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Abstract. We consider a magnetic field B occupying the simply connected domain

D and having all its field lines tied to the boundary S of D. We assume here that B

has a simple topology, i.e., the mapping M from positive to negative polarity areas

of S associating to each other the two footpoints of any magnetic line, is continuous.

We first present new formulae for the helicity H of B relative to a reference field Br

having the same normal component Bn on S, and for its field line helicity h relative

to a reference vector potential Cr of Br. These formulae make immediately apparent

the well known invariance of these quantities under all the ideal MHD deformations

that preserve the positions of the footpoints on S. They express indeed h and H either

in terms of M and Bn, or in terms of the values on S of a pair of Euler potentials of

B. We next show that, for a specific choice of Cr, the field line helicity h of B fully

characterizes the magnetic mapping M and then the topology of the lines. Finally, we

give a formula that describes the rate of change of h in a situation where the plasma

moves on the perfectly conducting boundary S without changing Bn and/or non-ideal

processes, described by an unspecified term N in Ohm’s law, are at work in some parts

of D.
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1. Introduction

The helicity of a magnetic field B occupying some domain D of space is a global

physical quantity whose importance in magnetohydrodynamics (MHD) stems from two

essential properties (Woltjer 1958, Moffatt 1969): it is conserved when the field suffers

an arbitrary ideal MHD deformation, thus constrained by the frozen-in law, and it gives

information about the topology of the magnetic lines of B. However, it is only defined

when B has a vanishing normal component Bn on the boundary S of D. If this condition

is not satisfied, as happens to be the case in many situations one has to deal with in

astrophysics, it is still possible to construct a meaningful notion of helicity, but to do

so requires introducing an external ingredient: a reference field Br that has the same

flux distribution as B on S (Br being most generally chosen to be the unique potential

field satisfying that boundary condition). The new helicity, H, is defined relatively to

that reference field and it has the same interesting properties as the original one (Berger

and Field 1984): it is also an ideal MHD invariant, being conserved when the field is

deformed under the frozen-in constraint while keeping its footpoints on S at their initial

positions, and it has also a topological meaning. By now, H has become a basic tool in

the study of astrophysical plasmas. In solar physics, for instance, it is used to deduce

from observations important information on the nature of the mechanisms driving the

spectacular coronal mass ejections originating from the corona and on the nature of the

dynamo mechanism at work inside the Sun (for recent reviews, see, e.g., Démoulin and

Pariat 2009, Pevtsov et al 2014).

Field line helicity relative to a vector potential of reference, h, is a function defined

on the set of individual field lines of a field B. As such, it provides a much more detailed

description of the properties of B than the helicity H, which can be recovered from it

by performing a flux-weighted integration. h was first introduced by Berger (1988),

who proved in particular its invariance under ideal MHD deformations preserving the

positions of the footpoints on S. Later on, however, it seems to have been forgotten

for a while, before knowing a revival with the most recent work of Yeates and Hornig

(2014, and references therein), who renamed it ”topological flux function” and extended

our knowledge of its physical properties. Since then, evidences have accumulated that

h should be a precious tool for studying magnetic reconnection (Russell et al 2015) and

the evolution of the solar magnetic field (Yeates and Hornig 2016). Hence it appears

worth continuing to explore the properties of that quantity.

Some general issues that seem to be currently of interest for the development of

the two concepts introduced above and their practical applications to astrophysical

problems, are the following ones:

(i) The topological invariance of the helicity H and of the line helicity h does not

appear obvious if we just take a simple look at the standard expressions that are

used to define them. Is it possible to derive alternative formulae exhibiting this

invariance in a fully explicit way? Such formulae, valid in some specific geometrical

settings, have already been proposed (Berger 1986, Aly 2014, Prior and Yeates
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2014) and they proved to be useful to get a better understanding of the physical

meaning of H and h.

(ii) By the invariance property recalled above, two fields that can be ideally deformed

into each other without moving their footpoints – they are said to be topologically

equivalent – have the same field line helicity. Does the converse property hold true,

i.e., can we deduce from the fact that two fields have the same field line helicity that

they are topologically equivalent? This problem was first addressed and solved for a

specific type of magnetic field by Yeates and Hornig (2014, and references therein).

(iii) In the case where the magnetic field B evolves in time, with its footpoints being

dragged along on the boundary by plasma motions and/or with non-ideal processes

acting in the bulk of D, what is the rate of change of the helicity h of a given

line? This point is certainly important when considering the relaxation (involving

turbulent magnetic reconnection) of a stressed magnetic field to an equilibrium

(Russell et al 2015). Note that the rate of change of the helicity H has long been

established, at least when the reference field is potential (Berger and Field 1984,

Finn and Antonsen 1985).

