D. André, Solution directe duprobì eme résolu par M. Bertrand, Comptes Rendus Acad. Sci. Paris, vol.105, pp.436-437, 1887.

A. Bredthauer, Boundary states and symplectic fermions, Physics Letters B, vol.551, issue.3-4, pp.378-386, 2003.
DOI : 10.1016/S0370-2693(02)03061-7

URL : http://doi.org/10.1016/s0370-2693(02)03061-7

J. L. Cardy, Conformal invariance and universality in finite-size scaling, L385. [5] , Boundary conditions, fusion rules and the Verlinde formula, pp.324-581, 1984.
DOI : 10.1088/0305-4470/17/7/003

P. Di-francesco, H. Saleur, and J. Zuber, Modular invariance in non-minimal two-dimensional conformal theories, Nuclear Physics B, vol.285, p.454, 1987.
DOI : 10.1016/0550-3213(87)90349-X

J. Dubail, J. L. Jacobsen, and H. Saleur, Conformal field theory at central charge : A measure of the indecomposability (b) parameters, Nuclear Physics B, vol.834, issue.3, pp.834-399, 2010.
DOI : 10.1016/j.nuclphysb.2010.02.016

URL : https://hal.archives-ouvertes.fr/hal-00445225

W. Feller, An Introduction to Probability Theory and Its Applications, 1968.

J. Fjelstad, J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators V: Proof of modular invariance and factorisation, Theor. Appl. Categor, vol.16, p.342, 2006.

J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: partition functions, Nuclear Physics B, vol.646, issue.3, p.353, 2002.
DOI : 10.1016/S0550-3213(02)00744-7

URL : http://arxiv.org/abs/hep-th/0204148

M. Gaberdiel and I. Runkel, From boundary to bulk in logarithmic CFT, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.7, pp.41-075402, 2008.
DOI : 10.1088/1751-8113/41/7/075402

URL : http://arxiv.org/abs/0707.0388

A. Gainutdinov, D. Ridout, and I. Runkel, Logarithmic conformal field theory, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.49, p.490301, 2013.
DOI : 10.1088/1751-8113/46/49/490301

A. M. Gainutdinov, J. L. Jacobsen, N. Read, H. Saleur, and R. Vasseur, Logarithmic conformal field theory: a lattice approach, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.49, pp.46-494012, 2013.
DOI : 10.1088/1751-8113/46/49/494012

URL : http://arxiv.org/abs/1303.2082

A. M. Gainutdinov, J. L. Jacobsen, H. Saleur, and R. Vasseur, A physical approach to the classification of indecomposable Virasoro representations from the blob algebra, Nuclear Physics B, vol.873, issue.3, p.614, 2013.
DOI : 10.1016/j.nuclphysb.2013.04.017

A. M. Gainutdinov, N. Read, and H. Saleur, Bimodule structure in the periodic spin chain, Nuclear Physics B, vol.871, issue.2, pp.289-329, 2013.
DOI : 10.1016/j.nuclphysb.2013.02.017

A. M. Gainutdinov, N. Read, H. Saleur, and R. Vasseur, The periodic sl(2|1) alternating spin chain and its continuum limit as a bulk LCFT at c = 0, JHEP, p.114, 2015.

A. M. Gainutdinov and H. Saleur, Fusion and braiding in finite and affine Temperley-Lieb categories, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01468258

A. M. Gainutdinov and R. Vasseur, Lattice fusion rules and logarithmic operator product expansions, Nuclear Physics B, vol.868, issue.1, p.223, 2013.
DOI : 10.1016/j.nuclphysb.2012.11.004

URL : http://arxiv.org/abs/1203.6289

J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseignement. Math, vol.44, p.173, 1998.

H. Grosse, S. Pallua, P. Prester, and E. Raschhofer, On a quantum group invariant spin chain with non-local boundary conditions, Journal of Physics A: Mathematical and General, vol.27, issue.14, pp.29-1987, 1995.
DOI : 10.1088/0305-4470/27/14/007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. A. Gruzberg, A. W. Ludwig, and N. Read, Exact Exponents for the Spin Quantum Hall Transition, Physical Review Letters, vol.69, issue.22, pp.4524-4527, 1999.
DOI : 10.1103/RevModPhys.69.731

C. J. Hamer, G. R. Quispel, and M. Batchelor, Conformal anomaly and surface energy for Potts and Ashkin-Teller quantum chains, Journal of Physics A: Mathematical and General, vol.20, issue.16, 1987.
DOI : 10.1088/0305-4470/20/16/040

J. L. Jacobsen, High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials, Journal of Physics A: Mathematical and Theoretical, vol.47, issue.13, pp.47-135001, 2014.
DOI : 10.1088/1751-8113/47/13/135001

