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Neutron-rich88,90,92,94Se isotopes were studied via in-beam� -ray spectroscopy after nucleon removal reactions
at intermediate energies at the Radioactive Isotope Beam Factory. Based on� -� coincidence analysis, low-lying
excitation level schemes are proposed for these nuclei, including the 2+

1 , 4+
1 states and 2+2 states at remarkably low

energies. The low-lying 2+2 states, along with other features, indicate triaxiality in these nuclei. The experimental
results are in good overall agreement with self-consistent beyond-mean-�eld calculations based on the Gogny
D1S interaction, which suggests both triaxial degree of freedom and shape coexistence playing important roles
in the description of intrinsic deformations in neutron-rich Se isotopes.

DOI: 10.1103/PhysRevC.95.041302

Atomic nuclei are complex systems composed of inter-
acting protons and neutrons. Nevertheless, their low-lying
energy levels can often be simply described by rotations
and vibrations around intrinsic shapes. Due to the underlying
shell structure, governed by the effective nuclear interaction,
such intrinsic shapes evolve with the number of nucleons
in the system. Equilibrium shapes are frequently associated
with the occurrence of shell gaps in Nilsson-like single-
particle levels around the Fermi level. When moving from
closed-shell to open-shell nuclei, transitions from spherical
to deformed shapes can be observed along isotopic and
isotonic chains. Generally, ground-state deformations evolve
smoothly as a function of nucleon number. In some regions
of the nuclear chart, however, rapid shape transitions occur,
indicating coexisting different intrinsic shapes competing at
low excitation energy [1,2].

* sidong.chen@riken.jp

The neutron-rich nuclei aroundN � 60 have been iden-
ti�ed as a region of shape coexistence and shape transitions
[2–6]. The Zr and Sr isotopes in this region exhibit sudden
changes from almost spherical to highly deformed ground
states atN = 60, which belong to the most drastic shape tran-
sitions in the nuclear chart and were interpreted as intruders of
coexisting deformed shapes [2]. Recent experimental studies
of these isotopes have con�rmed the competition of low-lying
spherical and deformed con�gurations in96,98Sr [7] and
established shape coexistence in94,96Zr [8,9]. Conversely, for
the neutron-rich Kr isotopes, although evidence for a gradual
increase of collectivity has been found up toN = 60 [10–12],
yielding no sudden change from spherical to strong deforma-
tion shapes, a possible prolate-oblate shape coexistence has
been proposed for96Kr and heavier isotopes [5,12].

Experimental data and theoretical studies for the neutron-
rich Se isotopes are scarce. The heaviest isotope for which
mass and� -decay half-life are established is90Se [13,14],
while low-lying excited states have been observed only up

2469-9985/2017/95(4)/041302(6) 041302-1 ©2017 American Physical Society
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to N = 53,54 [15–17], both far away from the rapid onset
of ground-state deformation found atN � 60 in Sr and Zr
nuclei. The reported 2+1 energy of 886 keV for88Se suggests
a subshell effect atN = 56 for 90Se [16]. However, a search
for subshell signatures from half-life measurements provided
no support for the existence of anN = 56 subshell [14].
In addition, a recent experimental study of86Se by � -ray
spectroscopy reported a possible 3+ level, indicating an
onset of� collectivity in 86Se [18]. Meanwhile, theB(E2)
measurement and comparison with shell-model calculations
suggest a triaxial shape in86Se [19]. Moving to more neutron-
rich Se isotopes, it is expected that nonaxial degrees of freedom
play an important role in the description of deformation
shapes [20]. Furthermore, systematic theoretical calculations
in this region [4,21] predict close-lying prolate and oblate
minima in potential energy curves, originating from the down-
sloping�h 11/ 2 orbitals, which also suggest shape coexistence
and ground-state shape transition in the Se isotopic chain.

The goal of this paper is twofold: (i) the identi�cation
of low-lying excited states of the very neutron-rich even
isotopes88–94Se in order to assess their structures up to
N = 60; and (ii) the comparison of the experimental data
with symmetry-conserving con�guration mixing (SCCM)
calculations that indicate that this region of the isotopic chain
shows evidences of sudden prolate-oblate shape transitions
and shape coexistence.