In this paper, we discuss these three problems in details in the simplest case where

the field B has a simple topology and the part of S where Bn = 0 is a simple curve. In

rough terms, this means that the magnetic lines of B simply connect in a continuous

way an area of S of positive polarity to an adjacent area of negative polarity by merely

bridging above a polarity inversion line. This is certainly a significant restriction, but

this will allow us to get interesting results without having to develop lengthy and heavy

arguments that would certainly obscure some of the main issues. Question (i) above is

discussed in section 3 and 28, where we relate H and h to the magnetic mapping of B (a

mapping associating together the two footpoints of any magnetic line on S) and to the

boundary values of a pair of Euler potentials of B, respectively. The results so obtained

are used in section 5 to deal with question (ii), which is shown to have a positive answer

when the reference potential is of a specific type. They are also of much help in section 6,

where we consider question (iii) in the case where the boundary motions preserve Bn on

S. Under that assumption, we are able to establish a new formula for the time variation

of the helicity of a moving line, which complements formulae previously obtained by

Russell et al (2015). All our results are summarized in our concluding section 7, where

we also announce some generalizations of them (to complex topology fields, to domains

of different types, ...) that will be presented in a forthcoming paper.

2. Assumptions and basic definitions

2.1. Assumptions

Let D be a simply connected domain of space bounded by the connected surface S, and

denote as n̂ the external normal to S. For instance, D may be either the (bounded)

interior or the (unbounded) exterior of a sphere S, representing respectively the interior
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of a star and its corona, or a half-space, bounded by the plane S, representing a localized

active region of the solar corona. D is taken to contain a perfectly conducting plasma

(this assumption will be given up in section 6) and a smooth magnetic field B that

satisfies the following conditions:

• The parts S+ and S− of S of positive and negative polarity, respectively, are

connected subdomains of S that are in contact along a simple curve S0 on which

Bn = 0. We remind the reader that, by definition, the magnetic lines emerge into

D through S+, where then −B · n̂ = −Bn > 0, and leave D through S−, where

then −Bn < 0.

• B is line-tied, i.e., all its field lines (except possibly a negligible subset) are tied to

the boundary S. Then (almost) any line connects a point r of S+ (we denote that

line as L(r)) to a point M(r) of S−. The function M : S+ → S− defined that way

is called the magnetic mapping.

• B is a simple topology field (STF), meaning that, in addition to be line-tied, it has

a continuous magnetic mapping M. The lines of B thus connect in a continuous

way S+ to S− by bridging over the curve S0. To be an STF, B must not vanish in

D (no neutral points), nor have bald patches, i.e., lines that are tangent to S at a

point of S0 (Titov et al 2002).

• If D is unbounded, B decays sufficiently fast at infinity for all the integrals defined

below to be convergent.

A B satisfying these assumptions will be said to be an admissible magnetic field.

2.2. Definitions

Consider an admissible field B and select an arbitrary field Br (which may not be

admissible) whose normal component on S is the same as B’s, i.e., Brn = Bn on S (we

also require that Br decays sufficiently fast at infinity if D is unbounded). Then the

helicity of B relative to the reference field Br is defined by (Berger and Field 1984, Finn

and Antonsen 1985)

H = H[B/Br] =

∫
D

(A + Ar) · (B−Br) dv , (1)

where A and Ar are arbitrary vector potentials of B and Br, respectively. H is gauge

invariant, i.e., it keeps the same value under the gauge transforms A → A + ∇g and

Ar → Ar +∇gr, where g and gr are arbitrary functions. For short, we shall often refer

to H as the helicity of B.

In most astrophysical applications, it is usual to choose the reference field to be

the unique potential field Bπ in D such that Bπn = Bn on S (note that Bπ may fail

to be an STF). In that case, the quantity Hrel = H[B/Bπ] is simply called the relative

helicity of B. It is important to note that Hrel is an intrinsic property of B as Bπ is

fully determined from B. This makes Hrel most special among all the possible H.
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Let us now fix a particular vector potential of Br, Cr say, and denote as C a vector

potential of B that satisfies the gauge condition (gc hereafter)

Cs = Crs on S, (2)

where the subscript ’s‘ indicates a vector component tangent to S. Then the field line

helicity of B relative to Cr is defined by (Berger 1988)

h(r) = h[B/Cr; r] =

∫
L(r)

C · dl, r ∈ S+. (3)

This quantity is invariant with respect to the gauge transforms of C that respect gc.

Indeed, two vector potentials C and C′ satisfying gc differ by the gradient of a function

g that takes a constant value on S, and∫
L
∇g · dl = [g]L = 0, (4)

where we have introduced the notation [X]L(r) = X(M(r)) − X(r). Then h is

independent of the particular choice that is made for C. It depends only on the choice

of Cr, which justifies our notation h[B/Cr; r]. Actually, it would have been sufficient

to fix the value of Crs on S, and we could have defined h in a more general way,

without making reference to the field Br. We have refrained to do so here to keep the

presentation as simple as possible.

