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We study the effects of a weakened link in random antiferromagnetic spin chains. We show that
healing occurs, and that homogeneity is restored at low energy, in a way that is qualitatively similar
to the fate of impurities in clean ferromagnetic spin chains, or in Luttinger liquids with attractive
interactions. Healing in the random case occurs even without interactions, and is characteristic
of the random singlet phase. Using real space renormalization group and exact diagonalization
methods, we characterize this universal healing crossover by studying the entanglement across the
weak link. We identify a crossover healing length L∗ that separates a regime where the system is
cut in half by the weak link from a fixed point where the spin chain is healed. Our results open the
way to the study of impurity physics in disordered spin chains.

Introduction. A potential scatterer in a Fermi liq-
uid provides what is probably the simplest example of
a quantum impurity problem. The associated physics
has some interesting features – it exhibits an Anderson
orthogonality catastrophe [1] and Friedel oscillations [2]
– but remains trivial from the point of view of the
Renormalization Group (RG): properties are simply de-
termined by the phase shift at the Fermi-energy, and
there is no crossover like, e.g., in the Kondo problem [3].

The 1d version of the potential scatterer problem is
easily realized in a tight binding model with nearest
neighbor hopping by modifying one hopping amplitude
J → λJ . The effect of the phase shift can then be seen
e.g. in the zero temperature conductance, which is a sim-
ple function of the modified amplitude. As explained in
the pioneering work of Ref. [4], interactions between the
electrons profoundly change this picture. When interac-
tions are repulsive, the electrons are completely reflected
by even the smallest scatterer (1−λ� 1), and the T = 0
linear conductance vanishes. In contrast, in the attrac-
tive case, electrons are fully transmitted, even through
a very strong scatterer (λ � 1), and the T = 0 linear
conductance takes the same value as for the homogenous
system. In both cases, the I − V curves are non trivial
and exhibit various power law dependencies with non-
trivial exponents. The situation has been well investi-
gated both theoretically [5, 6] and experimentally [7, 8].
The physics can be understood in terms of the RG, and
exhibits crossovers between the fixed point where the sys-
tem is cut in half, and the fixed point where the system
is “healed” [9]. Which of these fixed points is stable de-
pends on the interaction. Instead of interacting electrons
one can think equivalently of a spin chain. We restrict
for simplicity to the spinless case, which can be described
by an antiferromagnetic XXZ spin chain with anisotropy
∆. The region 0 < ∆ ≤ 1 (resp. −1 < ∆ < 0) corre-
sponds to repulsive (resp. attractive) interactions. Non
interacting electrons correspond to ∆ = 0, i.e. to the XX

chain.

We discuss in this Letter the effect of introducing
a modified link in a disordered antiferromagnetic XXZ
chain. More precisely, we consider the Hamiltonian

H =

−1∑
i=−L−1

Ji(~Si.~Si+1)∆+λJ0(~S0.~S1)∆+

L−1∑
i=1

Ji(~Si.~Si+1)∆,

(1)

where ~S is a spin 1/2, and ( ~A. ~B)∆ = AxBx + AyBy +
∆AzBz, the Ji are independent random variables drawn
from the same distribution, and λ < 1 is a fixed param-
eter. We shall show that, in contrast with the pure case,
this system exhibits healing at low-energy for all values
of the interaction 0 ≤ ∆ ≤ 1, including ∆ = 0. Note that
for a given realization of disorder, λJ0 may be smaller or
larger than most of the other J ′is. The distribution of the
modified coupling λJ0 is different from the distribution
of all other couplings, and, if λ < 1, favors smaller cou-
plings: for simplicity we will keep referring to the bond
between sites 0 and 1 as the weak bond, and often denote
it by B.

The random singlet phase. The physics of model (1)
without the modified coupling (ie, λ = 1) is rather well
understood as an infinite randomness RG fixed point.
For essentially any probability distribution of the cou-
plings Ji, it is known, based on exact solutions and real
space renormalization group (RSRG) calculations, that
the model flows into the random singlet phase (RSP)
with infinite disorder [10, 11]. The corresponding fixed
point theory is a quantum critical point independent of
0 ≤ ∆ ≤ 1 [11] which, while not conformally invariant,
exhibits many properties similar to those of ordinary crit-
ical spin chains [12]: for instance, the entanglement en-
tropy of a region of length ` with the rest of an infinite
chain scales as S ≈ ln 2

3 ln ` [13]. There has been a re-
gain of interest in such infinite randomness critical points
recently as they are also believed to describe dynami-
cal (excited-state) phase transitions separating different
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many-body localized phases [14–16], and we note that our
results apply directly to some of these non-equilibrium
transitions as well.

