A. [. Bergeron and . Garsia, Science fiction and Macdonald's polynomials. In Algebraic methods and q-special functions, of CRM Proc. Lecture Notes, pp.1-52, 1996.
DOI : 10.1090/crmp/022/01

URL : http://arxiv.org/abs/math/9809128

F. Bergeron, A. Garsia, E. Leven, and G. Xin, Some remarkable new plethystic operators in the theory of Macdonald polynomials, Journal of Combinatorics, vol.7, issue.4, p.2014
DOI : 10.4310/JOC.2016.v7.n4.a6

A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Advances in Mathematics, vol.195, issue.2, pp.405-455, 2005.
DOI : 10.1016/j.aim.2004.08.003

URL : http://doi.org/10.1016/j.aim.2004.08.003

I. Cherednik, Double affine Hecke algebras Lecture Note Series, 2005.
DOI : 10.1017/cbo9780511546501

P. D. , F. , and R. Kedem, Proof of the combinatorial Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. IMRN, vol.57, issue.7, 2008.

P. D. , F. , and R. Kedem, Non-commutative integrability, paths and quasideterminants, Adv. Math, vol.228, issue.1, pp.97-152, 2011.

P. D. , F. , and R. Kedem, Quantum cluster algebras and fusion products, Int. Math. Res. Not. IMRN, issue.10, pp.2593-2642, 2014.

P. D. , F. , and R. Kedem, Difference equations for graded characters from quantum cluster algebra, p.2015
URL : https://hal.archives-ouvertes.fr/cea-01251612

P. D. , F. , and R. Kedem, Quantum q systems: From cluster algebras to quantum current algebras, p.2016
URL : https://hal.archives-ouvertes.fr/cea-01531365

J. Ding and K. Iohara, Generalization of Drinfeld quantum affine algebras, Letters in Mathematical Physics, vol.41, issue.2, pp.181-193, 1997.
DOI : 10.1023/A:1007341410987

B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum toroidal gl 1 -algebra: plane partitions On generalized Kostka polynomials and the quantum Verlinde rule In Differential topology, infinite-dimensional Lie algebras, and applications, volume 194 of Amer Fe? ?gin and A. V. Odesski? ?. Vector bundles on an elliptic curve and Sklyanin algebras In Topics in quantum groups and finite-type invariants, volume 185 of Amer, FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. AmerHai99] Mark Haiman. Macdonald polynomials and geometry. In New perspectives in algebraic combinatorics, pp.621-659, 1998.

. Hko-+-99-]-g, A. Hatayama, M. Kuniba, T. Okado, Y. Takagi et al., Remarks on fermionic formula In Recent developments in quantum affine algebras and related topics Eisenstein series and quantum affine algebras Algebraic geometry, Contemp. Math. Amer. Math. Soc. J. Math. Sci, vol.248, issue.7, pp.243-2911311, 1997.

R. Kedem, [. N. Kirillov, and N. Yu, Reshetikhin. Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, pp.41211-221, 1987.

K. Miki, Toroidal and level 0 Uq???(sln+1???) actions on Uq(gln+1???) modules, Journal of Mathematical Physics, vol.36, issue.6, pp.3191-3210, 1999.
DOI : 10.1016/S0393-0440(96)00041-1

K. Miki, A (q,??) analog of the W1+??? algebra, Journal of Mathematical Physics, vol.42, issue.12, p.123520, 2007.
DOI : 10.1007/s002200050381

A. Negut, The Shuffle Algebra Revisited, International Mathematics Research Notices, issue.22, pp.6242-6275, 2014.
DOI : 10.1093/imrn/rnt156

URL : http://arxiv.org/abs/1209.3349

P. David, H. Robbins, and J. Rumsey, Determinants and alternating sign matrices, Adv. in Math, vol.62, issue.2, pp.169-184, 1986.

O. Schiffmannsv11, ]. O. Schiffmann, and E. Vasserot, Drinfeld realization of the elliptic Hall algebra, Journal of Algebraic Combinatorics, vol.147, issue.3, pp.237-262188, 2011.
DOI : 10.1007/s10801-011-0302-8