than the uncertainties of
the RV measurements and the residuals do not show any system-
atic trends. We therefore attribute the excess in scatter to unre-
solved oscillations, but tidal effects might also play a role (e.g.
Sybilski et al. 2013; Zahn 2013).

The determined period change rate indicates that the orbital
period of the short-period companion is now about 0.88 s shorter
than in 1921, which is a very small value. But one should keep
in mind that the SP period is determined with an accuracy of
0.034 s! Even though we find strong evidence against a stable
period we cannot rule out other explanations, like the influence
of another star being gravitationally bound to the system. In fact,
there is a known visual companion located about 3.4 arcsec from
the main component. Its spectral type was indicated between A0
and A7 (Meisel 1968; Abt & Cardona 1984) with an orbital pe-
riod likely longer than 1000 yr. Clarity might be achieved by
searching for variability in the γ-velocity of the triple system.
If the detected period change was entirely caused by light-time
effects due to orbital motions of an undetected forth component,
the expected centre-of-mass velocity change would be on the or-
der of 90 cm s−1. Obviously, this is well below the accuracy of
the present observations (see bottom panels of Fig. 17). On the
other hand, a 1000 year-long orbit would not be detectable in
such a Fourier spectrum, even if we had cm s−1 precision for our
96 year-long observations. We can, however, search for a trend
in the residuals of our analysis. We therefore fit the residuals
to a constant period RV time series with first- and second-order
polynomials and calculate their MultiNest evidence. These ev-
idence, compared to the case of no trends in RV, i.e. a constant
RV, turned out to be statistically insignificant and we therefore
can exclude such trends with an amplitude larger than about
30 m s−1.

9.5. Inclinations of the orbital planes

Because we do not find eclipses or tidally induced flux modula-
tions in the light curve10, which is larger than about 0.3 ppt at the
orbital period of the SP companion, it is not possible to directly
infer the inclination (i) of the orbital planes from the available
RV measurements. Hence we can only determine the projected

10 While the BRITE observations are not long enough to search for the
photometric signature of the LP orbit, there is clearly no signal neither
in the raw nor in the post-processed BTr data set

semi-major axes and the mass functions (see Tab. 8):

f(m) =
(M2,3 sin i)3

(M1 + M2,3)2
=

K3
SP,LPPSP,LP

2πG
(1 − e2

SP,LP)1.5, (7)

where the indices 1, 2, and 3 indicate the central star and SP and
the LP companion, respectively. From seismology we have, how-
ever, a good idea about the mass of HD 201433 and can there-
fore estimate the companion masses M2 and M3 as a function of
i. From this we can now determine the orbital separations:

aSP,LP = aSP,LP,1 + a2,3 =
KSP,LPPSP,LP

2π
(1 + q), (8)

where q is the mass ratio M1/M2,3. Considering all uncertainties
and a conservative estimate of M1 = 3.0 ± 0.2M⊙ the resulting
companion masses and orbital separations are shown in Fig. 18
as a function of the orbital inclination. In this context we can
now test various assumptions.

A possible limitation for the inclination comes from the fact
that we do not see any sign of eclipses or rotational modula-
tion in the BRITE photometry, e.g., due to a distorted geometry
of a contact or semi-detached binary. For a given orbital sep-
aration (a), a limit for i to avoid an eclipse is determined by
cos i < (R1 + R2)/(a), where we assume R2 ∝ M

ζ

2, with ζ=0.57
and 0.8 for stars with a mass above and below 1 M⊙, respectively
(e.g. Torres et al. 2010). The resulting maximum inclination can
be translated into a minimum M2 for which the system does not
eclipse. Fig. 18 shows this limit as a function of the orbital sep-
aration in units of R⊙ and it is obvious that the system can only
eclipse for inclinations larger than about 85◦.