A weak link in the RSP. Many properties could be
used to investigate the behavior of the system (1) with
λ < 1. We will focus here on entanglement which, in
contrast to the pure case, is easier to calculate in the dis-
ordered case using the RSRG. For a chain with periodic
boundary conditions and length 2L, we consider more
precisely the entanglement of one half (of length L) with
the other half. In the pure case and when healing oc-
curs, one expects that this entanglement at high energy
should appear to be the entanglement of one half of an
open chain with the other half (because the weak bond
in that limit is essentially zero, and because we use peri-
odic boundary conditions), thus SUV ≈ c

6 lnL with c = 1
the central charge of the underlying conformal field the-
ory [17, 18]. Meanwhile, at low-energy, the system should
appear healed, and one should recover the entanglement
of half a homogeneous periodic chain with the other half,
SIR ≈ c

3 lnL. In between, the entanglement interpolates
between these two behaviors, and, in the limit of small λ
and large L, it can be shown that the function ∂S/∂ lnL
is a universal function over L/L?, where the crossover
length L? is a power of the weak coupling, similar to the
Kondo length ξK in Kondo problems [19–21].

We shall see that a similar behavior occurs in the RSP.
The entanglement extrapolates now between SUV ≈
ln 2
6 lnL and SIR ≈ ln 2

3 lnL. Moreover, in the limit of
small λ and large L, ∂S/∂ lnL is a universal function of
L/L∗, where now the crossover length is L∗ ∝ (− lnλ)2.
Hence, despite the presence of disorder - which could be
feared to erase all interesting impurity physics - healing
in fact does occur. In contrast with the pure case, healing
occurs in the antiferromagnetic (repulsive) case, includ-
ing the free case, and the scaling function is independent
of the anisotropy ∆.

Healing in the RSP. We now describe the physical
idea behind the result, together with the essential steps
of the calculation. Details are given in the supplemental
material [22]. Recall that in the RSP, the ground state
of the system is almost factorized into pairs of singlets
at arbitrarily large distances. Properties are best stud-
ied using the RSRG. In this approach, one starts with
the strongest bond, which is projected onto a singlet,
while the neighboring spins inherit, from second-order
perturbation theory, an effective interaction [23, 24].
This “decimation” corresponds, in terms of couplings, to
(. . . , Ji−1, Ji, Ji+1, . . .)2L → (. . . , Ji−1Ji+1/Ji, . . .)2L−2

where Ji is the strongest bond, Ji−1, Ji+1 the coupling
on the immediate left or right. One can then iterate this
procedure, and it is known that, if one starts with the
same distribution for all bonds (i.e., λ = 1), after a suf-
ficiently large number of decimations, the distribution of
couplings βi ≡ ln Ω

Ji
(with Ω = max{Ji} the reduced

energy scale obtained after iterating the RG) converges,

independently of the original distribution, to the univer-
sal form

PΓ(β) =
1

Γ
e−β/Γ, (2)

where Γ is the RG flow parameter, Γ = ln(Ω0/Ω), and
Ω0 is the initial energy scale (UV cutoff).

This RG picture is particularly adapted to study the
entanglement, since, in a given RSP configuration, the
entanglement of a region with its complement is simply
proportional to the number of singlets n connecting the
two [12, 13]: S = n ln 2. In the presence of the impu-
rity and for λ small enough, the weak bond will not,
most of the time be decimated in the early stages of the
RG. In this case, no singlet can connect the two halves
of the system across the weak bond, and their mutual
entanglement will be the same as if the chain were cut
at the origin. On the other hand, when the RG has
been run long enough for even this weak bond to be dec-
imated, the entanglement should be the same as with a
chain with homogeneous disorder. Hence, some sort of
“healing” is well expected to take place. Moreover, we
expect the crossover energy in the RG to correspond to
Γ ∼ − lnλ. Like in the pure case, we will ultimately
wish to replace the energy scale in the RG by a length
scale, i.e., study the entanglement of the two halves of
the chain as a function of the length L. The crossover
scale in energy then should translate into a crossover
length scale L? ∼ (− lnλ)2 using the characteristic scal-

ing ln[energy] ∝ [length]
1
2 of the RSP.

