J. Ambjørn and T. Budd, Geodesic distances in Liouville quantum gravity, Nuclear Physics B, vol.889, pp.676-691, 2014.
DOI : 10.1016/j.nuclphysb.2014.10.029

K. Astala, A. Kupiainen, E. Saksman, and P. Jones, Random conformal weldings, Acta Mathematica, vol.207, issue.2, pp.203-254, 2011.
DOI : 10.1007/s11511-012-0069-3

URL : http://arxiv.org/abs/0909.1003

O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems. Cambridge Monographs on Mathematical Physics, 2002.
DOI : 10.1017/cbo9780511535024

URL : https://hal.archives-ouvertes.fr/hal-00101459

M. Bauer and D. Bernard, Conformal Field Theories of Stochastic Loewner Evolutions, Communications in Mathematical Physics, vol.239, issue.3, pp.493-521, 2003.
DOI : 10.1007/s00220-003-0881-x

URL : https://hal.archives-ouvertes.fr/hal-00021804

R. Baxter, S. Kelland, and F. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, Journal of Physics A: Mathematical and General, vol.9, issue.3, pp.397-411, 1976.
DOI : 10.1088/0305-4470/9/3/009

A. Belavin, A. Polyakov, and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Physics B, vol.241, issue.2, pp.333-380, 1984.
DOI : 10.1016/0550-3213(84)90052-X

URL : http://doi.org/10.1016/0550-3213(84)90052-x

I. Benjamini and O. Schramm, KPZ in One Dimensional Random Geometry of Multiplicative Cascades, Communications in Mathematical Physics, vol.166, issue.11, pp.46-56, 2009.
DOI : 10.1007/s00220-009-0752-1

G. Bonnet and B. Eynard, The Potts-q random matrix model: loop equations, critical exponents, and rational case, Phys. Lett. B, vol.4639906130, pp.273-279, 1999.

G. Borot, Formal multidimensional integrals, stuffed maps, and topological recursion, Annales de l???Institut Henri Poincar?? D, vol.1, issue.2, pp.225-264
DOI : 10.4171/AIHPD/7

URL : http://arxiv.org/abs/1307.4957

G. Borot, J. Bouttier, and E. Guitter, Loop models on random maps via nested loops: case of domain symmetry breaking and application to the Potts model A: Math. Theor, 2012. Special issue: Lattice models and integrability: in honour of F, J. Phys

G. Borot, J. Bouttier, and E. Guitter, ) model on random maps via nested loops: loops with bending energy, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.27, 275206.
DOI : 10.1088/1751-8113/45/27/275206

URL : http://arxiv.org/abs/1202.5521

G. Borot, J. Bouttier, and E. Guitter, ) model on random maps via nested loops, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.4
DOI : 10.1088/1751-8113/45/4/045002

URL : http://arxiv.org/abs/1106.0153

G. Borot and B. Eynard, Enumeration of maps with self-avoiding loops and the \mathcal {O}(\mathfrak {n}) model on random lattices of all topologies, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.01
DOI : 10.1088/1742-5468/2011/01/P01010

G. Borot, B. Eynard, and N. Orantin, Abstract loop equations, topological recursion, and applications . Commun. Number Theory and Physics, 2015. arXiv:math-ph/1303
DOI : 10.4310/cntp.2015.v9.n1.a2

G. Borot and E. Failde, Nesting statistics in the O(n) loop model on random maps of arbitrary topologies

D. Boulatov and V. Kazakov, The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents, Physics Letters B, vol.186, issue.3-4, pp.379-384, 1987.
DOI : 10.1016/0370-2693(87)90312-1

J. Bouttier and E. Guitter, Planar Maps and Continued Fractions, Communications in Mathematical Physics, vol.42, issue.3, pp.623-662, 2010.
DOI : 10.1007/s00220-011-1401-z

URL : https://hal.archives-ouvertes.fr/hal-00586646

M. Bowick, V. John, and G. Thorleifsson, The Hausdorff dimension of surfaces in two-dimensional quantum gravity coupled to Ising minimal matter, Physics Letters B, vol.403, issue.3-4, p.9608030
DOI : 10.1016/S0370-2693(97)00531-5

E. Brézin, C. Itzykson, G. Parisi, and J. Zuber, Planar diagrams, Communications in Mathematical Physics, vol.16, issue.1, pp.35-51, 1978.
DOI : 10.1007/BF01614153

D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Inventiones mathematicae, vol.172, issue.3, pp.515-580, 2012.
DOI : 10.1007/s00222-011-0371-2