The experiment was carried out at the Radioactive Isotope
Beam Factory, operated by the RIKEN Nishina Center and
the Center for Nuclear Study of the University of Tokyo. A
238U primary beam, accelerated to an energy of 345 MeV/ u,
was provided with an average intensity of 30 pnA. Secondary
radioactive isotope beams were produced by in-�ight �ssion
of the primary beam in a 3-mm-thick Be production target
placed at the entrance of the fragment separator BigRIPS [22].
The isotopes of interest were selected and separated with the
B� -�E -B� method and identi�ed on an event-by-event basis
by a TOF-B� -�E measurement [23]. Two BigRIPS settings
were applied and centered on89As and95Br, respectively. The
average intensities of the89Se and91,94,95Br isotopes, which
were used to produce the Se isotopes of interest, were measured
to be 618, 1280, 182, and 50 particles per second, respectively,
and impinged on a 99(1)-mm-thick [725(7)-mg/cm2] liquid
hydrogen reaction target. Their energies in front of the reaction
target were� 270 MeV/ u and decreased to� 180 MeV/ u
at the exit of the reaction target. Reaction residues were
collected and unambiguously identi�ed by the ZeroDegree
spectrometer [22], employing a similar identi�cation method
as described for BigRIPS.

Surrounding the liquid hydrogen target was a 300-mm-long
cylindrical time projection chamber (TPC) of the MINOS
ensemble [24]. The usage of the thick liquid hydrogen
target required the employment of the TPC to track the
protons for (p,2p) and other reactions and to reconstruct their
vertex position for the Doppler correction. An ef�ciency of
> 91% for good vertex reconstruction of the91Br(p,2p)90Se
channel was obtained with a spatial resolution of� 5 mm
FWHM. Examples of reconstructed vertices from two proton
trajectories for (p,2p) knock-out reactions are illustrated in

Refs. [24,25]. In the case of (p,pn ) channels, the beam
and scattered proton trajectories were used to determine
the reaction vertex. Deexcitation� rays were measured by
the DALI2 detector array [26,27], which consisted of 186
NaI(Tl) scintillators. A full-energy peak detection ef�ciency
of 35% (23%), including add-back, was simulated for 500-keV
(1-MeV)� rays emitted from the target center at a beam energy
of 250 MeV/ u with the GEANT4 framework [28]. Energy
calibrations were performed for each BigRIPS-ZeroDegree
setting using60Co, 137Cs, 88Y, and 133Ba sources, resulting
in a calibration error of 2 keV in the range of 350–1300 keV
and an energy resolution of 9% (6%) FWHM at 662 keV
(1.33 MeV), consistent with Refs. [26,27].

The Doppler-corrected spectra for88–94Se are shown in
Fig. 1, assuming all� rays were emitted from the reaction
vertex reconstructed by MINOS. However, the lifetimes of the
excited states in�uenced the Doppler correction. This effect
was considered when obtaining the DALI2 response functions
from GEANT4 simulations by assuming lifetimes based on
the theoretical approach discussed later and included in the
errors for the energy determinations. Furthermore, the validity
of the Doppler correction was veri�ed using the well-known
4+

1 � 2+
1 and 2+1 � 0+

g.s. transitions of94Kr [11,29] following
(p,pn ) reactions, which yielded less than 1 keV deviation to
the literature values. Each spectrum was �tted with DALI2
response functions added on top of a double-exponential
background.� -� coincidences were used to establish level
schemes for decays observed in the single spectra. Examples
of this analysis as well as the established level schemes
are given in the insets of Fig.1. However, the current
measurement was not sensitive to spin parities. Thus, their
assignments were based on the systematics of the isotopic
chain and the comparison with other studies of knock-out
reactions [25,31,32].

For 88Se, the previously reported� -ray line at 886 keV
assigned to the 2+1 � 0+

g.s. transition [16] was not observed.
Instead, the most intense� -ray transition after ef�ciency
correction was found at 580(8) keV, which was assigned to the
2+

1 � 0+
g.s. decay as in other nuclei studies [25,31,32]. Toward

the high-energy side, a tail was observed and �tted by another
transition at 646(15) keV. Two other transitions were observed
at 971(10) and 1232(13) keV. The� -� analysis showed that
the 646- and 971-keV transitions were in coincidence with
the 2+

1 state, while, within the uncertainties, the 1232-keV
transition was in good agreement with the sum of the 580- and
646-keV transitions. Therefore, the latter was assigned to the
2+

2 � 0+
g.s. transition, while the former were assigned to the

2+
2 � 2+

1 and 4+1 � 2+
1 transitions.