RG analysis of the weak link. It is clear from this
picture that an essential quantity to characterize the
crossover and the entanglement is the probability P0 for
the weak link not to be decimated during the RG. Since
we are interested in universal quantities, we will assume
that the initial distribution of couplings is already at the
fixed point (2). The probability distribution for the weak
link is initially

QΓ0
(β) =

1

Γ0
e−

β+lnλ
Γ0 θ(β + lnλ), (3)

with Γ0 the initial disorder strength, since initially the
weak link has β = ln Ω0

λJ0
> lnλ−1. Clearly, the weak

bond cannot be decimated until the scale Γ−Γ0 = − lnλ.
We now consider the probability pΓ that the weak bond
has not yet been decimated at scale Γ(> Γ0). Run-
ning the RG will involve decimating neighbors of B
that will renormalize the distribution of couplings QΓ(β),
and following Ref. [13], we will use the normalization∫∞

0
QΓ(β)dβ = pΓ. The distribution QΓ(β) then satis-

fies the flow equation [13]

∂QΓ

∂Γ
=
∂QΓ

∂β
+ 2PΓ(0) (PΓ ? QΓ −QΓ) , (4)

and we have dpΓ

dΓ = −QΓ(0). Computing pΓ there-
fore amounts to solving this partial differential equa-



3

tion with the initial condition (3). We solve this equa-
tion by introducting the Laplace transform Q̂Γ(s) =∫∞

0
dβe−βsQΓ(β): Q̂Γ(s) can then be expressed in terms

of the unknown probability pΓ, and inverting the Laplace
transform using the condition dpΓ

dΓ = −QΓ(0) yields an
integral equation for pΓ [22]. More elegantly, we no-
tice the probability of decimating the weak link is ex-
actly zero (pΓ = 1) until Γ reaches the crossover scale
Γ < Γ? ≡ Γ0 − lnλ. After a straightforward calculation,
we find that for Γ < Γ?

Q̂Γ(s) =

(
1 + sΓ0

1 + sΓ

)2

es(Γ−Γ0) λs

1 + Γ0s
. (5)

We now consider the scaling limit Γ → ∞, λ → 0 with
x = Γ

− lnλ fixed: this amounts to sending Γ0 → 0. In-
verting the Laplace transform, we find that right at the
crossover scale Γ = Γ?, the distribution

QΓ≡− lnλ(β) =
β

(lnλ)2
eβ/ lnλ, (6)

coincides with the distribution of a bond that has just
been decimated

∫
dβLdβRδ(β−βL−βR)PΓ?(βR)PΓ?(βL).

Using the results of Ref. [13], we can then solve the flow
equation (4) for Γ > Γ? using this effective “initial con-
dition” (6) at Γ = Γ?. In the scaling limit, the function
pΓ becomes a universal function p(x) and we have

p(x) =
1−
√

5

5 +
√

5
x−

3+
√

5
2 +

4 + 2
√

5

5 +
√

5
x−

3−
√

5
2 , x > 1, (7)

while p(x) = 1 for x ≤ 1 (the weak link is not decimated
until the crossover scale).

Note that p depends on the RG scale Γ. We still need
to trade it for the length scale in our problem. To do
this we observe that, since we are dealing with a sys-
tem of finite size, the RG will stop once all spins have
been paired into singlets.We thus need another ingredi-
ent: the distribution of the strength Ω (or Γ = − ln Ω)
of the last bond being decimated. This is known as
the distribution of the first gap, and was computed ex-
actly in [25] as dPgap = 1

Γg(y = Γ/
√
L)dΓ with g(y) =

2π
y2

∑∞
n=0(−1)n(2n + 1)e−(2n+1)2π2/4y2

. Gathering these
different pieces, we can finally compute the quantity P0

as

P0 =

∫ ∞
0

dΓp

(
Γ

− lnλ

)
1

Γ
g

(
Γ√
L

)
, (8)

which is clearly a function of L/L? with L? = (− lnλ)2.
The explicit expression can be worked out in terms of
generalized Gamma functions. Physically, this quantity
controls the probability to have vanishing entanglement
S ≤ ε across the weak link for a system of size 2L with
ε � 1 arbitrarily small. We have P0(0) = 1 and P0 ∼
L−(3−

√
5)/4 for L � L?. The scaling function (8) agrees

well with numerical RG calculations (Fig. 1).
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FIG. 1. Probability P0 for the weak link not to be decimated
(corresponding to vanishing entanglement across the link) for
a system of size 2L. The exact solution (8) (dashed line)
agrees well with numerical RG calculations for various system
sizes 2L ∼ 400 − 4000, with crossover scale L? ∼ (lnλ)2.

