(t,q) Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators

Abstract : We introduce difference operators on the space of symmetric functions which are a natural generalization of the $(q,t)$-Macdonald operators. In the $t\to\infty$ limit, they satisfy the $A_{N-1}$ quantum $Q$-system. We identify the elements in the spherical $A_{N-1}$ DAHA which are represented by these operators, as well as within the quantum toroidal algebra of $gl_1$ and the elliptic Hall algebra. We present a plethystic, or bosonic, formulation of the generating functions for the generalized Macdonald operators, which we relate to recent work of Bergeron et al. Finally we derive constant term identities for the current that allow to interpret them in terms of shuffle products. In particular we obtain in the $t\to\infty$ limit a shuffle presentation of the quantum $Q$-system relations.
Type de document :
Pré-publication, Document de travail
t17/082. 57 pages. 2017
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01531314
Contributeur : Emmanuelle De Laborderie <>
Soumis le : jeudi 1 juin 2017 - 15:13:25
Dernière modification le : jeudi 15 mars 2018 - 15:03:56
Document(s) archivé(s) le : mercredi 6 septembre 2017 - 18:50:04

Fichier

1704.00154.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : cea-01531314, version 1
  • ARXIV : 1704.00154

Citation

Philippe Di Francesco, Rinat Kedem. (t,q) Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators. t17/082. 57 pages. 2017. 〈cea-01531314〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

39