Five transitions were observed at 419(8), 548(9), 691(7),
960(15), and 1075(24) keV for90Se. As in the other cases, the
most intense transition, here at 548 keV, was assigned to the
2+

1 � 0+
g.s. decay. The� -� analysis revealed only the 960-keV

peak was not in coincidence with the 548-keV transition [see
Fig 1(b) inset], while it matched the sum of the 419- and
548-keV decays within errors. Thus, we assigned the 960-
and 419-keV transitions to the 2+

2 � 0+
g.s. and 2+2 � 2+

1
transitions, respectively. The 691- and 1075-keV transitions
were placed on top of the 2+

1 state in the proposed level

041302-2
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FIG. 1. Doppler-corrected� -ray spectra. Each spectrum is from
a single reaction channel:89Se(p,pn )88Se (a),91Br(p,2p)90Se (b),
94Br(p,2pn)92Se (c), 95Br(p,2p)94Se (d). The spectra were �tted
with simulated response functions (red) added on top of double-
exponential background (black). In the insets, examples of the� -�
coincidence analysis and deduced level schemes are presented, the
widths of the arrows re�ect relative intensities of transitions, dashed
lines are used for very weak transitions. The self-coincidences in
(b) and (c) insets originate from Compton events of high-energy
transitions.

scheme, with the 1239-keV state assigned to the 4+
1 and the

1623-keV state tentatively assigned to a (3,4+ ) state, based
on the comparison to92Se discussed below. A (3,4+ ) � 2+

2
transition remained unobserved, possibly because it coincided
energetically with the 4+1 � 2+

1 transition.

In a previous isomer study,� -ray lines for 92Se were
reported at 503, 539, and 898 keV, but no level scheme was
established [33]. In the present work, seven transitions were
found at 429(7), 539(9), 624(13), 715(7), 898(15), 958(22),
and 1061(14) keV, with the 539-keV transition assigned to the
2+

1 � 0+
g.s. and the 715-keV transition assigned to the 4+

1 �
2+

1 , based on the relative intensities. It is noted that owing to
the accurately known transition at 898 keV, the peak at 958(22)
keV could be identi�ed, which was revealed as a doublet with
the 898-keV transition in the form of a high-energy tail. Note
that lifetime effects may only lead to tails toward the lower en-
ergies and calculations using the theoreticalB(E2) values sug-
gest all excited states should have lifetimes shorter than 50 ps.
Based on the� -� analysis and the sum of transition energies,
we assigned the 429- and 958-keV� -ray decay from the 2+2
state at 968(11) keV, and the 624- and 1061-keV� -ray decay
from a level at 1600(17) keV, which was tentatively assigned to
be the (3,4+ ) from comparison to the level scheme of86Se [18].
The 898-keV transition could not be placed in the proposed
level scheme. It is further noted that the coincidence spectrum
features a reduced self-coincidence with the 2+

1 decay due to
Compton events originating from high-energy transitions.

For the most exotic isotope studied here,94Se, two clear
transitions were seen at 475(10) and 640(7) keV and in
coincidence with each other. They were assigned to the 2+

1 �
0+

g.s. and 4+1 � 2+
1 transitions based on relative intensities. In

addition, three peak-like structures were observed at 830(30),
1290(30), and 1580(30) keV. Standard signi�cance tests [34]
yielded 3.6� , 3.0� , and 3.7� , respectively, for these candidate
peaks (we required a signi�cance of at least 5� for an
assignment of a new transition). The 1290 keV matches well
the sum of 475 and 830 keV within errors, thus a candidate 2+

2
level at 1290(30) keV was placed in the level scheme. Note
that a� -� analysis could not be performed for these candidate
peaks due to limited statistics.

The systematics ofE(2+
1 ), R4/ 2 ratio, andE(2+

2 ) for Se
in comparison with Zr, Sr, and Kr isotopes are shown in
Fig.2 fromN = 50 to 60. A gradual decrease ofE(2+

1 ) for the
Se isotopes is apparent, yielding no indication for a subshell
closure atN = 56 nor a sharp rise of deformation atN = 60.
The R4/ 2 ratio increases fromN = 50 to 54, followed by a
drop atN = 56, then stays roughly constant at values around
2.3 untilN = 60. When comparing with other isotopic chains,
both the E(2+

1 ) and R4/ 2 pattern are at variance with the
Zr and Sr isotopes and strongly resemble the trend of the
Kr isotopes [11,12,29]. More interestingly, the assigned 2+

2
levels keep decreasing untilN = 56,58, then show a possible
increase atN = 60, especially forN = 56,58, theE(2+

2 ) are
among the lowest in this mass region [see Fig2(c)] and thus
indicate� -soft or triaxial features in these nuclei. Further, the
B(E2; 2+

2 � 2+
1 )/B (E2; 2+

2 � 0+
1 ) ratios calculated from the

experimental branching ratios and level energies, assuming
negligibleB(M 1) contributions, give values of 24(4), 20(4),
161(57), and 9(5) for88,90,92,94Se, respectively. These large
ratios are consistent with the O(6) limit in the interacting boson
approximation (IBA) model [35].