Entanglement across the weak link. Let us now go
back to the entanglement calculation. Following [13], the
average “RG time” corresponding to the decimation of

the weak link is ` ≡ ln Γ
− lnλ =

∫∞
0
dx dpdx lnx = 3, where

we used eq. (7). This is the same value that Refael and
Moore find for the average RG time separating decima-
tions increasing the entanglement entropy by ln 2. This
is once again consistent with the very simple picture de-
scribed above: with or without the weak link, the average
RG time between decimations increasing the entangle-
ment entropy by ln 2 is given by ` = 3, but the effect of
the weak link is merely to shift the origin of time, since

the first decimation typically occurs when ln
Γtyp

− lnλ = 3,
with in particular Γtyp > − lnλ. This gives for the bi-
partite entanglement entropy

S =

∫ ∞
Γ0

dΓ

Γ
g

(
Γ√
L

)
ln 2

[∫ Γ

Γ0

dΓ′/Γ′

3
(1 + θ(Γ′ + lnλ))

]
,

(9)
up to non-universal contributions. Here, the first term
arises from the singlets connecting the two halves over the
periodic boundary condition, the second term arises from
the weak link. Going to the scaling limit, and considering
the derivative with respect to lnL to get rid of the non-
universal terms, we find [22]

L
∂S

∂L
=

ln 2

3

(
1− 2

π

∞∑
n=0

(−1)n

2n+ 1
e−π

2(2n+1)2L/4L?

)
.

(10)
We remark that even though we considered the bipartite
entanglement of a periodic system of size 2L, eq. (10)
with L→ ` should also describe the scaling of the entan-
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FIG. 2. Numerical RG calculation of the entanglement en-
tropy of an interval of size ` � 2L ∼ 4000 with a weak
link of strength λ at one extremity, inducing a crossover scale
`? ∼ (lnλ)2. The black dashed curve corresponds to eq. (10)
interpolating between ln 2

6
and ln 2

3
, while the green dashed

curve is including corrections to that formula (see text). Inset:
similar crossover for the bipartite entanglement of a periodic
system of size 2L showing various values of λ.

glement of an interval [0, `] with the weak link at x = 0
in a system of size L � ` � 1 (Fig. 2). Note also that
contrary to eq. (8), we do not expect the scaling func-
tion (10) to be exact. This is because in deriving (10),
we used the fact that the number of singlets crossing a
generic link in the system scales as n ∼ 1

3 ln Γ
Γ0 in terms

of the RG scale Γ [13]. However, there exist universal
power-law corrections to that formula [22, 26] that are
usually unimportant but that turn out to be crucial to
compute the scaling function (10) exactly. Taking into
account these corrections does not change fundamentally
the qualitative behavior of eq. (10) but it does improve
the quantitative agreement with numerical RG calcula-
tions (see Fig. 2). Following Refs. [26, 27], the arguments
above can easily be generalized to the calculate the full
probability distribution of entanglement across the weak
link [22] (or equivalently, the entanglement spectrum).

Numerical calculations. Even though the RSRG ap-
proach is clearly not exact for finite chains, it is expected
to give an asymptotically exact description of universal
properties [10, 11]. We have attempted to study the scal-
ing regime L→∞, λ→ 0 numerically by directly deter-
mining the entanglement of a random XX chain with a
weak link. The approach is well known [28, 29], and dis-
cussed in detail in Ref. [30]. Formulating the chain as a
model of random hopping fermions, the reduced density
matrix is determined by the eigenvalues of the correla-
tion matrix 〈c†i cj〉, where the average is to be calculated
in the ground state of the disordered system, and the
labels i, j run from 1 to L. Because of numerical insta-

L

(ln�)2

L
?