If we use the specific determinations Cr and C for the vector potentials in equation

(1), H takes the form

H =

∫
D

(C ·B−Cr ·Br) dv =

∫
S+

h(−Bn) ds −Hr, (5)

where we have set

Hr =

∫
D

Cr ·Br dv . (6)

To compute the integral of the first term in the middle member of equation (5), we

have decomposed the domain D into elementary flux tubes dT constructed about

the magnetic lines L of B and written the volume element inside dT in the form

dv = ds dl = dφ dl/B, with dl the length element along L, ds the area of a normal

cross-section of dT , and dφ = B ds the constant flux inside dT . And we have noted

finally that dφ = −Bn ds , where ds is now the area of the intersection of dT with S+.

Note that we have isolated the term (−Bn) in the integral appearing in the right-hand

side of equation (5). This is just a way to keep in mind that this term is positive. Note

also that Cr can always be selected in such a way that the convenient condition Hr = 0

be satisfied (if Hr 6= 0, set C′r = Cr + λ∇g, with g = Bn on S and λ = −Hr/
∫
S
B2
n ds ;

then H ′r = 0).

2.3. Topological invariance

We say that the field B′ is topologically equivalent to the field B – which we denote as

B′ ∼ B – if there does exist a continuous ideal MHD deformation that transforms B
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into B′ without moving the footpoints of the lines on the boundary S. More explicitly,

we have B′ ∼ B if we can find a velocity field v(r, t) vanishing on S+ and S− and a

magnetic field b(r, t), both defined in D × {0 ≤ t ≤ T}, that are related to each other

by the ideal MHD equation of evolution,

∂tb = ∇× (v × b), (7)

and are such that

b(t = 0) = B and b(t = T ) = B′. (8)

Quite obviously, two topologically equivalent fields have the same normal component

on S (by equation (7), the vanishing of v on S implies that bn keeps a constant value

all along the evolution, whence B′n = bn = Bn) and it is quite clear that they have also

the same magnetic mapping, M′ = m = M.

A functional X[B] (which may be a number or a function) such that X[B′] = X[B]

if B′ ∼ B is called an ideal MHD topological invariant. As it is well known, the helicity

H relative to Br (a number) and the field line helicity h(r) relative to Cr (a function) are

both topological invariants. This can be shown by a direct calculation using equation

(7) (see, respectively, Berger and Field 1984 and Berger 1988).

3. Helicity and magnetic mapping

In this section, we establish some new formulae that relate either the field line helicity

h or the helicity H to the magnetic mapping M.

3.1. Magnetic mapping

The magnetic mapping has already been defined in subsection 2.1. It is the one-to-one

mapping M : S+ → S− that associates to the positive footpoint position r ∈ S+ of the

magnetic line L(r) its negative footpoint position M(r) ∈ S−, and it is taken here to

be continuous (in fact we shall even assume that it is differentiable). Of course, M has

an inverse mapping M−1 : S− → S+ with the same properties, and we could as well use

the latter in all the calculations below in place of M.

It is often convenient to represent the magnetic mapping with the help of curvilinear

coordinates defined on S±. Let us introduce such coordinates x = (x1, x2) on S+ and

X = (X1, X2) on S−. To them are associated, respectively, the basis (e1, e2) and

(E1,E2) (with ej = ∂r/∂xj and Ej = ∂r/∂Xj), and the dual basis (∇sx
1,∇sx

2) and

(∇sX
1,∇sX

2) (we remind the reader that êi ·∇sx
j = Êi ·∇sX

j = δji , where δji is the

usual Kronecker symbol). The magnetic mapping can then be expressed as

M : x = (x1, x2)→ X = X(x) = (X1(x1, x2), X2(x1, x2)), (9)

and its gradient (or in more sophisticated terms, avoided here, its tangent mapping) can

be written in the form

∇sM(x) = ∂jX
k(x)∇sx

j(x)⊗ Ek(X(x)) (10)
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(here ∂jX
k = ∂Xk/∂xj; note our convention for the order of the indices). Multiplying

∇sM on the left by the vector Z = Z lel tangent to S+ at r produces the vector

Zj∂jX
kEk tangent to S− at M(r), while multiplying it on the right by the vector

Z = Zl∇sX
l tangent to S− at M(r) produces the vector ∂jX

kZk∇sx
j tangent to S+

at r.

As noted in section 2.3, we have M = M′ if B ∼ B′. The converse is true for

admissible fields: their topology is fully characterized by their magnetic mapping, i.e.,

we have B ∼ B′ if M = M′ (Zweibel and Li 1987).

