F. Schwierz, Graphene transistors, Nature Nanotechnology, vol.36, issue.7, pp.487-496, 2010.
DOI : 10.1038/nnano.2010.89

K. S. Novoselov, V. I. Fal?ko, L. Colombo, P. R. Gellert, M. G. Schwab et al., A roadmap for graphene, Nature, vol.335, issue.7419, pp.192-200, 2012.
DOI : 10.1038/nature11458

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev., vol.10, issue.7, pp.2824-2860, 2013.
DOI : 10.1002/smll.201201398

URL : http://arxiv.org/abs/1402.0046

W. Han, R. K. Kawakami, M. Gmitra, J. Fabian, and G. Spintronics, Graphene spintronics, Nature Nanotechnology, vol.13, issue.10, pp.794-807, 2014.
DOI : 10.1103/PhysRevLett.80.4313

Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2D layered materials, Nature Photonics, vol.3, issue.4, pp.227-238, 2016.
DOI : 10.1364/OE.20.00A293

K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro, and . Neto, 2D materials and van der Waals heterostructures, 2D materials and van der Waals heterostructures, p.9439, 2016.
DOI : 10.1126/science.aab4097

URL : http://arxiv.org/abs/1608.03059

I. V. Lightcap and P. V. Kamat, Graphitic Design: Prospects of Graphene-Based Nanocomposites for Solar Energy Conversion, Storage, and Sensing, Accounts of Chemical Research, vol.46, issue.10, pp.2235-2243, 2013.
DOI : 10.1021/ar300248f

D. Chen, H. Zhang, Y. Liu, and J. Li, Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications, Energy & Environmental Science, vol.102, issue.112, pp.1362-1387, 2013.
DOI : 10.1039/c3ee23586f

C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun et al., Graphene-based electrodes for electrochemical energy storage, Energy & Environmental Science, vol.133, issue.5, pp.1388-1414, 2013.
DOI : 10.1039/c3ee23870a

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, vol.6, issue.2, p.1246501, 2015.
DOI : 10.1021/nn204198g

D. Higgins, P. Zamani, A. Yu, and Z. Chen, The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress, Energy Environ. Sci., vol.8, issue.131, pp.357-390, 2016.
DOI : 10.1039/C5EE02474A

S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton et al., Graphene as a subnanometre trans-electrode membrane, Nature, vol.93, issue.7312, pp.190-194, 2010.
DOI : 10.1038/nature09379

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956266

C. Chung, Y. Kim, D. Shin, S. Ryoo, B. H. Hong et al., Biomedical Applications of Graphene and Graphene Oxide, Accounts of Chemical Research, vol.46, issue.10, pp.2211-2224, 2013.
DOI : 10.1021/ar300159f

Y. Liu, X. Dong, and P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., vol.49, issue.6, pp.2283-2307, 2012.
DOI : 10.1039/C1CS15078B

URL : https://dr.ntu.edu.sg/bitstream/10220/7592/2/Biological%20and%20Chemical%20Sensors.pdf

A. Bianco, Graphene: Safe or Toxic? The Two Faces of the Medal, Angewandte Chemie International Edition, vol.4, issue.19, pp.4986-4997, 2013.
DOI : 10.1002/anie.201209099

P. Blake, E. W. Hill, A. H. Castro-neto, K. S. Novoselov, D. Jiang et al., Making graphene visible, Applied Physics Letters, vol.91, issue.6, p.63124, 2007.
DOI : 10.1364/OPEX.12.001464

URL : http://arxiv.org/abs/0705.0259

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.315, issue.5811, p.1308, 2008.
DOI : 10.1126/science.1136836

I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich et al., Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets, Nano Letters, vol.7, issue.12, pp.3569-3575, 2007.
DOI : 10.1021/nl0714177

T. Sandström, M. Stenberg, and H. Nygren, Visual detection of organic monomolecular films by interference colors, Applied Optics, vol.24, issue.4, pp.472-479, 1985.
DOI : 10.1364/AO.24.000472

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nanometre optical coatings based on strong interference effects in highly absorbing media, Nature Materials, vol.516, issue.1, pp.20-24, 2013.
DOI : 10.1038/nmat3443

C. F. Guo, T. Sun, F. Cao, and Q. Liu, Metallic nanostructures for light trapping in energy-harvesting devices, Z. Ren Light Sci. Appl, vol.3, p.161, 2014.

M. K. Hedayati and M. Elbahri, Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review, Materials, vol.1, issue.6, p.497, 2016.
DOI : 10.1126/science.1252722

T. Oyama, H. Ohsaki, Y. Tachibana, Y. Hayashi, Y. Ono et al., A new layer system of anti-reflective coating for cathode ray tubes, Thin Solid Films, vol.351, issue.1-2, pp.235-240, 1999.
DOI : 10.1016/S0040-6090(99)00214-X

F. F. Schlich and R. Spolenak, Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials, Applied Physics Letters, vol.103, issue.21, p.213112, 2013.
DOI : 10.1016/S0040-6090(00)01015-4

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard et al., Ultra-thin perfect absorber employing a tunable phase change material, Applied Physics Letters, vol.101, issue.22, p.221101, 2012.
DOI : 10.1063/1.3600779

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross et al., Resonant light trapping in ultrathin films for water splitting, Nature Materials, vol.43, issue.2, pp.158-164, 2013.
DOI : 10.1038/nmat3477

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim et al., Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate, ACS Photonics, vol.1, issue.9, pp.812-821, 2014.
DOI : 10.1021/ph500093d

D. Ausserré, R. Abou-khachfe, L. Roussille, G. Brotons, L. Vonna et al., Anti-reflecting absorbing layers for electrochemical and biophotonic applications, J. Nanomed. Nanotechnol, vol.5, p.1000214, 2014.

J. Azevedo, S. Campidelli, D. He, R. Cornut, M. Bertucchi et al., Versatile Wafer-Scale Technique for the Formation of Ultrasmooth and Thickness-Controlled Graphene Oxide Films Based on Very Large Flakes, ACS Applied Materials & Interfaces, vol.7, issue.38
DOI : 10.1021/acsami.5b05540

URL : https://hal.archives-ouvertes.fr/hal-01228510

D. Grujicic and B. Pesic, Electrodeposition of copper: the nucleation mechanisms, Electrochimica Acta, vol.47, issue.18, pp.2901-2912, 2002.
DOI : 10.1016/S0013-4686(02)00161-5

C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., vol.21, issue.Part 2, pp.291-312, 2014.
DOI : 10.1021/ar300203n

J. Kim, F. Kim, and J. Huang, Seeing graphene-based sheets, Materials Today, vol.13, issue.3, pp.28-38, 2010.
DOI : 10.1016/S1369-7021(10)70031-6

URL : http://doi.org/10.1016/s1369-7021(10)70031-6

N. Nakashima, Y. Tomonari, and H. Murakami, Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall-Functionalization with a Pyrene-Carrying Ammonium Ion, Chemistry Letters, vol.31, issue.6, pp.638-639, 2002.
DOI : 10.1246/cl.2002.638

W. S. Hummers-jr and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, vol.80, issue.6, p.1339, 1958.
DOI : 10.1021/ja01539a017

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

S. G. Moiseev and S. V. Vinogradov, Design of antireflection composite coating based on metal nanoparticles, Physics of Wave Phenomena, vol.19, issue.1, pp.47-51, 2011.
DOI : 10.3103/S1541308X11010109