Another constraint comes from ellipsoidal variations in
non-eclipsing close binary systems whose components are
distorted by their mutual gravitation. According to Morris
(1985), the peak-to-peak amplitude of the primarys’ light vari-
ations A1 can be connected to the system parameters as
R3

1 sin2 i/(qa3) = 3.07A1(3− u1)/[(τ+ 1)(15+ u1)], whereA1 =

2.5 log [(1 + x)/(1 − x)] and u1 and τ are the limb-darkening
and gravity-darkening coefficients, respectively. For small am-
plitudes x = A(I2/I1 + 1), with A and I2/I1 being the semi-
amplitude of the ellipsoidal variations and the intensity ratio of
the two stars, respectively, in the BTr passband. For stars of sim-
ilar temperature their luminosity ratio translates directly into an
intensity ratio in a given passband, but for stars with signifi-
cantly different temperatures the different spectral energy dis-
tributions need to be taken into account as well. For simplic-
ity we only consider the effects of black-body radiation. For
main-sequence stars L ∝ M3.9 and T ∝ M1−ζ/2 (with ζ = 0.8
and 0.57 for M larger and smaller than 1 M⊙, respectively). The
mass ratio then translates into an intensity ratio according to
I2/I1 = (M2/M1)3.9E(λ,T1)/E(λ,T2), where E(λ,T ) is the black-body
radiation for a temperature T at the central wavelength λ of the
passband. Instead of the original bolometric limb- and gravity-
darkening coefficients used in Morris (1985) we adopt u1 = 0.39
and τ = 0.45 from Claret & Bloemen (2011), which are com-
puted for the SDSS r′ passband filter (which is similar to the
BTr passband). Ellipsoidal variations usually have a double-peak
structure in the light curve so that we can expect to find the
strongest peak in the amplitude spectrum at twice the orbital
frequency of 0.603644 d−1. We do indeed find a significant fre-
quency at 0.60535 d−1 ( f10 in Tab. 2), which differs by less than
2σ from twice the orbital frequency. We, however, identify this
as the m = 1 component of the doublet ν3. Even though this inter-
pretation seems more plausible we can most conservatively as-
sume that the signal amplitude of about 0.7 ppt is entirely due to
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ellipsoidal variations. Using the relation shown in Fig. 18 we find
a maximum inclination of 53◦ that the system can have to pro-
duce ellipsoidal light variations with an amplitude of less than
0.7 ppt. This translates into a minimum companion mass and or-
bital separation of about 0.4 M⊙ and 14.1 R⊙, respectively.

At first sight the spectroscopic observations of HD 201433
are dominated by the spectral signature of the primary star with
no obvious evidence for spectral lines originating from one of the
companion stars. This indicates that the latter are much fainter
than the primary star. For a more comprehensive testimony we
search for the spectroscopic signature of the inner companion
as follows. Its radial velocity is mirrored to the system velocity
with an amplitude scaled by the mass ratio of the two stars. We
therefore correct the observed spectra for mirrored radial veloc-
ities that result from a given mass ratio and average the spectra
that were observed at phases around the RV maxima (i.e.,±0.1 in
phase, which covers ten spectra). If the companion were bright
enough we would find spectral lines at the expected RV. Com-
pared to looking at individual spectra this approach increases
the sensitivity by averaging various spectra and also allows us
to distinguish between weak lines of the central star and spectral
lines originating from the companion. The absence of spectral
lines either means that we did not get the mass ratio right or that
the companion’s spectral lines are too diluted to stand out of the
noise. We tested companion masses from 0.3 to 3 M⊙ (in steps
of 0.1) but did not find any signature of individual spectral lines
from the companion in the wavelength range around the Fe ii
line, as is illustrated in Fig. 15. This allows us to define an up-
per limit for the luminosity of the companion star. The averaged
spectra (for each companion mass) scatter in normalised flux by
about 0.0025 in the range where we expect a spectral line of the
companion, which would then need to be at least 0.0075 deep
to to be differentiated from the noise by more than 3σ. Ignoring
white dwarfs for the time being, the companion is very likely a
low-mass main sequence star very close to the ZAMS (given the
relatively young age of HD 201433 for a main sequence star).
Given this we assume the intrinsic normalised depth of the gen-
uine spectral line of the companion to be at least 0.5. This results
in an intensity dilution factor of at least 67 at the given wave-
length. As for the ellipsoidal variations, we also need to account
for the stars’ different spectral energy distributions to translate
the intensity ratio into a mass ratio. Using mass and effective
temperature of our representative model (see Tab. 5) the compan-
ion mass needs to be below 0.97 M⊙ in order to be undetectable
in our analysis. According to Fig. 18 this translates into a mini-
mum inclination of about 21◦ and a maximum orbital separation
of about 14.8 R⊙. The above considerations do not explicitly ac-
count for rotational broadening of the companions’ spectral lines
but already include some margin for moderate rotation (in fact
the considered spectral lines in low-mass stars are much deeper
than 0.5). However, even cutting the minimum dilution factor
in half (i.e., allowing for more rotational broadening) does only
increase the upper mass limit by about 20%.

