M. Maurer-jones, I. Gunsolus, C. Murphy, and C. Haynes, Toxicity of Engineered Nanoparticles in the Environment, Analytical Chemistry, vol.85, issue.6, pp.3036-3085, 2013.
DOI : 10.1021/ac303636s

A. Schrand, M. Rahman, S. Hussain, J. Schlager, D. Smith et al., Metal-based nanoparticles and their toxicity assessment, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.36, issue.(suppl, pp.544-68, 2010.
DOI : 10.1002/wnan.103

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review, Journal of Hazardous Materials, vol.283, pp.764-77, 2015.
DOI : 10.1016/j.jhazmat.2014.10.021

R. Barrena, E. Casals, J. Colón, X. Font, A. Sánchez et al., Evaluation of the ecotoxicity of model nanoparticles, Chemosphere, vol.75, issue.7, pp.850-857, 2009.
DOI : 10.1016/j.chemosphere.2009.01.078

Z. Clemente, V. Castro, M. Moura, C. Jonsson, and L. Fraceto, Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions, Aquatic Toxicology, vol.147, pp.129-168, 2014.
DOI : 10.1016/j.aquatox.2013.12.024

H. Schug, C. Isaacson, L. Sigg, A. Ammann, and K. Schirmer, Effect of TiO 2 nanoparticles and uv radiation on extracellular enzyme activity of intact heterotrophic biofilms, Environ Sci Technol, vol.7, issue.48, pp.11620-11628, 2014.

C. Dimkpa, A. Calder, P. Gajjar, S. Merugu, W. Huang et al., Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis, Journal of Hazardous Materials, vol.188, issue.1-3, pp.428-463, 2011.
DOI : 10.1016/j.jhazmat.2011.01.118

L. Armand, A. Tarantini, D. Beal, M. Biola-clier, L. Bobyk et al., Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents, Nanotoxicology, vol.19, issue.7, pp.913-936, 2016.
DOI : 10.1016/j.toxlet.2010.09.009

L. Canesi, C. Ciacci, D. Vallotto, G. Gallo, A. Marcomini et al., In vitro effects of suspensions of selected nanoparticles (C60 fullerene SiO 2 ) on Mytilus hemocytes, Aquat Toxicol.Omics, vol.2, issue.96, pp.151-159, 2010.

B. Johnston, T. Scown, J. Moger, S. Cumberland, M. Baalousha et al., , and ZnO to Fish, Environmental Science & Technology, vol.44, issue.3, pp.1144-51, 2010.
DOI : 10.1021/es901971a

M. Planchon, R. Ferrari, F. Guyot, A. Gélabert, N. Menguy et al., Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters, Colloids and Surfaces B: Biointerfaces, vol.102, pp.158-64, 2013.
DOI : 10.1016/j.colsurfb.2012.08.034

URL : https://hal.archives-ouvertes.fr/hal-01021455

G. Oliver, M. Winson, D. Kell, and F. Baganz, Systematic functional analysis of the yeast genome, Trends in Biotechnology, vol.16, issue.9, pp.373-381, 1998.
DOI : 10.1016/S0167-7799(98)01214-1

R. Goodacre, S. Vaidyanathan, W. Dunn, G. Harrigan, and D. Kell, Metabolomics by numbers: acquiring and understanding global metabolite data, Trends in Biotechnology, vol.22, issue.5, pp.245-52, 2004.
DOI : 10.1016/j.tibtech.2004.03.007

J. Grivet, NMR and microbiology: from physiology to metabolomics, Biochimie, vol.85, issue.9, pp.823-863, 2003.
DOI : 10.1016/j.biochi.2003.08.004

URL : https://hal.archives-ouvertes.fr/hal-00088178

A. Smolinska, L. Blanchet, L. Buydens, and S. Wijmenga, NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review, Analytica Chimica Acta, vol.750, pp.82-97, 2012.
DOI : 10.1016/j.aca.2012.05.049

T. Fan and A. Lane, Structure-based profiling of metabolites and isotopomers by NMR, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.52, issue.2-3, pp.69-117, 2008.
DOI : 10.1016/j.pnmrs.2007.03.002

Y. Ye, L. Zhang, F. Hao, J. Zhang, Y. Wang et al., to Heat Stress, Journal of Proteome Research, vol.11, issue.4, pp.2559-66, 2012.
DOI : 10.1021/pr3000128

V. Hoerr, G. Duggan, L. Zbytnuik, K. Poon, C. Große et al., Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics, BMC Microbiology, vol.78, issue.Suppl. S1, pp.82-27159970, 2016.
DOI : 10.1186/s12866-016-0696-5

M. Han and S. Lee, The Escherichia coli Proteome: Past, Present, and Future Prospects, Microbiology and Molecular Biology Reviews, vol.70, issue.2, pp.362-439, 2006.
DOI : 10.1128/MMBR.00036-05

