W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, 2009.
DOI : 10.1007/978-1-4419-1151-3

J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science, vol.312, issue.5781, pp.1780-1782, 2006.
DOI : 10.1126/science.1125907

U. Leonhardt, Optical Conformal Mapping, Science, vol.312, issue.5781, pp.1777-1780, 2006.
DOI : 10.1126/science.1126493

R. P. Feynman, The Feynman lectures on physics II: mainly electromagnetism and matter, 1965.
DOI : 10.1063/1.3051743

M. Choi, A terahertz metamaterial with unnaturally high refractive index, Nature, vol.70, issue.7334, pp.369-373, 2011.
DOI : 10.1038/nature09776

N. Engheta, Pursuing Near-Zero Response, Science, vol.10, issue.8, pp.286-287, 2013.
DOI : 10.1038/nmat3030

R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science, vol.292, issue.5514, pp.77-79, 2001.
DOI : 10.1126/science.1058847

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, Wave propagation control at the deep subwavelength scale in??metamaterials, Nature Physics, vol.9, issue.1, pp.55-60, 2013.
DOI : 10.1103/PhysRevLett.107.064301

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials, Applied Physics Letters, vol.102, issue.14, p.144104, 2013.
DOI : 10.1073/pnas.1104418108

URL : http://arxiv.org/abs/1112.2536

A. Alù, First-principles homogenization theory for periodic metamaterials, Physical Review B, vol.52, issue.7, p.75153, 2011.
DOI : 10.1016/j.metmat.2011.04.001

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials, Nature, vol.7, issue.7567, pp.77-81, 2015.
DOI : 10.1038/nature14678

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal, Crystals, vol.69, issue.7, p.82, 2016.
DOI : 10.1103/PhysRevE.70.055602

URL : http://doi.org/10.3390/cryst6070082

M. Z. Hasan and C. L. Kane, : Topological insulators, Reviews of Modern Physics, vol.70, issue.4, pp.3045-3067, 2010.
DOI : 10.1103/PhysRevB.65.245420

S. Raghu and F. D. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals, Physical Review A, vol.44, issue.3, p.33834, 2008.
DOI : 10.1103/PhysRevB.44.8565

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljaci?, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, vol.306, issue.7265, pp.772-777, 2009.
DOI : 10.1038/nature08293

URL : http://dspace.mit.edu/bitstream/1721.1/88469/1/Joannopoulos_Observation%20of.pdf

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust optical delay lines with topological protection, Nature Physics, vol.19, issue.11, pp.907-912, 2011.
DOI : 10.1038/nature08293

URL : https://dash.harvard.edu/bitstream/handle/1/8123165/1102.3256v1.pdf?sequence=1

K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nature Photonics, vol.20, issue.11, pp.782-787, 2012.
DOI : 10.1038/nphoton.2012.236

A. B. Khanikaev, Photonic topological insulators, Nature Materials, vol.97, issue.3, pp.233-242, 2013.
DOI : 10.1038/nmat3520

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Imaging topological edge states in silicon photonics, Nature Photonics, vol.488, issue.12, pp.1001-1005, 2013.
DOI : 10.1038/nphoton.2013.274

URL : http://arxiv.org/abs/1302.2153

M. C. Rechtsman, Photonic Floquet topological insulators, Nature, vol.62, issue.7444, pp.196-200, 2013.
DOI : 10.1038/nature12066

W. Chen, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nature Communications, vol.102, p.5782, 2014.
DOI : 10.1038/ncomms6782

L. Wu and X. Hu, Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material, Physical Review Letters, vol.114, issue.22, p.223901, 2015.
DOI : 10.1016/j.cpc.2009.11.008

W. Hu, Measurement of a Topological Edge Invariant in a Microwave Network, Physical Review X, vol.5, issue.1
DOI : 10.1088/1367-2630/16/12/123013

X. Cheng, Robust reconfigurable electromagnetic pathways within a photonic topological insulator, Nature Materials, vol.4, issue.5, pp.542-548, 2016.
DOI : 10.1103/PhysRevLett.114.033901

S. A. Skirlo, Experimental Observation of Large Chern Numbers in Photonic Crystals, Physical Review Letters, vol.115, issue.25
DOI : 10.1103/PhysRevLett.115.104302

W. Gao, Topological Photonic Phase in Chiral Hyperbolic Metamaterials, Physical Review Letters, vol.114, issue.3, p.37402, 2015.
DOI : 10.1209/0295-5075/102/18003

URL : http://arxiv.org/abs/1401.5448

M. G. Silveirinha, Chern invariants for continuous media, Physical Review B, vol.92, issue.12, p.125153, 2015.
DOI : 10.1109/TAP.2006.875920

M. G. Silveirinha, topological index for continuous photonic materials, Physical Review B, vol.93, issue.7, p.75110, 2016.
DOI : 10.1002/mop.4650050412

M. G. Silveirinha, Bulk-edge correspondence for topological photonic continua, Physical Review B, vol.94, issue.20, p.205105, 2016.
DOI : 10.1103/PhysRevLett.61.2015

URL : http://arxiv.org/abs/1608.00228

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nature Communications, vol.117, p.8260, 2015.
DOI : 10.1038/ncomms9260

URL : http://doi.org/10.1038/ncomms9260

R. Fleury, A. Khanikaev, and A. Alu, Floquet topological insulators for sound, Nature Communications, vol.11, p.11744, 2016.
DOI : 10.1038/ncomms11744

URL : http://doi.org/10.1038/ncomms11744

Y. Peng, Experimental demonstration of anomalous Floquet topological insulator for sound, Nature Communications, vol.7, p.13368, 2016.
DOI : 10.1038/ncomms13368

J. Lu, Observation of topological valley transport of sound in sonic crystals, Nature Physics, vol.5, issue.4, pp.369-374, 2017.
DOI : 10.1038/nphys3611

C. He, Acoustic topological insulator and robust one-way sound transport, Nature Physics, vol.150, issue.12, pp.1124-1129, 2016.
DOI : 10.1038/nphys3867

URL : http://arxiv.org/abs/1512.03273

S. D. Huber, Topological mechanics, Nature Physics, vol.11, issue.7, pp.621-623, 2016.
DOI : 10.1038/nphys3801

M. Lax, Multiple Scattering of Waves. II. The Effective Field in Dense Systems, Physical Review, vol.79, issue.4, pp.621-629, 1952.
DOI : 10.1103/PhysRev.85.621

D. Strickland, A. Ayón, and A. Alù, Dynamic polarizability tensor for circular cylinders, Physical Review B, vol.91, issue.8
DOI : 10.1134/1.1615545

L. N. Trefethen, N. Lloyd, and D. Bau, Numerical linear algebra, 1997.
DOI : 10.1137/1.9780898719574

T. Fukui, Y. Hatsugai, and H. Suzuki, Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances, Journal of the Physical Society of Japan, vol.74, issue.6, pp.1674-1677, 2005.
DOI : 10.1143/JPSJ.74.1674