3.2. Field line helicity

Consider a magnetic line L(r) of the admissible field B and an arbitrary simple oriented

curve C(r) of S that connects r to M(r). Applying Stokes theorem to the vector potential

C and the closed contour L ∪ −C, we obtain at the point r

h = Φ +

∫
C
Crs · dl, (11)

where we have used that C · dl = Crs · dl on S as a consequence of gc and denoted

as Φ the magnetic flux through L ∪ −C (this is the flux through an arbitrary surface

σ of D bounded by that contour). If we deform B into a topologically equivalent field

B′, equation (11) applied to the latter field has the same second term in the right-hand

side (as we do not move the footpoints on S, we can use the same curve C) and the flux

Φ′ through the transformed contour L′ ∪ −C is equal to Φ by the frozen flux theorem.

Then h′ = h, i.e., we recover immediately the fact that field line helicity is an ideal

MHD topological invariant.

Let us now choose for C the simple curve C(r) = C(r, r0) ∪ −M(C(r, r0)), where

C(r, r0) is a curve of S+ that connects r to some point r0 of S0. M(C(r, r0)) is its image

by the magnetic mapping and it connects on S− the point M(r) to r0. Then Φ = 0

(just choose σ to be the magnetic surface made of all the magnetic lines originating

from C(r, r0)), and we get from equation (11)

h =

∫
C
Crs · dl. (12)

This formula exhibits the topological invariance of h in a quite striking way.

By decomposing the integral in the right-hand side of equation (12) into an integral

along C(r, r0) and one along −M(C(r, r0)), and by making in the latter the change of

variable defined by the magnetic mapping, we obtain the equivalent expression

h(r) =

∫
C(r,r0)

Crs · dl +

∫
−M[C(r,r0)]

Crs · dl

=

∫
C(r,r0)

(Crs −∇sM · C̃rs) · dl. (13)

We have introduced here the notation X̃(r) = X(M(r)). If we use coordinates, equation
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(13) assumes the form

h(x1, x2) =

∫
C(r,r0)

(
Crj − ∂jXkC̃rk

)
dlj. (14)

It is obtained with help from equation (10) and the decompositions Crs = Cri∇sx
i and

dl = dljej on S+, and Crs = Cri∇sX
i on S−.

Finally we note that taking the surface gradient of equation (13) leads to the formula

(useful below)

∇sh = ∇sM · C̃rs −Crs. (15)

A similar relation was previously obtained in a particular geometrical setting by Aly

(2014) and by Yeates and Hornig (2014; see their Lemma 2, where the relation is

expressed in the language of differential forms).

3.3. Helicity

Using equation (13) in equation (5) leads to

H =

∫
S+

(∫
C(r,r0)

(Crs −∇sM · C̃rs) · dl

)
(−Bn) ds −Hr. (16)

Another formula for H can be obtained by transforming equation (5) with help from a

standard formula of vector analysis, Stokes theorem, and the obvious fact that h = 0

on ∂S+ = S0. One obtains

H +Hr = −
∫
S+

h∇×Cr · n̂ ds

=

∫
S+

(∇sh×Cr) · n̂ ds −
∫
∂S+

hCr · dl

=

∫
S+

(∇sh×Crs) · n̂ ds , (17)

whence

H =

∫
S+

[(∇sM · C̃rs)×Crs] · n̂ ds −Hr (18)

by using equation (15). In terms of the coordinates (x1, x2) (which take their values in

the domain S+ and are chosen such that e1 × e2 · n̂ > 0), the last formula assumes the

form

H =

∫
S+
εkj∂kX

iC̃riCrjdx
1dx2 −Hr (19)

(the symbol ε is defined by ε11 = ε22 = 0 and ε12 = −ε21 = 1).

The only quantities that intervene in the right-hand sides of equations (16), (18),

and (19), are the tangential component of Cr on S and the magnetic mapping M. It

is then obvious from any of these new formulae that two topologically equivalent fields

B and B′ have the same helicity relative to Br: they have indeed the same magnetic

mapping and we can use the same vector potential Cr for computing H and H ′.



9

4. Helicity and Euler potentials

We next present expressions of h and H that are obtained by using an Euler potential

representation of B (Stern 1970).

4.1. Euler potentials

A global representation of an admissible field B in terms of a pair (U, V ) of Euler

potentials can be constructed as follows. We first choose in S+ a family of simple curves

Cu with the following properties: (i) there is a unique Cu passing through any point

of S+ (the curves cover S+); (ii) each curve Cu connects together two points of the

boundary ∂S+; (iii) the label u is the value of a function U0(r) satisfying ∇sU0 6= 0, i.e.,

Cu = {r ∈ S+ | U0(r) = u}. We orient each curve Cu by the tangent vector ∇sU0 × n̂,

and we define along it an increasing arc-length l that vanishes at the crossing with some

curve Γ that intersects transversally each Cu. Next we set

V0(r) = −
∫ l(r)

0

Bn

|∇sU0|
dl , (20)

where the integral is computed along Cu = CU0(r). The function V0 is such that Bn =

(∇sU0×∇sV0)·n̂ and it vanishes on Γ. Clearly, a contour level Cv = {r ∈ S+ | V0(r) = v}
of V0 cuts at most once a contour level of U0 (as V0 increases along Cu), and a connected

component of Cv joins together two points of ∂S+.