@
S
/@

ln
L

FIG. 3. Numerical determination of the entanglement in the
random XX chain obtained by averaging over large numbers
of realizations with various choices L and λ, and couplings
randomly chosen in the interval [0, 1]. The main frame shows
numerical results for the slope ∂S/∂ lnL against L (full lines)
versus the theoretical prediction (10) after the best L∗ for
this value of λ has been determined. Inset: fitted L∗ against
(lnλ)2.

bilities for small λ and large L, we have only been able
to obtain partial scaling collapses, which are however in
good agreement with eq. (10). By fitting our numerical
results for the entanglement entropy to (10) for different
values of λ to extract the optimal healing scale L?(λ),
we were able also to verify the scaling L? ∼ (lnλ)2. This
crossover scale is remarkably short: even for a very weak
link λ ∼ 10−10, the system appears “healed” (so that the
impurity or weak link can essentially be ignored) on a
length scale of order 102 − 103 sites.

Conclusion. Remarkably, we have found that, in the
case of disordered antiferromagnetic chains, healing oc-
curs even without interactions, and is associated with a
rich crossover physics. The existence of this healing flow
is compatible with the results of Ref. [31] where it was
found that the ground state of the chain with λ = 1 and
the chain with 0 < λ < 1 are not orthogonal, and that
there is no Anderson catastrophe. The same would be
observed in a clean XXZ chain in the attractive regime.
Since the repulsive or attractive nature of the interactions
is so crucial for determining the fate of weak links in clean
Luttinger liquids, it would be interesting to investigate
the effect of weak perturbations in random ferromagnetic
chains [32, 33] to determine whether they also “heal” at
low energy.

Although we were not able to find an exact scaling
function for the entanglement, the RSRG does give ana-
lytical and numerical access to the crossover. This should
open the way to studying on the one hand more physi-
cal quantities of interest (such as t transport properties
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across the weak link), or to studying richer setups. The
simplest one in this case would be a problem with two
weak links, where, in the UV, one should see a decoupled
two-state system, reminiscent of a Kondo impurity. In-
deed, it is known in the pure case that the resonant level
model and its interacting variants are deeply related to
the (anisotropic) Kondo model [34]. We expect some in-
teresting generalizations of this in the disordered case.
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Probability of decimating the weak link

We recall from the main text that the probability distribution for the weak link is initially

QΓ0
(β) =

1

Γ0
e−

β+lnλ
Γ0 θ(β + lnλ), (11)

with Γ0 the initial disorder strength, since initially the weak link has β = ln Ω0

λJ0
> lnλ−1. The probability pΓ for this

weak link not to be decimated at scale Γ > Γ0 in the RG is given by

dpΓ

dΓ
= −QΓ(0), and

∫ ∞
0

QΓ(β)dβ = pΓ, (12)

where QΓ(β) satisfies the flow equation

∂QΓ

∂Γ
=
∂QΓ

∂β
+ 2PΓ(0) (PΓ ? QΓ −QΓ) . (13)

Computing pΓ therefore amounts to solving this partial differential equation with the initial condition (11). Some

simple solutions of this equation of the form QΓ(β) =
(
aΓ + β

ΓbΓ

)
PΓ(β) were found in [13], where aΓ and bΓ ordinary

differential equations. However, our initial condition (11) is more complicated and is not of this form because of the
Heaviside function. To proceed, we introduce the Laplace transform

Q̂Γ(s) =

∫ ∞
0

e−sβQΓ(β)dβ, (14)

which satisfies

∂Q̂Γ(s)

∂Γ
+

1− sΓ
1 + sΓ

sQ̂Γ(s) = −QΓ(β = 0) =
dpΓ

dΓ
. (15)

This gives

Q̂Γ(s) =

(
1 + sΓ0

1 + sΓ

)2

es(Γ−Γ0)

[
Q̂Γ0

(s) +

∫ Γ

Γ0

dpΓ′

dΓ′

(
1 + sΓ′

1 + sΓ0

)2

e−s(Γ
′−Γ0)dΓ′

]
, (16)

with Q̂Γ0(s) = λs/(1 + Γ0s). Note that we have pΓ = Q̂Γ(s = 0) as we should. Now the unknown dpΓ

dΓ can be obtained
self-consistently as the inverse Laplace transform

dpΓ

dΓ
= −QΓ(β = 0) =

∫ c+i∞

c−i∞

ds

2πi
Q̂Γ(s). (17)

Taking the inverse Laplace transform of eq. (16), we find that dpΓ

dΓ satisfies the integral equation

−dpΓ

dΓ
=

1

Γ
eΓ0/Γ−1e− log λ/Γθ(Γ− Γ0 + log λ)

