A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Advances in Mathematics, vol.195, issue.2, pp.405-455, 2005.
DOI : 10.1016/j.aim.2004.08.003

URL : http://doi.org/10.1016/j.aim.2004.08.003

P. D. , F. , and R. Kedem, Q-systems, heaps, paths and cluster positivity, Comm. Math. Phys, vol.293, issue.3, pp.727-802, 2010.

P. D. , F. , and R. Kedem, Non-commutative integrability, paths and quasideterminants, Adv. Math, vol.228, issue.1, pp.97-152, 2011.

P. D. , F. , and R. Kedem, Quantum cluster algebras and fusion products, Int. Math. Res. Not. IMRN, issue.10, pp.2593-2642, 2014.

P. D. , F. , and R. Kedem, Difference equations for graded characters from quantum cluster algebra, p.2015
URL : https://hal.archives-ouvertes.fr/cea-01251612

P. D. , F. , and R. Kedem, Quantum q systems, daha and quantum toroidal algebras. work in progress Drinfel ? d. Quantum groups, Proceedings of the International Congress of Mathematicians, pp.798-820, 1986.
URL : https://hal.archives-ouvertes.fr/cea-01531314

B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum toroidal gl 1 -algebra: plane partitions [FL99] Boris Feigin and Sergey Loktev. On generalized Kostka polynomials and the quantum Verlinde rule, Differential topology, infinite-dimensional Lie algebras, and applications, pp.621-659, 1999.
DOI : 10.1215/21562261-1625217

URL : http://arxiv.org/abs/1110.5310

E. Frenkel and N. Reshetikhin, [GR97] I. Gelfand and V. Retakh. Quasideterminants. I. Selecta Math Binomial determinants, paths, and hook length formulae Eisenstein series and quantum affine algebras Algebraic geometry, Comm. Math. Phys. Adv. in Math. J. Math. Sci, vol.178, issue.7, pp.237-264517, 1985.

R. Kedem, [. N. Kirillov, and M. Noumi, q-difference raising operators for Macdonald polynomials and the integrality of transition coefficients. In Algebraic methods and q-special functions, of CRM Proc. Lecture NotesMac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, pp.41-227, 1995.

A. Negut, The Shuffle Algebra Revisited, International Mathematics Research Notices, issue.22, pp.6242-6275, 2014.
DOI : 10.1093/imrn/rnt156

URL : http://arxiv.org/abs/1209.3349

P. David, H. Robbins, and J. Rumsey, Determinants and alternating sign matrices, Adv. in Math, vol.62, issue.2, pp.169-184, 1986.