Next we define two functions U and V in D by imposing the two following

conditions: (i) U and V keep constant values along any magnetic line, i.e., they satisfy

B ·∇U = 0 and B ·∇V = 0 in D; (ii) U and V match on S+ the functions U0 and V0
previously constructed. We thus have, on the one hand B = λ∇U ×∇V in D, with the

function λ staying constant along any line as ∇ ·B = (∇U×∇V ) ·∇λ = B ·∇λ/λ = 0,

and on the other hand λ = 1 on S+ where Bn = λ(∇sU0×∇sV0)·n̂ = (∇sU0×∇sV0)·n̂.

Hence λ = 1 in the whole D and

B = ∇U ×∇V = ∇× (U∇V ) in D, (21)

showing that B admits the particular vector potential

A = U∇V. (22)

By construction, the Euler potentials are such that

U(r) = Ũ(r) and V (r) = Ṽ (r), (23)

i.e., they assume the same value at both footpoints of any line L(r). Then they do convey

information on the connectivity of B, which makes them particularly well adapted to

the problems considered in this paper.

For further reference, we note that it is also possible to construct a pair (U, V )

by choosing on S+ a covering set {Cu} made of closed nested curves (Aly 1990). In

that case, we take the parameter u to be the magnetic flux through Cu. The second

potential can still be constructed on S+ by using equation (20), but it now exhibits a
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discontinuity on Γ (on which l = 0). Of course, this discontinuity extends into D, where

there is a singular surface with V = 0 on one side and V = 1 on the other side. The

vector potential A = U∇V stays continuous in the whole D.

4.2. Field line helicity

We require here the selected reference field Br to be admissible. This allows us

introducing the Euler representations B = ∇U × ∇V and Br = ∇Ur × ∇Vr, and

the particular vector potentials C and Cr can be written in the form

C = U∇V +∇f and Cr = Ur∇Vr +∇fr (24)

for some functions f and fr. Hence

h(r) = [f ]L(r) = f̃(r)− f(r) for r ∈ S+, (25)

with f determined by (boundary condition gc)

U∇sV +∇sf = Ur∇sVr +∇sfr on S. (26)

For any two admissible fields B and B′ with the same normal component on S, we

can construct their Euler potentials in such a way that U = U ′ on S+, in which case

we also have on that surface V = V ′ by equation (20) and f = f ′ by equation (26)

(taking the unessential integration constant equal to zero). Euler potentials (U, V ) and

(U ′, V ′) satisfying this constraint will be said to be ”concordant”. If the two fields are

topologically equivalent, B ∼ B′, we have also U = U ′, V = V ′ and f = f ′ on S− by

equations (23) and (26), and then h = h′ by equation (25): the topological invariance of

h is thus immediately recovered without further calculations. Finally, we remark that

with the choice of concordant Euler potentials for B and Br, we have h(r) = f̃(r)−fr(r),

and we need to compute f only on S−.

4.3. Helicity

The helicity of B relative to the reference field Br can be most easily obtained by a

direct calculation starting from the definition (1). With A = U∇V and Ar = Ur∇Vr,

one gets by using a standard formula of vector analysis

H =

∫
D

(U∇V + Ur∇Vr) · (∇U ×∇V −∇Ur ×∇Vr) dv

=

∫
D

[Ur∇Vr ·∇× (U∇V )− U∇V ·∇× (Ur∇Vr)] dv

=

∫
D

∇ · (U∇V × Ur∇Vr) dv , (27)

and one obtains finally with help from Gauss theorem

H =

∫
S

UUr(∇sV ×∇sVr) · n̂ ds . (28)
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This relation also holds when the Euler potentials are constructed by the alternative

method sketched at the end of subsection 4.1 (Aly 1990). If we choose concordant Euler

potentials for B and Br, the integral over S reduces to an integral over S−.

Equation (28) exhibits explicitly the topological invariance of H as U = U ′ and

V = V ′ on S if we choose concordant Euler potentials for the two topologically equivalent

fields B and B′.

5. Does field line helicity characterize the topology of B?

Under our assumptions, we know that two admissible fields B and B′ that are

topologically equivalent have the same field line helicity relative to the vector potential

Cr. It seems natural to address the problem of the validity of the converse statement

(Yeates and Hornig 2014): if for a given Cr one has h = h′ for two admissible fields B

and B′ with Bn = B′n on S, are these two fields topologically equivalent? Here we are

going to show that the answer to that question is positive if we choose a vector potential

of reference of the form

Cr = Ur∇Vr (29)

(i.e., fr = 0), with the pair of Euler potentials (Ur, Vr) being computed by the method

of subsection 4.1.