[
1− Γ0

Γ
+

(
Γ0

Γ

)2

+

(
1− Γ0

Γ

)
log λ

Γ

]

+

∫ Γ

Γ0

dΓ′
dpΓ′

dΓ′
eΓ′/Γ−1

(
1− Γ′

Γ

)(
1 +

(
Γ′

Γ

)2
)
. (18)

Although this looks quite complicated, one can check that for λ = 1, this equation is satisfied by the exact solution
for dpΓ

dΓ that can be computed very simply in that case. We now consider the universal regime Γ → ∞, λ → 0 with

x = Γ
− lnλ fixed: this amounts to sending Γ0 → 0. In this regime, we find

−xdp
dx

= e1/x−1

(
1− 1

x

)
θ(x− 1) +

∫ x

0

dx′
dp

dx′
ex
′/x−1

(
1− x′

x

)(
1 +

(
x′

x

)2
)
. (19)



7

Using the fact that p(x) should decay as x−
3−
√

5
2 and with a little bit of guess work, we find that the solution of this

equation is

p(x) =
1−
√

5

5 +
√

5
x−

3+
√

5
2 +

4 + 2
√

5

5 +
√

5
x−

3−
√

5
2 , x > 1, (20)

and p(x) = 1 for x ≤ 1. This is in agreement with the result found in the main text using a different approach (see
below). The probability of not decimating the weak link studied in the main text then reads

P0

(
L

L?

)
=

4

π

∞∑
n=0

(−1)n

2n+ 1
e−

π2

4
L
L?

(2n+1)2

+ 2π
L

L?

∞∑
n=0

(−1)n(2n+ 1)

∫ ∞
1

dx

x3
p(x)e−

π2

4x2
L
L?

(2n+1)2

. (21)

Universal entanglement crossover

Let us now go back to the entanglement calculation. Following Refael and Moore [13], we compute the average RG
time ` = ln Γ corresponding to the decimation of the weak link. This quantity is given by

ln
Γ

− lnλ
=

∫ ∞
0

dx
dp

dx
lnx = 3, (22)

where we used eq. (20). Remarkably, this is the same value that Refael and Moore [13] find for the average RG time
separating decimations that increase the entanglement entropy by ln 2: in a setup with λ = 1, if the central link is
decimated at some scale Γ, it is typically much weaker than the other bonds in the chain because of the renormalization
factor and it is typically decimated again at the scale Γ′ given by ln Γ′

Γ = 3. This suggests the following very simple
picture: with or without the weak link, the average RG time between decimations increasing the entanglement entropy
by ln 2 is given by ` = 3, but the effect of the weak link is merely to shift the origin of time, since the first decimation

typically occurs when ln Γ
− lnλ = 3, with in particular Γ > − lnλ.

Actually, it turns out that (20) is exactly the expression that Refael and Moore found for the probability of a bond
decimated at scale Γ0, with initial probability distribution

QΓ0
(β) =

β

Γ2
0

e−β/Γ0 , (23)

to not have been decimated again at x = Γ/Γ0. This suggests a much easier way to derive (20) (used in the main
text), even if our initial condition (11) is completely different. The effect of the weak link is to shift the origin of time
(which makes sense since the bond cannot be decimated if Γ < − lnλ), and the probability distribution of the weak
link at that scale Γ = − lnλ should coincide with (23) where Γ0 is replaced by − lnλ (the effect of the renormalization
due to the decimations of its neighbors is “as if” the weak bond had just been decimated). This can be checked
explicitly, as dpΓ/dΓ = 0 if Γ ≤ − lnλ so that the inverse Laplace transform of (16) for Γ = − lnλ� Γ0 reads

QΓ=− lnλ(β) =

∫ c+i∞

c−i∞

ds

2πi
esβ

1

(1− s lnλ)2
=

β

(lnλ)2
eβ/ lnλ, (24)

which indeed coincides with (23) with Γ0 replaced by − lnλ as claimed. This means that instead of solving by pure
guess work the integral equation (19) to find p(x), we can actually solve the equation (13) with the much simpler
“initial condition” (24) using the results of Refael and Moore.