R. Cori and B. Vauquelin, Planar maps are well-labeled tress. Can, J. Math, vol.33, issue.5, pp.1023-1042, 1981.
DOI : 10.4153/cjm-1981-078-2

F. David, Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod, Phys. Lett. A, vol.3, issue.17, pp.1651-1656, 1988.

F. David, A. Kupiainen, R. Rhodes, and V. Vargas, Liouville Quantum Gravity on the Riemann Sphere, Communications in Mathematical Physics, vol.477, issue.2, pp.869-907, 2016.
DOI : 10.1007/s00220-016-2572-4

URL : https://hal.archives-ouvertes.fr/hal-01081085

J. Distler and H. Kawai, Conformal field theory and 2D quantum gravity, Nuclear Physics B, vol.321, issue.2, pp.509-527, 1989.
DOI : 10.1016/0550-3213(89)90354-4

URL : http://doi.org/10.1016/0550-3213(89)90354-4

E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer, Duality relations and equivalences for models with O(N) and cubic symmetry, Nuclear Physics B, vol.190, issue.2, pp.279-287, 1981.
DOI : 10.1016/0550-3213(81)90559-9

URL : http://doi.org/10.1016/0550-3213(81)90559-9

B. Duplantier, Geodesic duality and the Hausdorff dimension of two-dimensional quantum gravity. arXiv:math-ph/1108

B. Duplantier, Higher conformal multifractality Special issue in honor of Michael E. Fisher's 70th birthday, Journal of Statistical Physics, vol.110, issue.3/6, pp.691-738, 2001.
DOI : 10.1023/A:1022107818494

B. Duplantier, Conformal fractal geometry & boundary quantum gravity In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, of Proc. Sympos. Pure Math, pp.365-482, 2004.

B. Duplantier and I. Kostov, Conformal Spectra of Polymers on a Random Surface, Physical Review Letters, vol.61, issue.13, pp.1433-1437, 1988.
DOI : 10.1103/PhysRevLett.61.1433

B. Duplantier and I. K. Kostov, Geometrical critical phenomena on a random surface of arbitrary genus, Nuclear Physics B, vol.340, issue.2-3, pp.491-541, 1990.
DOI : 10.1016/0550-3213(90)90456-N

B. Duplantier, J. Miller, and S. Sheffield, Liouville quantum gravity as a mating of trees, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01251995

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Critical Gaussian multiplicative chaos: Convergence of the derivative martingale, The Annals of Probability, vol.42, issue.5, pp.1769-1808, 2014.
DOI : 10.1214/13-AOP890

URL : https://hal.archives-ouvertes.fr/hal-00705619

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation, Communications in Mathematical Physics, vol.9, issue.2, pp.283-330, 2014.
DOI : 10.1007/s00220-014-2000-6

URL : http://hdl.handle.net/1721.1/93185

B. Duplantier and S. Sheffield, Duality and the Knizhnik-Polyakov-Zamolodchikov Relation in Liouville Quantum Gravity, Physical Review Letters, vol.102, issue.15, p.150603, 2009.
DOI : 10.1103/PhysRevLett.102.150603

B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Inventiones mathematicae, vol.477, issue.2, pp.333-393, 2011.
DOI : 10.1007/s00222-010-0308-1

URL : http://arxiv.org/abs/0808.1560

B. Duplantier and S. Sheffield, Schramm-Loewner Evolution and Liouville Quantum Gravity, Physical Review Letters, vol.107, issue.13, p.131305, 2011.
DOI : 10.1103/PhysRevLett.107.131305

URL : http://arxiv.org/abs/1012.4800

B. Eynard, Counting surfaces, Progress in Mathematical Physics. Birkhäuser Science, vol.70
DOI : 10.1007/978-3-7643-8797-6

B. Eynard and C. Kristjansen, Exact solution of the O(n) model on a random lattice, Nuclear Physics B, vol.455, issue.3, pp.577-618, 1995.
DOI : 10.1016/0550-3213(95)00469-9

P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

C. Fortuin and P. Kasteleyn, On the random-cluster model. I-introduction and relation to other models, pp.536-564, 1972.

P. D. Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, chapter The O(n) model, pp.229-231, 1999.

R. Friedrich and W. Werner, Conformal Restriction, Highest-Weight Representations and SLE, Communications in Mathematical Physics, vol.243, issue.1, pp.105-122, 2003.
DOI : 10.1007/s00220-003-0956-8

URL : http://arxiv.org/abs/math-ph/0301018

M. Gaudin and I. Kostov, O(n) model on a fluctuating planar lattice. Some exact results, Physics Letters B, vol.220, issue.1-2, pp.200-206, 1989.
DOI : 10.1016/0370-2693(89)90037-3

P. Ginsparg and G. Moore, Lectures on 2d gravity and 2d string theory (TASI 1992), Recent direction in particle theory, Proceedings of the 1992 TASI, p.9304011, 1993.