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489533

R. Carlson, Metabolic systems cost-benefit analysis for interpreting network structure and regulation, Bioinformatics, vol.23, issue.10, pp.1258-64, 2007.
DOI : 10.1093/bioinformatics/btm082

S. Lüders, C. Fallet, and E. Franco-lara, Proteome analysis of the Escherichia coli heat shock response under steady-state conditions, Proteome Science, vol.7, issue.1, p.36, 2009.
DOI : 10.1186/1477-5956-7-36

R. Brayner, R. Ferrari-iliou, N. Brivois, S. Djediat, M. Benedetti et al., Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium, Nano Letters, vol.6, issue.4, pp.866-70, 2006.
DOI : 10.1021/nl052326h

G. Schaumann, P. A. Bundschuh, M. Metreveli, G. Klitzke, S. Rakcheev et al., Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts, Science of The Total Environment, vol.535, pp.3-19, 2015.
DOI : 10.1016/j.scitotenv.2014.10.035

R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser et al., Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment, Environmental Pollution, vol.156, issue.2, pp.233-242, 2008.
DOI : 10.1016/j.envpol.2008.08.004

L. Mu and R. Sprando, Application of Nanotechnology in Cosmetics, Pharmaceutical Research, vol.26, issue.4, pp.1746-1755, 2010.
DOI : 10.1007/s11095-010-0139-1

M. Lomer, R. Thompson, and J. Powell, Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn???s disease, Proceedings of the Nutrition Society, vol.35, issue.01, pp.123-153, 2002.
DOI : 10.1097/00042737-199803000-00010

Q. Li, S. Mahendra, D. Lyon, L. Brunet, M. Liga et al., Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Research, vol.42, issue.18, pp.4591-602, 2008.
DOI : 10.1016/j.watres.2008.08.015

O. Carp, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

Z. Huang, P. Maness, D. Blake, E. Wolfrum, S. Smolinski et al., Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, vol.130, issue.2-3, pp.163-70, 2000.
DOI : 10.1016/S1010-6030(99)00205-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Gurr, A. Wang, C. Chen, and K. Jan, Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells, Toxicology, vol.213, issue.1-2, pp.66-73, 2005.
DOI : 10.1016/j.tox.2005.05.007

F. Mallevre, T. Fernandes, and T. Aspray, Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater, Environmental Pollution, vol.195, pp.218-243, 2014.
DOI : 10.1016/j.envpol.2014.09.002

X. Lin, J. Li, S. Ma, G. Liu, K. Yang et al., Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry, PLoS ONE, vol.51, issue.467, pp.110247-25310452, 2014.
DOI : 10.1371/journal.pone.0110247.t001

A. Pottier, S. Cassaignon, C. Chanéac, F. Villain, E. Tronc et al., Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, Journal of Materials Chemistry, vol.13, issue.4, pp.877-82, 2003.
DOI : 10.1039/b211271j

D. Botelho, M. Wall, D. Vieira, S. Fitzsimmons, F. Liu et al., Top-Down and Bottom-Up Proteomics of SDS-Containing Solutions Following Mass-Based Separation, Journal of Proteome Research, vol.9, issue.6, pp.2863-70, 2010.
DOI : 10.1021/pr900949p

T. Hwang and A. Shaka, Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients, Journal of Magnetic Resonance, Series A, vol.112, issue.2, pp.275-284, 1995.
DOI : 10.1006/jmra.1995.1047

J. Lindon, Biofluids studied by NMR spectroscopy, pp.128-169, 2010.
DOI : 10.1016/b978-0-12-803224-4.00376-9

H. Tsugawa, Y. Tsujimoto, K. Sugitate, N. Sakui, S. Nishiumi et al., Highly sensitive and selective analysis of widely targeted metabolomics using gas chromatography/triple-quadrupole mass spectrometry, Journal of Bioscience and Bioengineering, vol.117, issue.1, pp.122-130, 2014.
DOI : 10.1016/j.jbiosc.2013.06.009

B. Enjalbert, J. F. Portais, and J. , Intuitive Visualization and Analysis of Multi-Omics Data and Application to Escherichia coli Carbon Metabolism, PLoS ONE, vol.1, issue.6, p.21731702, 2011.
DOI : 10.1371/journal.pone.0021318.s004

B. Wortham, M. Oliveira, and N. Chandra, Polyamines in Bacteria: Pleiotropic Effects yet Specific Mechanisms, pp.106-121, 2007.
DOI : 10.1007/978-0-387-72124-8_9

A. Tkachenko, L. Nesterova, and M. Pshenichnov, The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli, Archives of Microbiology, vol.176, issue.1-2, pp.155-162, 2001.
DOI : 10.1007/s002030100301

N. Kusukawa, T. Yura, C. Ueguchi, Y. Akiyama, and K. Ito, Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli, EMBO J, vol.8, pp.3517-2573517, 1989.