URL : http://arxiv.org/abs/1401.7847

J. L. Jacobsen, J. Salas, and C. R. Scullard, Phase diagram of the triangular-lattice Potts antiferromagnet, Journal of Physics A: Mathematical and Theoretical, 2017.
DOI : 10.1088/1751-8121/aa778f

H. G. Kausch, Curiosities at c = ?2, arXiv:hep-th, 1995.

W. M. Koo and H. Saleur, Representations of the Virasoro algebra from lattice models, Nuclear Physics B, vol.426, issue.3, p.459, 1994.
DOI : 10.1016/0550-3213(94)90018-3

K. Kytölä and D. Ridout, On staggered indecomposable Virasoro modules, Journal of Mathematical Physics, vol.0902, issue.12, p.123503, 2009.
DOI : 10.1007/978-3-642-65567-8

D. Levy, -Potts quantum chains, Physical Review Letters, vol.72, issue.15, p.1971, 1991.
DOI : 10.1007/BF01389127

URL : https://hal.archives-ouvertes.fr/halshs-01350148

P. P. Martin, Potts Models and Related Problems in Statistical Mechanics, World Scientific, 1991.
DOI : 10.1142/0983

P. P. Martin and D. Mcanally, ON COMMUTANTS, DUAL PAIRS AND NON-SEMISIMPLE ALGEBRAS FROM STATISTICAL MECHANICS, International Journal of Modern Physics A, vol.07, issue.supp01b, pp.1-675, 1992.
DOI : 10.1142/S0217751X92003987

P. P. Martin and H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Letters in Mathematical Physics, vol.285, issue.Suppl. 1 A, p.189, 1991.
DOI : 10.1007/BF00805852

URL : http://arxiv.org/abs/hep-th/9302094

P. P. Martin and D. Woodcock, On the Structure of the Blob Algebra, Journal of Algebra, vol.225, issue.2, p.957, 2000.
DOI : 10.1006/jabr.1999.7948

P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Physics Letters B, vol.657, issue.1-3, p.120, 2007.
DOI : 10.1016/j.physletb.2007.10.007

URL : http://arxiv.org/abs/0708.0802

A. Nichols, models, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.01, p.1003, 2006.
DOI : 10.1088/1742-5468/2006/01/P01003

V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nuclear Physics B, vol.330, issue.2-3, pp.330-523, 1990.
DOI : 10.1016/0550-3213(90)90122-T

P. A. Pearce, J. Rasmussen, and J. Zuber, Logarithmic minimal models, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.11, p.11017, 2006.
DOI : 10.1088/1742-5468/2006/11/P11017

URL : https://hal.archives-ouvertes.fr/hal-00101696

V. B. Petkova and J. Zuber, BCFT: from the boundary to the bulk, p.9219, 2000.

N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions, Nuclear Physics B, vol.613, issue.3, pp.613-409, 2001.
DOI : 10.1016/S0550-3213(01)00395-9

D. Ridout and Y. Saint-aubin, Standard modules, induction and the structure of the Temperley-Lieb algebra, Advances in Theoretical and Mathematical Physics, vol.18, issue.5, pp.957-1041, 2014.
DOI : 10.4310/ATMP.2014.v18.n5.a1

P. Ruelle, Logarithmic conformal invariance in the Abelian sandpile model, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.49, p.494014, 2013.
DOI : 10.1088/1751-8113/46/49/494014

I. Runkel, M. Gaberdiel, and S. Wood, A modular invariant bulk theory for the c = 0 triplet model, J. Phys. A: Math. Theor, vol.44, p.15204, 2011.

H. Saleur, Polymers and percolation in two dimensions and twisted N = 2 supersymmetry, Nuclear Physics B, vol.382, issue.3, p.486, 1992.
DOI : 10.1016/0550-3213(92)90657-W

URL : http://arxiv.org/abs/hep-th/9111007

H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nuclear Physics B, vol.320, issue.3, p.591, 1989.
DOI : 10.1016/0550-3213(89)90014-X

T. D. Schultz, D. C. Mattis, and E. H. Lieb, Two-Dimensional Ising Model as a Soluble Problem of Many Fermions, Reviews of Modern Physics, vol.16, issue.3, pp.36-856, 1964.
DOI : 10.1016/0003-4916(61)90115-4

R. Vasseur, J. L. Jacobsen, and H. Saleur, Indecomposability parameters in chiral logarithmic conformal field theory, Nuclear Physics B, vol.851, issue.2, pp.314-345, 2011.
DOI : 10.1016/j.nuclphysb.2011.05.018

URL : http://arxiv.org/abs/1103.3134