The above considerations are only valid for main sequence
stars but the companion could also well be a white dwarf (WD).
They are orders of magnitudes less luminous than HD 201433.
It is therefore practically impossible to see the spectral signature
of a white dwarf in a composite spectrum with a B-type star. In
a statistical sense a WD-companion would have a mass of about
0.6 M⊙ (e.g. Tremblay et al. 2016) and very little chance to be
more massive than one solar mass.

If we assume the outer layers of HD 201433 to rotate with
the orbital period of the SP companion (i.e., synchronised ro-
tation), the equatorial rotational velocity would be of the order
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Fig. 18. Range of companion mass’ and orbital separations determined
by orbital solutions as a function of the orbit inclination for the short-
period companion (SP, left) and the long-period companion (LP, right),
assuming a primary mass of 3.0±0.2 M⊙. While the lower dashed line
indicates the maximum inclination (and therefore minimum compan-
ion mass) to avoid an eclipse, the upper dashed line marks the upper
mass limit coming from the fact that HD 201433 is a SB1 system. The
dash-dotted line gives the maximum inclinations the system can have to
produce ellipsoidal light variations of no larger than 0.7 ppt.

of vrot = 2πR1/PSP ≃ 39.6 km/s. A comparison with the ob-
served ve sin i = 6 – 10 km/s gives an inclination of 9 – 15◦.
Based on the above (conservative) considerations we can, how-
ever, exclude such a low inclination. In fact, it would require a
1.5 – 2.5 M⊙ companion, which we would definitely detect in
the spectra. The obvious solutions for this contradiction are that
either the rotation axis of HD 201433 is not aligned with the SP
orbital axis or its top-layer rotation is not synchronised. Even
though very speculative, we remind that the doublet structure of
the oscillation modes indicates that we observe the oscillations
more equator-on than pole-on (i.e., the inclination of the pulsa-
tion axis is “large”). Assuming the pulsation axis to be aligned
with the rotation axis would then favour mis-alignment with the
SP orbit. On the other hand, our analysis of the internal rotation
profile (Sec. 8) indicates that the surface of HD 201433 rotates
with a period in the range of 2 – 11 d, and does therefore not ex-
clude that the surface rotation is somewhat slower than the SP or-
bital period (i.e., the equatorial rotational velocity is smaller than
for synchronised rotation and therefore the inclination is larger
than 9 – 15◦). We think the latter explanation is more plausible.
Given that the system is quite young, that circularisation time
scales in binary systems are shorter than synchronisation time
scales (e.g. Zahn 2013) and that the SP orbit is still not fully
circularised (eSP , 0), it is plausible that the gravitational inter-
action between HD 201433 and its SP companion is just about
to finish circularisation. Hence, spin-alignment is still active and
the rotation of the main star is accelerating. A better understand-
ing of this scenario would, however, require detailed modelling
of the dynamical history of the multiple system, which is beyond
the scope of this paper.

10. Discussion

Rotation is a key process of the evolution of stars, that is still not
fully understood. Along with magnetic fields, rotation strongly
affects the transport of chemical elements and of angular mo-
mentum (AM), and therefore the structure and evolution of stars
(e.g. Zahn 1992; Maeder & Meynet 2012). Isolated stars are be-
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lieved to conserve their total AM throughout evolution from
the main sequence to high up the giant branch. During this
evolution, their cores (mostly) contract while their envelopes
(mostly) expand until they are eventually ejected carrying away
AM to the stellar environment. If stars would locally conserve
AM throughout their life, their cores would spin up and the
surviving compact objects would spin much faster than is ac-
tually observed (e.g. Kawaler 2015). This implies that stan-
dard formulations of stellar structure and evolution miss one
(or more) essential processes. Which and what their individual
contributions are, as well as over which timescales they oper-
ate, is still unclear and none of the proposed mechanisms (e.g.
Tayar & Pinsonneault 2013; Cantiello et al. 2014; Fuller et al.
2014; Rüdiger et al. 2015) can sufficiently reproduce the obser-
vations.