N. Hasan, F. Ahmad, and H. Wu, Monitoring the heat stress response of Escherichia coli via NiO nanoparticle assisted MALDI???TOF mass spectrometry, Talanta, vol.103, pp.38-46, 2013.
DOI : 10.1016/j.talanta.2012.10.003

R. Godlewska, K. Wiå?niewska, Z. Pietras, and E. Jagusztyn-krynicka, Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis, FEMS Microbiology Letters, vol.298, issue.1, pp.1-11, 2009.
DOI : 10.1111/j.1574-6968.2009.01659.x

E. Goemaere, E. Cascales, and R. Lloubès, Mutational Analyses Define Helix Organization and Key Residues of a Bacterial Membrane Energy-transducing Complex, Journal of Molecular Biology, vol.366, issue.5, pp.1424-1460, 2007.
DOI : 10.1016/j.jmb.2006.12.020

J. Lazzaroni, P. Germon, M. Ray, and A. Vianney, and their involvement in the uptake of biomolecules and outer membrane stability, FEMS Microbiology Letters, vol.177, issue.2, pp.191-198, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13731.x

Y. Liu, J. Yan, H. Lei, C. Teng, M. Wang et al., Loss of Outer Membrane Protein C in Escherichia coli Contributes to Both Antibiotic Resistance and Escaping Antibody-Dependent Bactericidal Activity, Infection and Immunity, vol.80, issue.5, pp.1815-1837, 2012.
DOI : 10.1128/IAI.06395-11

E. Powers, D. Powers, and L. Gierasch, FoldEco: A Model for Proteostasis in E.??coli, Cell Reports, vol.1, issue.3, pp.265-76, 2012.
DOI : 10.1016/j.celrep.2012.02.011

G. Carré, E. Hamon, S. Ennahar, M. Estner, M. Lett et al., TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli, Applied and Environmental Microbiology, vol.80, issue.8, pp.2573-81, 2014.
DOI : 10.1128/AEM.03995-13

M. Plesa, J. Hernalsteens, G. Vandenbussche, J. Ruysschaert, and P. Cornelis, The SlyB outer membrane lipoprotein of Burkholderia multivorans contributes to membrane integrity, Research in Microbiology, vol.157, issue.6, pp.582-92, 2006.
DOI : 10.1016/j.resmic.2005.11.015

D. Miller, J. Olson, J. Pflugrath, and F. Quiocho, Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis, PMID: 6358208 "Omics" investigations for TiO2 impact on E. coli, pp.13665-72, 1983.

G. Richarme and T. Caldas, Chaperone Properties of the Bacterial Periplasmic Substrate-binding Proteins, Journal of Biological Chemistry, vol.272, issue.25, pp.15607-15619, 1997.
DOI : 10.1074/jbc.272.25.15607

D. Rasko, M. Rosovitz, G. Myers, E. Mongodin, W. Fricke et al., The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates, Journal of Bacteriology, vol.190, issue.20, pp.6881-93, 2008.
DOI : 10.1128/JB.00619-08

T. Fenton and I. Gout, Functions and regulation of the 70kDa ribosomal S6 kinases, The International Journal of Biochemistry & Cell Biology, vol.43, issue.1, pp.47-59, 2011.
DOI : 10.1016/j.biocel.2010.09.018

A. Korobeinikova, M. Garber, and G. Gongadze, Ribosomal proteins: Structure, function, and evolution, Biochemistry (Moscow), vol.77, issue.6, pp.562-74, 2012.
DOI : 10.1134/S0006297912060028

D. Ma, D. Cook, M. Alberti, N. Pon, H. Nikaido et al., Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli, Molecular Microbiology, vol.12, issue.1, pp.45-55, 1995.
DOI : 10.1073/pnas.81.7.1966

T. Silhavy, D. Kahne, and S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor Perspectives in Biology, vol.2, issue.5, pp.414-000414, 2010.
DOI : 10.1101/cshperspect.a000414

M. Fraser, M. James, W. Bridger, and W. Wolodko, Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase, Journal of Molecular Biology, vol.299, issue.5, pp.1325-1364, 2000.
DOI : 10.1006/jmbi.2000.3807

Y. Ojima, M. Nishioka, and M. Taya, Metabolic alternations in SOD-deficient Escherichia coli cells when cultivated under oxidative stress from photoexcited titanium dioxide, Biotechnology Letters, vol.56, issue.6, pp.1107-1120, 2008.
DOI : 10.1007/s10529-008-9655-z