Let us consider two admissible fields B and B′ that have the same normal

component on S and the same field line helicity relative to the vector potential of

reference (29). As h = h′, equation (15) implies

∇sh = ∇sM · C̃rs −Crs = ∇sM
′ · C̃rs

′
−Crs = ∇sh

′ on S+, (30)

where we have used the notation X̃
′
(r) = X(M′(r)). With our choice for Cr, we thus

have

Ũr∇sM · ∇̃sVr = Ũr
′
∇sM

′ · ∇̃sVr
′

on S+. (31)

On the other hand, it is an immediate consequence of the chain rule that ∇sM ·∇̃sF =

∇sF̃ on S+ for any function F defined on S, whence

Ũr∇sṼr = Ũr
′
∇sṼr

′
on S+. (32)

The gradients of Ṽr and Ṽr
′

being collinear on S+, Ṽr
′

needs to assume a constant

value along any connected component of a contour level of Ṽr. But as seen in subsection

4.1, each such curve cuts the boundary ∂S+, along which Ṽr
′
= Ṽr = Vr. Therefore we

have Ṽr
′
= Ṽr in the whole S+, and also Ũr

′
= Ũr by equation (32). Clearly, this implies

that M′ = M, and the two fields B and B′ are indeed topologically equivalent.

We can conclude that the topology of an admissible field, which is characterized

by its 2D magnetic mapping M, can be encoded as well in the two scalar quantities Bn

and h.
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6. Field line helicity evolution in presence of boundary motions and/or

dissipative effects

Up to now, we have considered deformations of a magnetic field that were constrained by

the frozen-in law and that kept fixed the positions of the footpoints on S. We consider

in this section a more general situation where the plasma on the boundary S is allowed

to move and/or there are non-ideal processes acting in D.

6.1. Assumptions and reminder

We make here the following assumptions:

• At least one of the following items holds true

– There are non-ideal processes at work in D and they are described by the

unspecified term N in Ohm’s law

E + v ×B/c = N. (33)

Such a term is present, e.g., in the standard resistive MHD model, where

we have N = ηj, with η the magnetic diffusivity and j the electric current

density. We require N to vanish in a neighborhood of the perfectly conducting

boundary S. For instance, the non-ideal processes may be localized in small

parts of D, as in the theory of 3D reconnection developed by Schindler and

coworkers (Schindler 2006, and references therein).

– The plasma on S moves at the prescribed velocity v. In order to simplify the

presentation, we choose v to be tangential to S, i.e., v = vs (this restriction

can be easily given up).

• The initial magnetic field is admissible, with its lines thus connecting in a continuous

way the parts S+ and S− of S, and this property is preserved during the evolution

of the field even when N 6≡ 0. In particular, the non-ideal processes do not create

inside D regions that are magnetically disconnected from S.

As it is well known (see, e.g., Schindler 2006), it is possible to write N in the form

N = −u×B

c
+ ∇ψ, (34)

where

ψ(r) = ψ0(r) +

∫
L(r,r)

N · dl, (35)

u(r) = c
B× (∇ψ −N)

B2
+ λB. (36)

In these equations, ψ0 is an arbitrary function defined on S+, r is the position of the

footpoint on S+ of the line passing through r, L(r, r) denotes the part of L(r) comprised

between r and r, and λ is an arbitrary function defined in D (time dependence is



13

understood). Here, we choose λ in such a way that un = n̂ · u = 0 (and then u = us)

on S. Setting

w = v + u (37)

and using equations (33)-(36), one gets

E +
w ×B

c
= ∇ψ. (38)

Curling that equation and taking Faraday’s induction law into account leads to

∂B

∂t
= ∇× (w ×B), (39)

which implies that the velocity w is both flux-preserving and line-preserving. The

meaning of u is clear: it represents the velocity of the line passing through a point r

with respect to the element of plasma located at that point.

Our aim now is to compute the time derivative of the helicity h(t) of a particular

magnetic line L(t) = L(r(t), t) that moves in D with the velocity w. As w = v + u =

vs+us = ws on S by our assumptions above, ws represents the velocity of the footpoints

of L(t) located at r(t) and M(r(t), t). Two remarks are in order at this point:

• For computing h(t), we have to fix the reference field, Br, and its vector potential,

Cr, at each time t. One then has to face a serious problem of interpretation: what

does it mean to compare the values of h at two different times (the same problem

arises for H, except in the case where the potential field is chosen as the reference

field). If we impose indeed an arbitrary evolution to Br and Cr, then it is clear

that the evolution of h(t) will not have any sensible meaning (for instance, we can

obtain a changing h even if B and Br stay constant by just performing a time-

dependent gauge transform on Cr). For each specific problem we have to deal

with, it is thus necessary to fix some physically meaningful rules of selection for Br

and Cr (see, e.g., Yeates and Hornig (2016) for an exemple). We shall not discuss

this problem here, as we are mainly interested in the formal properties of h. We

shall content ourselves to make below a choice that seems quite natural in view

of our specific assumptions. It may be worth noticing that a similar problem of

interpretation arises when one wants to introduce a local flux of relative magnetic

helicity through the boundary S as there is no gauge-invariant definition of such

a quantity. Physical considerations, however, allow to select an appropriate gauge

making the concept quite useful in solar physics (Démoulin and Pariat 2009).