A first step to improve our understanding of stellar rotation is
to provide a clear view on how AM is distributed inside stars as
a function of various parameters (e.g., stellar mass) and during
different evolutionary stages. Prime candidates for such studies
are sub-giant and red-giant stars for which the contrast between
the core and surface rotation has been measured using rotation-
ally split mixed p/g modes (e.g. Beck et al. 2012; Mosser et al.
2012). These measurements are, however, only one piece of the
puzzle as the star’s rotational history remains unknown and it is
thus difficult to compare the observations to model predictions.
On the other hand, the outer envelope contains almost all of the
star’s AM. Based on the measured surface rotation rate of an
evolved star one can thus well approximate how fast its surface
was rotating when the star was still on the main sequence by sim-
ply following the internal mass distribution of a representative
model backwards. By assuming rigid rotation on the MS the en-
tire rotational history of an evolved star can then be normalised
to its MS properties, which allows a direct comparison of differ-
ent stars. We have done this for various stars in Fig. 19, where
we show the core-to-surface rotation contrast as a function of
the stellar radius for six sub-giants (Deheuvels et al. 2014) and
the more evolved red giants KIC 4448777 (Di Mauro et al. 2016)
and KIC 9163796 (Beck et al., submitted). Once the diagram is
more populated (and such analyses are underway) it will allow
us to follow the AM redistribution in the interior of these stars
and therefore provide the observational constraints necessary to
test the various AM transport mechanisms.

Our concept of “visualising” the AM transport in evolved
stars depends critically on the assumption that stars rotate rigidly
in first proximity when leaving the MS. This is in fact difficult
to test observationally and has so far only been shown for three
late A to early F-type stars (KIC 11145123 – Kurtz et al. 2014;
KIC 9244992 – Saio et al. 2015; KIC 7661054 – Murphy et al.
2016). Even though Triana et al. (2015) could not rule out
rigid rotation for the B8V star KIC 10526294, our analysis of
HD 201433 provides the first confirmation that this important as-
sumption also holds true for the progenitors of more massive red
giants.

The models used to place the observations in Fig. 19
were computed with the Yale stellar evolution code (YREC;
Guenther et al. 1992; Demarque et al. 2008) for near-solar com-
position and calibrated mixing length parameter (Z = 0.02,
Y = 0.27, αMLT = 1.8) assuming standard solar mix-
ture (Grevesse et al. 1996). More details about the constitutive
physics are described by, e.g., Kallinger et al. (2012) and refer-
ences therein.
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11. Summary

HD 201433 has the potential to be a Rosetta-stone SPB star. It
is very bright and, hence, allows for detailed investigations with
spectroscopic, polarimetric, interferometric and photometric ob-
servations on all relevant scales of temporal and photometric
resolution, in the visible region and beyond. It is a success of
BRITE-Constellation to have identified the potential of this ob-
ject.

HD 201433 is a known single-lined spectroscopic triple sys-
tem consisting of a massive SPB star orbited by two low-mass
stars with periods of about 3.31 and 154 d. Our 27 new high-
resolution spectra, obtained in 2016, extended the time base
to slightly more than 96 years with a total of 231 spectra us-
able for an orbital analysis. Such a long time base allowed us
to check with Bayesian techniques for variability of the short-
period companion, and, indeed, we find an annual relative period
change rate of (3.2±1.0)×10−8, or that the orbital period is now
about 0.9 s shorter than about 10 000 orbits earlier, in 1921. Even
though we cannot exclude other explanations (like the influence
of an undetected third companion) for this it appears plausible
that the decreasing period is the signature of an angular momen-
tum transfer in the inner binary system. The orbital elements are
presented in Tab. 8 and agree with Barlow (1989) within the er-
rors, but are now more precise by a factor of 2 to 10. In addition,
we also allow for elliptical orbits, but find the eccentricity of the
inner companion to be small (eSP = 0.015 ± 0.003) and close to
the circular orbit, as assumed in pervious analyses. Because we
do not find eclipses or tidally induced flux modulations in the
BRITE observations and since the spectral signature of the com-
panions is not visible in our spectroscopic time series we can
limit the mass of the inner companion to the range of about 0.4
– 1 M⊙.

Obviously, pulsation effects in spectra interfere with the dy-
namical analysis of HD 201433 and, hence, a photometric fre-
quency analysis was performed contemporaneously. Indicated
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by peaks in the Fourier spectrum of the BRITE observations be-
ing broader than expected from the spectral window function,
we applied a Bayesian-based technique to identify frequencies
which are separated by less than the formal (Rayleigh-) fre-
quency resolution of 1/T , with T being in our case 156 d. We
can reliably distinguish between a single frequency and a pair of
frequencies (Kallinger & Weiss 2016), if the latter are separated
by more than ∼ 0.5/T and their amplitudes are sufficiently large,
in our case ∼1 ppt. Remarkably, the frequency errors are only
slightly larger than for a mono-periodic signal, but rarely exceed
0.1/T (i.e., one tenth of the Rayleigh frequency resolution).