R. Høegh-krohn, A general class of quantum fields without cut-offs in two space-time dimensions, Communications in Mathematical Physics, vol.57, issue.3, pp.244-255, 1971.
DOI : 10.1007/BF01647122

X. Hu, J. Miller, and Y. Peres, Thick points of the Gaussian free field, The Annals of Probability, vol.38, issue.2, pp.896-926, 2010.
DOI : 10.1214/09-AOP498

W. Kager and B. Nienhuis, A guide to stochastic Löwner evolution and its applications, J. Statist. Phys, vol.115, pp.5-61149, 2004.
DOI : 10.1023/b:joss.0000028058.87266.be

URL : http://arxiv.org/pdf/math-ph/0312056v1.pdf

J. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, vol.9, issue.2, pp.105-150, 1985.

N. Kang and N. G. Makarov, Gaussian free field and conformal field theory. Astérisque 353, 2013.

V. A. Kazakov, Ising model on a dynamical planar random lattice: Exact solution, Physics Letters A, vol.119, issue.3, pp.140-144, 1986.
DOI : 10.1016/0375-9601(86)90433-0

V. A. Kazakov, Exactly solvable Potts models, bond- and tree-like percolation on dynamical (random) planar lattice, Nuclear Physics B - Proceedings Supplements, vol.4, pp.93-97, 1988.
DOI : 10.1016/0920-5632(88)90089-8

A. Kemppainen and W. Werner, The nested simple conformal loop ensembles in the Riemann sphere, Probability Theory and Related Fields, vol.36, issue.1, pp.1-32, 2015.
DOI : 10.1007/s00440-015-0647-3

V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Fractal structure of 2D-quantum gravity. Mod, Phys. Lett. A, vol.3, issue.8, pp.819-826, 1988.

I. Kostov, O(n) vector model on a planar random lattice: spectrum of anomalous dimensions. Mod, Phys. Lett. A, vol.4, p.217, 1989.

I. Kostov and M. Staudacher, Multicritical phases of the O(n) model on a random lattice, Nuclear Physics B, vol.384, issue.3, pp.459-483, 1992.
DOI : 10.1016/0550-3213(92)90576-W

URL : https://hal.archives-ouvertes.fr/hal-00163157

G. F. Lawler, O. Schramm, and W. Werner, Conformal Invariance Of Planar Loop-Erased Random Walks and Uniform Spanning Trees, Ann. Probab, vol.32, issue.1B, pp.939-995, 2004.
DOI : 10.1007/978-1-4419-9675-6_30

J. Gall, The topological structure of scaling limits of large planar maps, Inventiones mathematicae, vol.15, issue.3, pp.621-670, 2007.
DOI : 10.1007/s00222-007-0059-9

J. Gall, Uniqueness and universality of the Brownian map, The Annals of Probability, vol.41, issue.4, pp.2880-2960, 2013.
DOI : 10.1214/12-AOP792

J. Gall, Random Geometry on the Sphere, Proceedings of the International Congress of Mathematicians, pp.421-442, 2014.

J. Gall and G. Miermont, Scaling limits of random planar maps with large faces, The Annals of Probability, vol.39, issue.1, pp.1-69, 2011.
DOI : 10.1214/10-AOP549

URL : https://hal.archives-ouvertes.fr/hal-00405123

J. Marckert and A. Mokkadem, Limit of normalized quadrangulations: The Brownian map, The Annals of Probability, vol.34, issue.6, pp.2144-2202, 2006.
DOI : 10.1214/009117906000000557

URL : https://hal.archives-ouvertes.fr/hal-00307498

G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Mathematica, vol.210, issue.2, pp.319-401, 2013.
DOI : 10.1007/s11511-013-0096-8

URL : https://hal.archives-ouvertes.fr/hal-00627965

J. Miller and S. Sheffield, An axiomatic characterization of the Brownian map

J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric

J. Miller and S. Sheffield, Liouville quantum gravity spheres as matings of finite-diameter trees

J. Miller, S. S. Watson, and D. B. Wilson, The conformal loop ensemble nesting field, Probability Theory and Related Fields, vol.176, issue.3, pp.769-801, 2015.
DOI : 10.1007/s00440-014-0604-6

URL : http://arxiv.org/abs/1401.0218

J. Miller, S. S. Watson, and D. B. Wilson, Extreme nesting in the conformal loop ensemble, The Annals of Probability, vol.44, issue.2, pp.1013-1052, 2016.
DOI : 10.1214/14-AOP995