O. Kotte, J. Zaugg, and M. Heinemann, Bacterial adaptation through distributed sensing of metabolic fluxes, Molecular Systems Biology, vol.73, pp.355-20212527, 2010.
DOI : 10.1016/S1369-5274(03)00033-X

URL : http://doi.org/10.1038/msb.2010.10

A. Kremling, K. Bettenbrock, and E. Gilles, Analysis of global control of Escherichia coli carbohydrate uptake, BMC Systems Biology, vol.1, issue.1, pp.42-17854493, 2007.
DOI : 10.1186/1752-0509-1-42

E. Michta, K. Schad, K. Blin, R. Ort-winklbauer, M. Röttig et al., T??494, Environmental Microbiology, vol.78, issue.12, pp.3203-3222, 2012.
DOI : 10.1111/1462-2920.12006

K. Oyedotun and B. Lemire, The Quaternary Structure of the Saccharomyces cerevisiae Succinate Dehydrogenase: HOMOLOGY MODELING, COFACTOR DOCKING, AND MOLECULAR DYNAMICS SIMULATION STUDIES, Journal of Biological Chemistry, vol.279, issue.10, pp.9424-9455, 2004.
DOI : 10.1074/jbc.M311876200

M. Domínguez-martín, A. López-lozano, J. Diez, G. Gómez-baena, O. Rangel-zúñiga et al., Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511, PLoS ONE, vol.185, issue.7, pp.103380-25061751, 2014.
DOI : 10.1371/journal.pone.0103380.g007

M. Spencer, M. Darlison, P. Stephens, I. Duckenfield, and J. Guest, Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase, European Journal of Biochemistry, vol.120, issue.2, pp.361-74, 1984.
DOI : 10.1016/0014-5793(83)81013-8

T. Nuidate, N. Tansila, P. Chomchuen, P. Phattaranit, S. Eangchuan et al., Characterization of Tryptophanase from Vibrio cholerae, Applied Biochemistry and Biotechnology, vol.24, issue.1, pp.243-52, 2015.
DOI : 10.1007/s12010-014-1263-x

T. Han, J. Lee, M. Cho, T. Wood, and J. Lee, Environmental factors affecting indole production in Escherichia coli, Research in Microbiology, vol.162, issue.2, pp.108-124, 2011.
DOI : 10.1016/j.resmic.2010.11.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171796

E. Yikilmaz, S. Chapman, J. Schrader, and O. Uhlenbeck, Elongation Factor Tu and Aminoacyl-tRNA, Biochemistry, vol.53, issue.35, pp.5710-5730, 2014.
DOI : 10.1021/bi500533x

S. Chapman, J. Schrader, and O. Uhlenbeck, Elongation Factor Tu Selectively Stabilizes Aminoacyl-tRNAs, Journal of Biological Chemistry, vol.287, issue.2, pp.1229-1263, 2012.
DOI : 10.1074/jbc.M111.294850

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256880

D. Soufo, H. Reimold, C. Linne, U. Knust, T. Gescher et al., Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein, Proceedings of the National Academy of Sciences, vol.135, issue.4, pp.3163-3171, 2010.
DOI : 10.1083/jcb.135.4.953

B. Magnuson, B. Ekim, and D. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks, Biochemical Journal, vol.460, issue.1, pp.1-21, 2012.
DOI : 10.1016/j.febslet.2010.01.017

B. Sohm, F. Immel, P. Bauda, and C. Pagnout, in the dark, PROTEOMICS, vol.15, issue.1, pp.98-113, 2015.
DOI : 10.1002/pmic.201400101

URL : https://hal.archives-ouvertes.fr/hal-01101796

Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lü et al., The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials, vol.33, issue.7, pp.2327-2360, 2012.
DOI : 10.1016/j.biomaterials.2011.11.057

R. Mempin, H. Tran, C. Chen, H. Gong, K. Ho et al., Release of extracellular ATP by bacteria during growth, BMC Microbiology, vol.13, issue.1, 2013.
DOI : 10.1074/jbc.M110.155119

V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-chavez, H. Miyoshi et al., Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation, Science, vol.299, issue.5607, pp.700-704, 2003.
DOI : 10.1126/science.1079605

P. Isarankura-na-ayudhya, C. Isarankura-na-ayudhya, L. Treeratanapaiboon, K. Kasikun, K. Thipkeaw et al., Proteomic profiling of Escherichia coli in response to heavy metals stress, Eur J Sci Res, vol.25, pp.679-88, 2009.

H. Tweeddale, L. Notley-mcrobb, and T. Ferenci, Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ( " metabolome " ) analysis, J Bacteriol, vol.180, pp.5109-5125, 1998.

Y. Tang, M. Quail, P. Artymiuk, J. Guest, and J. Green, Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression, Microbiology, vol.148, issue.4, pp.1027-1064, 2002.
DOI : 10.1099/00221287-148-4-1027