The pulsation spectrum (see Fig. 5) of HD 201433 shows the
strongest peaks between about 0.4 d−1 and 1 d−1, and another
group of peaks between about 1.5 d−1 and 2 d−1. From our list
of significant independent frequencies we can identify nine ro-
tationally split doublets (ν1 – ν9 in Fig. 6), which indicate that
all modes have the same spherical degree of l = 1 (Tab. 4). The
available spectra strongly indicate that the line profile variations
are due to non-radial oscillations and that their morphology is
consistent with l = 1 modes. Assuming that some frequency
pairs could not be identified in the BTr data due to insufficient
SNR, the average period difference for the sequence of pairs is
about 5030 s, which is a typical value for a star like HD 201433.
Our interpretation of the BTr photometry is fully consistent with
the almost 8-year long but poorer-quality observations obtained
by the SMEI instrument on board the Coriolis satellite, for which
we identify three rotationally split triplets whose central frequen-
cies and splittings agree well with those extracted from the BTr
data. We also find the amplitudes of the individual components
to be modulated on timescales of about 1 500 d .

A highlight from the BRITE photometry of HD 201433 is a
trend of increasing frequency splittings towards higher periods,
which implies a non-rigid internal rotation profile - an outstand-
ing detection for the group of SPB stars and a key to tackle one
of the big open questions in stellar evolutionary theory, the trans-
port of angular momentum inside stars. For this investigation we
computed about 5 200 MESA models (see Fig.10) and their non-
adiabatic pulsation modes with the GYRE code. Among those
we search for a representative model that reproduces the ob-
served frequencies best using classical χ2 techniques but also
more reliable statistical methods. Our best fit model has a mass
and radius of 3.05 M⊙ and 2.6 R⊙ respectively, and is about half
way through its main-sequence lifetime.

HD 201433 is almost a twin star to KIC 10526294
(Pápics et al. 2014). Apart from their age (HD 201433 appears to
be more evolved) they are very similar in mass, surface gravity,
and effective temperature and even the measured rotational split-
tings are similar in value and trend. Triana et al. (2015) inves-
tigated the internal rotation profile of KIC 10526294 and found
the rotation rate near the core-envelope boundary to be well con-
strained. Their seismic data are consistent with rigid rotation but
a profile with counter-rotation within the envelope has a slight
statistical advantage over constant rotation. Our analysis of the
internal rotation profile is more conclusive and we can statisti-
cally rule out counter-rotation in HD 201433.

The modes that are accessible to our analysis probe the ra-
diative envelope of HD 201433 from the boundary of the con-
vective core (r≃ 0.11R∗) up to about 0.98R∗ (Fig.12). According
to our analysis, the measured rotational splittings do not support
differential rotation in the radiative envelope of HD 201433 be-
low a radius fraction of about 0.9, but are, on the other hand,
inconsistent with the entire radiative envelope rotating at a con-
stant rate. Our Bayesian analysis provides strong evidence for
a slowly (292±76 d) and rigidly rotating envelope, topped by a

thin and significantly more rapidly rotating surface layer reach-
ing down to about 96% of the radius. It is interesting to mention
that this rotation at the surface is compatible, within the given
uncertainties, with the orbital period of the innermost companion
of HD 201433, suggesting an angular momentum transfer from
the companion to the outer envelope of HD 201433, causing its
acceleration.

Combining the asteroseismic inferences with the spectro-
scopic measurement of the projected rotational velocity and our
orbital analysis of the inner binary system we conclude that tidal
interactions between the primary SPB star and its inner compan-
ion have almost circularised the orbit but not yet aligned all spins
of the system and just started to accelerate the rotation of the
SPB star to synchronise rotation. This makes the system quite
interesting in order to study tidal interaction of binaries “in ac-
tion”.

We further refer to a detailed follow-up study about the atmo-
sphere of HD 201433. The star’s atypically sharp spectral lines
make it a perfect candidate to study NLTE effects in the atmo-
sphere of a hot star (Ryabchikova et al, in preparation).
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