D. Ortiz, I. Jimenez-gordon, S. Legand, V. Dauvois, J. Baltaze et al., Role of PF 6 ??? in the radiolytical and electrochemical degradation of propylene carbonate solutions, Journal of Power Sources, vol.326, pp.285-295, 2016.
DOI : 10.1016/j.jpowsour.2016.06.122

URL : https://hal.archives-ouvertes.fr/cea-01355278

D. S. Hall, J. Self, and J. R. Dahn, Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate, The Journal of Physical Chemistry C, vol.119, issue.39, pp.22322-22330, 2015.
DOI : 10.1021/acs.jpcc.5b06022

U. Schmidhammer, P. Jeunesse, G. Stresing, and M. Mostafavi, A Broadband Ultrafast Transient Absorption Spectrometer Covering the Range from Near-Infrared (NIR) down to Green, Applied Spectroscopy, vol.141, issue.3, pp.1137-1147, 2014.
DOI : 10.1016/j.molliq.2008.01.017

H. Fricke, E. J. Hart, and C. Dosimetry, Academic press, pp.167-232, 1966.

F. Torche, A. K. Omar, P. Babilotte, S. Sorgues, U. Schmidhammer et al., Picosecond Pulse Radiolysis of the Liquid Diethyl Carbonate, The Journal of Physical Chemistry A, vol.117, issue.42, pp.10801-10810, 2013.
DOI : 10.1021/jp406856u

M. Lin, H. Fu, I. Lampre, V. De-waele, Y. Muroya et al., Pulse Radiolysis Studies on the Temperature-Dependent Spectrum and the Time-Dependent Yield of Solvated Electron in Propane-1,2,3-triol, The Journal of Physical Chemistry A, vol.113, issue.44, pp.12193-12198, 2009.
DOI : 10.1021/jp905199d

F. Y. Jou and L. M. Dorfman, Pulse radiolysis studies. XXI. Optical absorption spectrum of the solvated electron in ethers and in binary solutions of these ethers, The Journal of Chemical Physics, vol.58, issue.11, pp.4715-4723, 1973.
DOI : 10.1021/ja01119a509

W. Marbach, A. N. Asaad, and P. Krebs, Optical Absorption of Solvated Electrons in Water and Tetrahydrofuran/Water Mixtures, The Journal of Physical Chemistry A, vol.103, issue.1, pp.28-32, 1999.
DOI : 10.1021/jp983520d

P. K. Muhuri and D. K. Hazra, Density and Viscosity for Propylene Carbonate + 1,2-Dimethoxyethane at 298.15, 308.15, and 318.15 K, Journal of Chemical & Engineering Data, vol.39, issue.2, pp.375-377, 1994.
DOI : 10.1021/je00014a041

M. Lin, M. Mostafavi, Y. Muroya, Z. Han, I. Lampre et al., Time-Dependent Radiolytic Yields of the Solvated Electrons in 1,2-Ethanediol, 1,2-Propanediol, and 1,3-Propanediol from Picosecond to Microsecond, The Journal of Physical Chemistry A, vol.110, issue.40, pp.11404-11410, 2006.
DOI : 10.1021/jp063764v

URL : https://hal.archives-ouvertes.fr/hal-00127092

L. M. Dorfman and F. Jou, Optical Absorption Spectrum of the Solvated Electron in Ethers and in Binary Liquid Systems, Electrons in Fluids, 1973.
DOI : 10.1007/978-3-642-61962-5_37

I. B. Martini, E. Barthel, and B. J. Schwartz, Mechanisms of the ultrafast production and recombination of solvated electrons in weakly polar fluids: Comparison of multiphoton ionization and detachment via the charge-transfer-to-solvent transition of Na??? in THF, The Journal of Chemical Physics, vol.34, issue.24, pp.11245-11257, 2000.
DOI : 10.1021/j100397a021

M. J. Bedard-hearn, R. E. Larsen, and B. J. Schwartz, The role of solvent structure in the absorption spectrum of solvated electrons: Mixed quantum/classical simulations in tetrahydrofuran, The Journal of Chemical Physics, vol.1, issue.19, p.134506, 2005.
DOI : 10.1021/jp011757v

G. Gachot, P. Ribière, D. Mathiron, S. Grugeon, M. Armand et al., Gas Chromatography/Mass Spectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study, Analytical Chemistry, vol.83, issue.2, pp.478-485, 2011.
DOI : 10.1021/ac101948u

URL : https://hal.archives-ouvertes.fr/hal-00806314

M. Metzger, J. Sicklinger, D. Haering, C. Kavakli, C. Stinner et al., Carbon Coating Stability on High-Voltage Cathode Materials in H2O-Free and H2O-Containing Electrolyte, Journal of the Electrochemical Society, vol.162, issue.7, pp.1227-1235, 2015.
DOI : 10.1149/2.0461507jes

V. I. Borovkov, Do primary carriers of both positive charge and unpaired electron spin exist in irradiated propylene carbonate?, Phys. Chem. Chem. Phys., vol.120, issue.1, pp.49-53
DOI : 10.1021/acs.jpcb.6b04588

B. B. Berkes, A. Schiele, H. Sommer, T. Brezesinski, and J. Janek, On the gassing behavior of lithium-ion batteries with NCM523 cathodes, Journal of Solid State Electrochemistry, vol.152, issue.98, pp.2961-2967, 2016.
DOI : 10.1149/1.2083267

J. W. Spinks and R. J. Woods, An Introduction to Radiation Chemistry, 1990.

I. A. Shkrob, Y. Zhu, T. W. Marin, and D. Abraham, Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates, The Journal of Physical Chemistry C, vol.117, issue.38, pp.19255-19269, 2013.
DOI : 10.1021/jp406274e

L. Gireaud, S. Grugeon, S. Pilard, P. Guenot, J. M. Tarascon et al., Mass Spectrometry Investigations on Electrolyte Degradation Products for the Development of Nanocomposite Electrodes in Lithium Ion Batteries, Analytical Chemistry, vol.78, issue.11, pp.3688-3698, 2006.
DOI : 10.1021/ac051987w

G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot et al., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries, Journal of Power Sources, vol.178, issue.1, pp.409-421, 2008.
DOI : 10.1016/j.jpowsour.2007.11.110