Not only does this observation allow us to obtain the result (20) in a much simpler way, it gives us a clear way to
compute entanglement. The physical picture is clear: the average RG times between decimations is always 3, but the
effect of the weak link is to shift the origin of time. This gives for the bipartite entanglement entropy with periodic
BCs

S =

∫ ∞
Γ0

dΓ

Γ
g

(
Γ√
L

)
ln 2

[∫ Γ

Γ0

dΓ′/Γ′

3
+

∫ Γ

Γ0

dΓ′/Γ′

3
θ(Γ′ + lnλ)

]
, (25)

up to non-universal contributions. Introducing u = Γ/
√
L and x = Γ′/(− lnλ), this yields

S =

∫ ∞
Γ0/
√
L

du

u
g(u)

ln 2

3
ln

(
u
√
L

Γ0

)
+

∫ ∞
Γ0/
√
L

du

u
g(u)

ln 2

3

∫ u
√
L/L?

Γ0/(− lnλ)

dx

x
θ(x− 1). (26)
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If we now take the scaling limit Γ → ∞, λ → 0 with x = Γ
− lnλ fixed (with Γ0/ lnλ−1 → 0 and Γ0/

√
L → 0), and

consider the derivative with respect to lnL to get rid of the non-universal terms, we get

∂S

∂ lnL
=

ln 2

6
+

∫ ∞
0

du

u
g(u)

ln 2

3

∂(u
√
L/L?)

∂ lnL

1

u
√
L/L?

θ(u
√
L/L? − 1), (27)

where we recall that
∫∞

0
du
u g(u) = 1. This yields

∂S

∂ lnL
=

ln 2

6

(
1 +

∫ ∞
√
L?/L

du

u
g(u)

)
. (28)

Plugging in the expression for g, we finally get

∂S

∂ lnL
=

ln 2

3

(
1− 2

π

∞∑
n=0

(−1)n

2n+ 1
e−π

2(2n+1)2L/4L?

)
, (29)

as claimed in the main text.

Entanglement spectrum and distribution of entanglement across the weak link

Using the picture above and the results of [26], we can immediately compute the scaling form of the generating
function of the number of singlets n crossing the entanglement cuts (one of which being the weak link), a quantity
directly related to the entanglement spectrum. We find

〈ent〉 =

∫ ∞
0

dΓ
1

Γ
g

(
Γ√
L

)θ(1− Γ

− lnλ

)
+ θ

(
Γ

− lnλ
− 1

)αt( Γ

− lnλ

)− 3−
√

5+4et

2

+ βt

(
Γ

− lnλ

)− 3+
√

5+4et

2

 ,
(30)

where the coefficients αt and βt are given in Ref. [26]. Let us introduce the function

Iα(x) =

∫ ∞
x

du

u
g(u)u−α =

(
2

π

)1+α ∞∑
n=0

(−1)n

(1 + 2n)α+1

(
αΓα

2
− 2Γ

1+α
2 ,
xπ2

4 (1+2n)2

)
, (31)

so that

〈ent〉 = 1− I0
(
L

L?

)
+ αt

(
L

L?

)− 3−
√

5+4et

4

I
3−
√

5+4et

2

(
L

L?

)
+ βt

(
L

L?

)− 3+
√

5+4et

4

I
3+
√

5+4et

2

(
L

L?

)
. (32)

The limit t → −∞ gives P0 = limt→−∞〈ent〉, the probability for the weak link not to be decimated for a system of
size L, in agreement with the formula given in the main text. The entanglement entropy also follows from taking a
derivative with respect to t and then letting t→ 0 to obtain the mean number of singlets crossing the entanglement
cuts 〈n〉. Interestingly, the resulting formula contains correction compared to eq. (29). This is because in deriving (29),
we used the fact that the number of singlets crossing a generic link in the system scales as n ∼ 1

3 ln Γ
Γ0 in terms of

the RG scale Γ [13]. Ref. [26] predicts some corrections to this formula, with n ∼ 1
3 ln Γ

Γ0 + 1
9

(
(Γ0/Γ)3 − 1

)
+ . . .

Whereas these subleading corrections can essentially be ignored for generic links in the scaling limit where Γ � Γ0,
they are non-negligible in our case since Γ0 is effectively replaced by the crossover scale − lnλ when computing the
entanglement across the weak link. By implementing the RSRG procedure numerically, we found that these corrections
to (29) improve the agreement with the numerical results (see main text). It is however unclear to us whether the
results of [26] exhaust all the important subleading corrections, and to what extent these corrections are universal (as
they should be to enter the universal scaling function for the entanglement entropy).
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