In the following, the experimental results are compared
with a symmetry-conserving con�guration mixing (SCCM)
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FIG. 2. Systematics ofE(2+
1 ) in Zr, Sr, Kr, and Se isotopes (a), the same for theirR4/ 2 = E(4+

1 )/E (2+
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2 ) (c). Open
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calculation with Gogny D1S effective interaction [36,37]. In
this framework, each individual nuclear state is de�ned as
the linear combination of multiple intrinsic many-body states
with different quadrupole (axial and triaxial) shapes. Further
details are described in Refs. [5,38–40]. In addition, only
time-reversal (static) and parity symmetric intrinsic shapes
were considered, i.e., cranked or octupole deformed states
were not included. Therefore, a systematic stretching of the
levels with respect to the experimental values is expected [41]
and negative parity bands cannot be described. We note that in
the (p,2p) reactions studied in this paper, direct population of
negative parity states requires proton knockout from theg9/ 2
orbital. This orbital is expected to be only weakly occupied
in the ground states of the Br isotopes, as inferred from the
recent calculations for the Zr isotopes [6]. Therefore, the
present theory is considered suf�cient to describe all observed
levels.

In Fig. 3, the theoretical predicted level energies are
compared with experimental results for86–94Se. Low-lying 2+2
states below the 4+1 levels are well reproduced for86–92Se and
an increase ofE(2+

2 ) is also predicted for94Se. As remarked
above, a general stretching of the theoretical predictions
is observed, mainly due to the privileged exploration of
the ground-state energy in the present variational process
without cranking states [41]. Despite the stretching, the present
SCCM calculation describes rather well the trends of the
experimental energies for the 2+

1 , 4+
1 , and 2+2 states, although

some differences are found, e.g., the decrease of theE(2+
1 )
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FIG. 3. Comparison of experimental and theoreticalE(2+
1 ),

E(4+
1 ), E(2+

2 ), andE(3,4+ ) from 86Se to94Se. Open symbols are
for candidate states. Data are from this work and Ref. [30].

from 88Se to90Se and of theE(2+
2 ) from 90Se to92Se instead

of the �at experimental trend. The present SCCM calculations
also yield largeB(E2; 2+

2 � 2+
1 )/B (E2; 2+

2 � 0+
1 ) ratios of

49, 11, 41, and 5 for88,90,92,94Se, respectively. These calculated
ratios are not as extensive as measured, yet the systematic
trend is correctly obtained. Further, calculatedB(E2; 2+

1 �
0+

gs) values can be compared to available experimental data.
The calculations yield values of 411e2 fm4 and 546e2 fm4

compared to experimental values of 210(30)e2 fm4 and
438+ 259

Š171 e2 fm4 for 84,86Se [19], respectively. The discrepancy
for the semi-magic84Se is expected due to the relevance
of quasiparticle excitations not taken into account in the
present SCCM framework. In addition, the present SCCM
calculation favors a 4+2 assignment for the (3,4+ ) levels in
90,92Se. Predicted 3+1 states, which belong to the� bands, lie
about 1 MeV higher in energy [see Fig.3(b)].

To gain insight into the intrinsic deformation, we display
in Fig. 4 the potential energy surfaces (PESs) for86–94Se
together with the collective wave functions (c.w.f.) for the
0+

g.s., 2+
1 , and 2+2 states. All c.w.f. have maxima in probabilities

at � 2 � 0.2–0.3 but quite different behaviors in the� degree
of freedom. In86,88Se, both PES and c.w.f. are predicted
to be extending in the� direction, in good agreement with
the O(6) limit. However, going to90,92,94Se, two distinct
minima with similar absolute energies are predicted in the
PESs, hinting a possible shape coexistence in these nuclei.
By looking into the c.w.f., the yrast states (4+

1 not shown) in
90Se are predicted to be prolate deformed, while the low-lying
2+

2 state features a competing oblate shape. Conversely,94Se
exhibits an oblate yrast band and a prolate 2+

2 state. For
92Se, the calculation predicts a� -soft ground state which
evolves to a stabilized oblate shape for the 4+

1 state, while
the 2+

2 state exhibits a prolate-� -soft deformation mixing
with an oblate con�guration. Overall, when following the
Se isotopic chain, the SCCM calculations show an intriguing
shape transition: the yrast states evolve from prolate (90Se)
to oblate (94Se) through a transitional� -soft (92Se) shape,
and the 2+2 states, conversely to the yrast states, undergo
an oblate-(� -soft)-prolate transition. Quantitatively, from90Se
to 94Se, the theoretical calculatedQsp evolves fromŠ42 to
+ 55efm2 for the 2+

1 state and from+ 43 toŠ46efm2 for the
2+

2 state. These transitions can be understood in the view of the
O(6) limit in the IBA model: As pointed out in Refs. [42,43],
the O(6) limit is the critical point of a �rst-order prolate-oblate
shape-phase transition. The Se isotopes studied here were all
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