Can charged colloidal particles increase the thermoelectric energy conversion efficiency? - Archive ouverte HAL Access content directly
Journal Articles Physical Chemistry Chemical Physics Year : 2017

Can charged colloidal particles increase the thermoelectric energy conversion efficiency?

(1, 2) , (2) , (2) , (2) , (2) , (3) , (4) , (4) , (4) , (2)
1
2
3
4

Abstract

Currently, liquid thermocells are receiving increasing attention as an inexpensive alternative to conventional solid-state thermoelectrics for low-grade waste heat recovery applications. Here we present a novel path to increase the Seebeck coefficient of liquid thermoelectric materials using charged colloidal suspensions; namely, ionically stabilized magnetic nanoparticles (ferrofluids) dispersed in aqueous potassium ferro-/ferri-cyanide electrolytes. The dependency of thermoelectric potential on experimental parameters such as nanoparticle concentration and types of solute ions (lithium citrate and tetrabutylammonium citrate) is examined to reveal the relative contributions from the thermogalvanic potential of redox couples and the entropy of transfer of nanoparticles and ions. The results show that under specific ionic conditions, the inclusion of magnetic nanoparticles can lead to an enhancement of the ferrofluid's initial Seebeck coefficient by 15% (at a nanoparticle volume fraction of B1%). Based on these observations, some practical directions are given on which ionic and colloidal parameters to adjust for improving the Seebeck coefficients of liquid thermoelectric materials.
Fichier principal
Vignette du fichier
c7cp01023k.pdf (2.91 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

cea-01534297 , version 1 (07-06-2017)

Identifiers

Cite

Thomas J Salez, Bo Tao Huang, Maud Rietjens, Marco Bonetti, Cécile Wiertel-Gasquet, et al.. Can charged colloidal particles increase the thermoelectric energy conversion efficiency?. Physical Chemistry Chemical Physics, 2017, 19, pp.9409-9416. ⟨10.1016/j.jmmm.2016.07.050⟩. ⟨cea-01534297⟩
141 View
533 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More