• The unspecified function ψ0 appearing in equation (35) induces a well known

arbitrariness in the definition of w. When N ≡ 0, one chooses most generally

ψ0 = 0, which implies w⊥ = v⊥ (the subscript ⊥ indicating a component normal

to B), i.e., the standard frozen-in law. This choice may be also convenient in the

case where N 6≡ 0 and we shall adopt it below as it still allows defining L(t) in a

unique and physically clear way.
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6.2. Time evolution of field line helicity in a specific case

To keep the presentation as simple as possible, we make here the following specific

assumptions:

• The motion of the plasma on the boundary S preserves Bn, which implies the

existence of a function ζ defined on S such that

Bnv = Bnvs = n̂×∇sζ. (40)

This choice allows us to choose time-independent Br and Cr, which may be thought

to give a clear physical meaning to the evolving line helicity h(t).

• The reference vector potential is chosen to be of the form Cr = Ur∇Vr, with (Ur, Vr)

a pair of time independent Euler potentials of Br constructed by the method of

section 4.1. We also introduce (time-dependent) Euler potentials U and V for the

evolving field B. They are constructed at the initial time in the same way as (Ur, Vr)

(with which they may be concordant or not), and are determined at any later time

by

dU

dt
= 0 and

dV

dt
= 0, where

d

dt
=

∂

∂t
+ w ·∇, (41)

i.e., we require that they keep constant values when one follows the motion of any

field line. As it is well-known, such a method for computing U and V is compatible

with equation (39) (this equation is automatically satisfied by B = ∇U ×∇V if

U and V are solutions of equation (41)). The vector potential of B satisfying the

gauge condition gc can then be written C = U∇V +∇f , with f determined on S

by

Ur∇sVr = U∇sV + ∇sf (42)

(this is just equation (26) with fr = 0).

• Using equation (34) on S, where N = 0 and un = 0, we obtain after crossing with

n̂

(u×B)× n̂ = −Bnus = ∇s(cψ)× n̂, (43)

and combining this result with equations (37) and (40) leads to

Bnws = n̂×∇s(ζ + cψ). (44)

• We choose the arbitrary function ψ0 = 0, implying that the potential ψ assumes

the boundary values ψ = 0 on S+ and

ψ = N =

∫
L(t)

N · dl on S−. (45)

Therefore, we have us = 0 on S+, and a line L(t) is always connected to the same

element of plasma moving on S+. This provides a clear physical identification of

L(t). On S− on the contrary, the footpoint of L(t) drifts in general with respect to

the plasma once that line goes through a non-ideal part of D (where N 6= 0).
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To compute the time variation of h(t), we first differentiate equation (42) with

respect to time at a fixed point r of S, which results in

0 =
∂U

∂t
∇sV −

∂V

∂t
∇sU + ∇s

(
U
∂V

∂t
+
∂f

∂t

)
= ws × (∇sU ×∇sV ) + ∇s

(
−Uw ·∇sV +

∂f

∂t

)
= ∇s

(
∂f

∂t
− Uw ·∇sV + ζ + cψ

)
. (46)

Here we have used equation (41) to get the second line and equation (44) and the

relation ∇sU ×∇sV = Bnn̂ to get the third line. The quantity in parentheses in the

last line can then be taken to vanish (a time-dependent ”constant” of integration can

be absorbed by redefining f), and we can write

df

dt
=
∂f

∂t
+ w ·∇sf = Urw ·∇sVr − (ζ + cψ), (47)

where we have used equation (42) to eliminate ∇sf . On the other hand, using Ur and

Vr as coordinates on both S+ and S−, we have (ζ + cψ) = (ζ + cψ)(Ur, Vr, t) (with the

functional dependence being of course different on S+ and on S−). Whence

Urw ·∇sVr = Ur
∂

∂Ur
(ζ + cψ)n̂ · (∇sUr ×∇sVr)/Bn (48)

with help from equation (44) and

df

dt
= Ur

∂

∂Ur
(ζ + cψ)− (ζ + cψ) on S+ and on S−. (49)

Finally, we have just to use the relation (25) between f and h to obtain the formula we

wanted to prove:

dh

dt
(t) =

[
Ur
∂(ζ + cψ)

∂Ur
− (ζ + cψ)

]
L(t)

. (50)

Quite remarkably, the ζ-terms describing the twisting of the field lines by the boundary

motions appear in that formula on an equal footing with the ψ-terms describing the

dissipation by non-ideal effects. Note that the latter can also be written (Ur∂UrN −N ),

with N defined by equation (45). Of course, we recover that dh/dt = 0 when ζ = 0 and

N = 0, i.e., when the field lines are frozen in the plasma and their footpoints on S do

not move.