Y. Nakayama, LIOUVILLE FIELD THEORY: A DECADE AFTER THE REVOLUTION, International Journal of Modern Physics A, vol.29, issue.17n18, pp.17-182771, 2004.
DOI : 10.1088/0264-9381/17/5/302

B. Nienhuis, Models in Two Dimensions, Physical Review Letters, vol.49, issue.15, pp.1062-1065, 1982.
DOI : 10.1103/PhysRevLett.49.1062

B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, Journal of Statistical Physics, vol.49, issue.FS3, pp.731-761, 1984.
DOI : 10.1007/BF01009437

B. Nienhuis, Coulomb gas formulation of two-dimensional phase transitions, Phase transition and critical phenomena, 1987.

J. Perk and F. Wu, Nonintersecting string model and graphical approach: Equivalence with a Potts model, Journal of Statistical Physics, vol.14, issue.5-6, pp.727-742, 1986.
DOI : 10.1007/BF01010443

A. M. Polyakov, Quantum geometry of bosonic strings, Physics Letters B, vol.103, issue.3, pp.207-210, 1981.
DOI : 10.1016/0370-2693(81)90743-7

R. Rhodes and V. Vargas, KPZ formula for log-infinitely divisible multifractal random measures, ESAIM: Probability and Statistics, vol.15, pp.358-371, 2011.
DOI : 10.1051/ps/2010007

URL : https://hal.archives-ouvertes.fr/hal-00293878

G. Schaeffer, Conjugaison d'arbres et cartes combinatoires aléatoires, Thèse de doctorat, 1999.

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics, vol.111, issue.1, pp.221-288, 2000.
DOI : 10.1007/BF02803524

URL : http://arxiv.org/abs/math/9904022

O. Schramm and S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Mathematica, vol.202, issue.1, pp.21-137, 2009.
DOI : 10.1007/s11511-009-0034-y

O. Schramm, S. Sheffield, and D. B. Wilson, Conformal Radii for Conformal Loop Ensembles, Communications in Mathematical Physics, vol.333, issue.3, pp.43-53, 2009.
DOI : 10.1007/s00220-009-0731-6

URL : http://arxiv.org/abs/math/0611687

S. Sheffield, Gaussian free fields for mathematicians. Probab. Theory Relat. Fields, pp.3-4521, 2007.
DOI : 10.1007/s00440-006-0050-1

URL : http://arxiv.org/abs/math/0312099

S. Sheffield, Exploration trees and conformal loop ensembles. Duke Math, J, vol.147, issue.1, pp.79-129, 2009.
DOI : 10.1215/00127094-2009-007

URL : http://arxiv.org/abs/math/0609167

S. Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper, The Annals of Probability, vol.44, issue.5, 2010.
DOI : 10.1214/15-AOP1055

S. Sheffield and W. Werner, Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Annals of Mathematics, vol.176, issue.3, pp.1827-1917, 2012.
DOI : 10.4007/annals.2012.176.3.8

URL : http://arxiv.org/abs/1006.2374

S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.333, issue.3, pp.239-244, 2001.
DOI : 10.1016/S0764-4442(01)01991-7

S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math, vol.172, issue.22, pp.1435-1467, 2010.

T. Truong, Structural properties of aZ(N 2)-spin model and its equivalentZ(N)-vertex model, Journal of Statistical Physics, vol.4, issue.(FS2), pp.349-379, 1986.
DOI : 10.1007/BF01127716

W. Tutte, A census of planar triangulations. Can, J. Math, vol.14, p.21, 1962.

W. Tutte, A census of planar maps. Can, J. Math, vol.15, p.249, 1963.

W. Tutte, On the enumeration of planar maps, Bulletin of the American Mathematical Society, vol.74, issue.1, pp.64-74, 1968.
DOI : 10.1090/S0002-9904-1968-11877-4

P. Zinn-justin, The dilute Potts model on random surfaces, Journal of Statistical Physics, vol.98, issue.1/2, pp.245-2649903385, 2000.
DOI : 10.1023/A:1018626906256

M. Planck-institut-für-mathematik, E-mail address: gborot@mpim-bonn.mpg.de Institut de Physique Théorique Direction de la Recherche Fondamentale CEA/Saclay, UMR 3681 INP-CNRS, F-91191 Gif-sur-Yvette Cedex, France and Département de Mathématiques et Applications, École normale supérieure, 45 rue d'Ulm, 75231 Paris Cedex 05, France E-mail address: jeremie.bouttier@cea.fr Institut de Physique Théorique