Planar maps, circle patterns and 2d gravity

Abstract : Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a Kähler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space $\mathbb{H}_3$; (3) a discretized version (involving finite difference complex derivative operators $\nabla,\bar\nabla$) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
Type de document :
Article dans une revue
Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2014, 1, pp.139 - 183. 〈10.4171/AIHPD/5〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01509872
Contributeur : Emmanuelle De Laborderie <>
Soumis le : mardi 18 avril 2017 - 16:15:35
Dernière modification le : vendredi 16 mars 2018 - 01:14:40
Document(s) archivé(s) le : mercredi 19 juillet 2017 - 15:18:39

Fichier

1307.3123.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Francois David, Bertrand Eynard. Planar maps, circle patterns and 2d gravity. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, 2014, 1, pp.139 - 183. 〈10.4171/AIHPD/5〉. 〈cea-01509872〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

61