For comparison, we show a more general formula that holds true when the restrictive

assumptions made at the beginning of this subsection are given up (this formula will be

discussed in details elsewhere). If the reference vector potential Cr (not necessarily of

the simple form used above) and the flux distribution on S are allowed to depend on

time, then

dh

dt
(t) =

[
(∇sθ + n̂×∇s(ζ + cψ)) · Crs

Bn

− (ζ + cψ)

]
L(t)

+

∫
C(t)

(
∂Crs

∂t
+ n̂×∇sθ

)
· dl, (51)
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where C(t) is a curve of S that connects the two footpoints of L(t) and we have used

the general Helmholtz decomposition Bnvs = n̂×∇sζ + ∇sθ on S.

7. Conclusion

Let us summarize the results we have reported in this paper and indicate some of the

extensions that are currently being worked out and will be presented in a forthcoming

paper.

(i) We have established new formulae for the helicity H of a line-tied magnetic field B

relative to a reference field Br and for its line helicity h relative to a vector potential

Cr of Br. These formulae relate these quantities to the magnetic mapping M of B

and exhibit explicitly the topological invariance of H and h. They are valid in the

case where B has a simple topology and the part S0 of S where Bn = 0 is a curve

bounding both S+ and S−. They can be generalized in two directions. Firstly, one

can consider complex topology fields, for which D can be decomposed into cells

Dk inside which the topology is simple and equation (13) still holds if we put an

additive constant ck in its right-hand side. The main problem is then to relate the

ck to M. On the other hand, one can consider STFs for which S0 is an annular

domain (of positive area) separating S+ and S−. The complication arising in that

case stems from the fact that the topology of B is no longer characterized by the

magnetic mapping alone. To fix the topology, one also needs giving a number nw,

which measures the winding of a magnetic line on S0 (see Aly 2014 for a particular

example of such a situation).

(ii) We have also given formulae for h and H in which intervene only the boundary

values of a pair (U, V ) of Euler potentials of the admissible B. Then these formulae

make apparent, as those in terms of M, the topological invariance of h and H. A

direct extension of these formulae to complex topology fields appear at first sight

problematic as it is not possible to define global Euler potentials for such fields.

But for the least one can extend them to the case of an STF for which S0 is an

annulus of positive area.

(iii) We have discussed the possibility that line helicity h (along with the distribution

of Bn on S) characterizes the topology of the lines of an admissible B. We have

shown that this is the case if h is relative to a reference vector potential of the

form Cr = Ur∇Vr, with (Ur, Vr) specific Euler potentials of an admissible reference

field. A result of the same type was previously obtained by Yeates and Hornig

(2014), who restricted their attention to tube-like STFs occupying a domain whose

boundary S is made of two horizontal planar domains S+ and S−, and a vertical

surface S0, thus not threaded by the field. They found that two fields B and B′

that have Bn = B′n on S±, h = h′ for a specific choice of Cr, and nw = n′w, are

topologically equivalent. Our argument can be extended to handle such a situation,

actually without the geometrical restrictions above, and it is possible to show that
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two STFs with Bn = B′n on S± and h = h′ relatively to Cr = Ur∇sVr, have

M = M′ and nw = n′w. Hence they are topologically equivalent.

(iv) We have considered the rate of change of the helicity of a line, followed in its motion,

in the case where the plasma is moving on the boundary and/or non-ideal processes

are acting in the domain D. We have derived a formula for dh/dt valid when the

flux distribution on the boundary is time-independent. More general situations can

be handle along the same line, and we have now extended our calculations to the

case where Bn is no longer constant (an example of formula obtained in that case

has been quoted at the end of subsection 6.2), and (as yet with some restrictions)

to the case where the topology of the field is complex.

(v) Finally, we point out the existence of an analogy between the line helicity h and

the quantity w =
∫
LB dl in the case where B is force-free in D (i.e., ∇×B = αB

for some function α). It turns out that w can be related to M by a formula that

is formally identical to equation (13) for h (with Bs being substituted for Crs).

This type of relation for w allows (in combination with virial-type relations) to

establish force-free energy formulae with a topological flavor (see Aly (2005, 2014)

for examples implying a tube-like field). Topological energy formulae can be also

obtained by using an Euler representation of B (Aly 1990). All these aspects are

being currently developed.
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