-. Zhao, G. Tan, S. Hao, J. He, Y. Pei et al., Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science, vol.111, issue.30, pp.141-144, 2016.
DOI : 10.1073/pnas.1403601111

URL : http://authors.library.caltech.edu/62655/2/Zhao.SM.pdf

G. Chen, L. Han, L. Yang, J. Cheng, and . Zou, Nanostructured thermoelectric materials: Current research and future challenge, Progress in Natural Science: Materials International, vol.22, issue.6, pp.535-549, 2012.
DOI : 10.1016/j.pnsc.2012.11.011

URL : http://doi.org/10.1016/j.pnsc.2012.11.011

D. Elsheikh, M. Shnawah, S. Sabri, M. Said, M. Hassan et al., A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renewable and Sustainable Energy Reviews, vol.30, pp.337-355, 2014.
DOI : 10.1016/j.rser.2013.10.027

S. Alam and . Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, vol.2, issue.2, pp.190-212, 2013.
DOI : 10.1016/j.nanoen.2012.10.005

K. Andrei, K. Bethke, and . Rademann, Thermoelectricity in the context of renewable energy sources: joining forces instead of competing, Energy Environ. Sci., vol.14, issue.part A, pp.1528-1532, 2016.
DOI : 10.1039/C5EE03651H

C. Gunawan, D. Lin, V. Buttry, R. Mujica, R. Taylor et al., Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments, Nanoscale and Microscale Thermophysical Engineering, vol.78, issue.4, pp.304-323, 2013.
DOI : 10.1038/nmat2361

E. Uhl, T. Laux, L. Journot, J. Jeandupeux, H. Charmet et al., Development of Flexible Micro-Thermo-electrochemical Generators Based on Ionic Liquids, Journal of Electronic Materials, vol.55, issue.10, pp.3758-3764, 2014.
DOI : 10.1007/s11664-014-3126-1

A. Lazar, D. Al-masri, D. R. Macfarlane, and J. M. Pringle, Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid???solvent mixtures, Phys. Chem. Chem. Phys., vol.32, issue.3, pp.1404-1410, 2016.
DOI : 10.1039/C5CP04305K

R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett et al., Energy applications of ionic liquids, Energy Environ. Sci., vol.415, issue.1, pp.232-250, 2014.
DOI : 10.1002/ente.201300101

URL : https://hal.archives-ouvertes.fr/hal-00979082

D. Abraham, R. Macfarlane, L. Baughman, N. Jin, J. Li et al., Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy, Electrochimica Acta, vol.113, pp.87-93, 2013.
DOI : 10.1016/j.electacta.2013.08.087

D. Abraham, J. Macfarlane, and . Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting, Energy & Environmental Science, vol.24, issue.9, pp.2639-2645, 2013.
DOI : 10.1039/c3ee41608a

A. Sandbakk, S. Bentien, and . Kjelstrup, Thermoelectric effects in ion conducting membranes and perspectives for thermoelectric energy conversion, Journal of Membrane Science, vol.434, pp.10-17, 2013.
DOI : 10.1016/j.memsci.2013.01.032

. Fig, 5 Power measurements for FF-TBuA 0.06% with a temperature difference of 30 K between the top and bottom electrodes. The cell is discharged on a variable resistor ranging from 1 O to 10 MO, 2017.

D. Eastman, THEORY OF THE SORET EFFECT, Journal of the American Chemical Society, vol.50, issue.2, pp.283-291, 1928.
DOI : 10.1021/ja01389a007

D. Groot, Sur la thermodynamique de quelques processus irr??versibles. II. Diffusion thermique et ph??nom??nes connexes, Journal de Physique et le Radium, vol.8, issue.7, pp.193-200, 1947.
DOI : 10.1051/jphysrad:0194700807019300

A. Würger, Temperature Dependence of the Soret Motion in Colloids, Langmuir, vol.25, issue.12, pp.6696-6701, 2009.
DOI : 10.1021/la9001913

S. Ning, T. Datta, S. Sottmann, and . Wiegand, Soret Effect of Nonionic Surfactants in Water Studied by Different Transient Grating Setups, The Journal of Physical Chemistry B, vol.112, issue.35, pp.10927-10934, 2008.
DOI : 10.1021/jp800942w

D. Duhr and . Braun, Why molecules move along a temperature gradient, Proceedings of the National Academy of Sciences, vol.74, issue.8-9, pp.19678-19682, 2006.
DOI : 10.1002/bip.360290807

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1750914

W. Stadelmaier and . Köhler, Thermal Diffusion of Dilute Polymer Solutions: The Role of Chain Flexibility and the Effective Segment Size, Macromolecules, vol.42, issue.22, pp.9147-9152, 2009.
DOI : 10.1021/ma901794k

J. Kang, S. Fang, M. E. Kozlov, C. S. Haines, N. Li et al., Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters, Advanced Functional Materials, vol.114, issue.3, pp.477-489, 2012.
DOI : 10.1002/adfm.201101639

S. Voelker and . Odenbach, Thermodiffusion in ferrofluids in the presence of a magnetic field, Physics of Fluids, vol.37, issue.3, p.37104, 2005.
DOI : 10.1103/PhysRevE.64.061405

P. Vanysek, Activity Coefficients of Acids, Bases, and Salts, Handbook of Chemistry and Physics, Thermochemistry Electrochemistry, and Solution Chemistry, vol.5, pp.5-104, 2014.

S. Zeng, C. L. Grandner, A. F. Oliveira, O. Thunemann, J. S. Paris et al., Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement, Soft Matter, vol.300, issue.22, pp.10899-10909, 2011.
DOI : 10.1039/c1sm05971h

M. J. Hupp and . Weaver, Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples, Inorganic Chemistry, vol.23, issue.22, pp.3639-3644, 1984.
DOI : 10.1021/ic00190a042

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA142374

. Vanysek, Ionic conductivity and diffusion at infinite dilution, Handbook of Chemistry and Physics, Thermochemistry Electrochemistry, and Solution Chemistry, vol.5, pp.5-77, 2014.

S. Lucas, O. Durand-vidal, V. Bernard, E. Dahirel, J. Dubois et al., Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in??suspension, Molecular Physics, vol.134, issue.2, pp.1463-1471, 2014.
DOI : 10.1016/j.colsurfa.2013.07.007

URL : https://hal.archives-ouvertes.fr/hal-01083559

T. Hupp and M. J. Weaver, Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples, Inorganic Chemistry, vol.23, issue.22, pp.3639-3644, 1984.
DOI : 10.1021/ic00190a042

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA142374

I. Quickenden and Y. Mua, A Review of Power Generation in Aqueous Thermogalvanic Cells, Journal of The Electrochemical Society, vol.142, issue.11, pp.3985-3994, 1995.
DOI : 10.1149/1.2048446

T. Lucas, E. Dubois, J. Chevalet, S. Durand, and . Vidal, Reactivity of nanocolloidal particles ??-Fe2O3 at the charged interfaces : Part 1. The approach of particles to an electrode, Physical Chemistry Chemical Physics, vol.165, issue.102, pp.3263-3273, 2008.
DOI : 10.1039/b718738f

URL : https://hal.archives-ouvertes.fr/hal-00288442

C. Gunawan, D. A. Lin, V. Buttry, R. A. Mujica, R. S. Taylor et al., Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments, Nanoscale and Microscale Thermophysical Engineering, vol.78, issue.4, pp.304-323, 2013.
DOI : 10.1038/nmat2361