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We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF),
derived from a quark model of hadron structure, to study a broad range of ground state properties of even-
even nuclei across the periodic table in the nonrelativistic Hartree-Fockþ BCS framework. The novelty of
the QMCmodel is that the nuclear medium effects are treated through modification of the internal structure
of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally.
The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When
applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall
agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however,
multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC
EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied,
without adjustment, to both the properties of finite nuclei and nuclear matter.
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Since the pioneering work of Vautherin and Brink [1],
effective nuclear forces of the Skyrme type have proved to
be a powerful phenomenological tool in the study of many
aspects of nuclear structure (for reviews, see [2–4]). The
Skyrme energy density functional (EDF) for self-consistent
mean-field models of the Hartree-Fock (HF) type is derived
from the Skyrme force using low-momentum expansion.
The functional contains all conceivable bilinear couplings
of densities and currents up to second order in derivatives.
This approach introduces 23 coupling constants (parame-
ters) which are, in principle, density dependent. Taking a
minimalistic approach [4] the number of the constants can
be reduced to ∼10, which have to be fitted to empirical
data, usually nuclear ground state properties. Because of
correlations in experimental data, variable sensitivity of
individual parameters to data and correlations between the
parameters themselves, no single optimal parameter set has
yet been identified. Presently, many sets of the Skyrme
EDF parameters exist, making it difficult to interpret and
reliably predict nuclear properties.
Given the power of the mean-field approach with

the Skyrme EDF, we adopted this approach with a

quark-meson coupling (QMC) EDF. In the QMC model,
developed by Guichon and collaborators [5,6], the
nuclear system is represented as a collection of confined
clusters of valence quarks. Using the MIT bag model
[7], it can be shown that when the quarks in one
nucleon interact self-consistently with the quarks in the
surrounding nucleons by exchanging a σ meson (a
simple representation of the Lorentz scalar-isoscalar
interaction known to dominate the intermediate range
attraction between nucleons), the effective mass of a
nucleon in medium is no longer linear in the scalar
mean field (σ) and is expressed as M�

N ¼ MN−
gσNσ þ ðd=2ÞðgσNσÞ2. By analogy with electromagnetic
polarizabilities, the coefficient d, calculated in terms of
the nucleon internal structure, is known as the “scalar
polarizability” [5]. The appearance of this term in the
nucleon effective mass is sufficient to lead to nuclear
saturation.
To clarify differences between the Skyrme and QMC

EDF’s, we write the QMC EDF adopted in this work
hHð~rÞi ¼ ρMN þðτ=2MNÞþH0þH3þHeff þHfinþHso
using notation and definitions from [8,9], where
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with Gσ ¼ g2σN=m
2
σ , Gω ¼ g2ωN=m

2
ω, and Gρ ¼ g2ρN=m

2
σ,

where gσN , gωN , and gρN are free nucleon-meson coupling
constants [8]. There are two basic differences between this
and the Skyrme EDF. The QMC expression contains, in
addition to the standard point coupling terms ρ2, ρτ, ρΔρ,
the density dependent term involving inverse powers of
ð1þ dρGσÞ and the spin-orbit term ∝ ρ∇J. Both the more
complicated density dependence and the spin-orbit term
arise naturally from the model [10,11] and it does not
require additional parameters.
This Letter presents a comparison of results obtained

with QMC EDF, in its present simple form, with those of a
representative Skyrme EDF. The first step is to determine
the four adjustable parameters of the model, the couplings
Gσ , Gω, and Gρ and the mass mσ of the σ meson
(constrained as 650 MeV < mσ < 750 MeV). This was
done in two stages. First, the parameters were constrained
by properties of symmetric infinite nuclear matter at
saturation, including their uncertainty. We required
−17 MeV < E0 < −15 MeV, 0.14 fm−3<ρ0<0.18 fm−3
for the saturation energy and density and 28 MeV <
S0 < 34 MeV, L > 20 MeV, and 250 MeV < K0 <
350 MeV for the symmetry energy, its slope and the
incompressibility. The remaining parameters of the model,
the meson masses, and the isoscalar and isovector magnetic
moments, which appear in the spin-orbit interaction
[6,12,13], were taken at their physical values. The MIT
bag radius RB was set to 1 fm. This procedure yielded limits
10.2 fm2 < Gσ < 12.65 fm2, 6.95 fm2 < Gω < 8.90 fm2,
and 6.20 fm2 < Gρ < 8.80 fm2.
Second, to narrow down the limits, the parameters were

further constrained by specific ground state properties of
selected nuclei. The QMC EDF has been incorporated into
the HFþ BCS code SKYAX [14], allowing for axially
symmetric and reflection-asymmetric shapes. The data
set consisted of selected binding energies, rms and dif-
fraction charge radii, surface thickness of the charge
distributions, the proton and neutron pairing gaps, and
the spin-orbit splitting and energies of single-particle
proton and neutron states, distributed across the nuclear
chart. The best parameter set was sought using the fitting
protocol developed by Klüpfel et al. [15]. In addition to the
four parameters of the QMC EDF, two strengths (protons,
neutrons) for volume pairing in the BCS framework [3]
were included in the fit.
The overall best fit was given by a single set of QMC

parameters: Gσ¼11.85�0.02 fm2, Gω ¼ 8.27� 0.02 fm2,

Gρ ¼ 7.68� 0.03 fm2, and mσ ¼ 722� 1 MeV. Note
that the nonrelativistic form of the functional used here
differs from the relativistic form used in [16] with the
consequence the parameter values differ. The fitted param-
eters given above yield for nuclear matter properties
E0 ¼ −16.0� 0.2 MeV, ρ0 ¼ 0.153� 0.003 fm−3, S0 ¼
30 MeV (fixed), and L ¼ 23� 4 MeV within the desired
range, but, however, the value K0 ¼ 340� 3 MeV con-
siderably higher than K0 ∼ 220–240 MeV, frequently
adopted in nonrelativistic nuclear matter calculations.
That value mainly originated from analysis of giant
monopole resonance (GMR) data available in the 1980s,
using a Skyrme interaction [17]. Typical relativistic mean
field calculations agree with data better at K0 around
270 MeV. Recently, Stone et al. [18] analyzed all GMR
data available to date, in a way independent of the choice of
nuclear interaction, showing that the limits on K0 are
250 < K0 < 315 MeV. As an additional comment we note
that the relativistic version [19] of the QMC EDF, pre-
viously applied to cold uniform matter, showed that the
contribution of a long-range Yukawa single pion exchange
lowered the incompressibility from 340 MeV to
∼300 MeV, compatible with results in [18]. We intend
to include the explicit pion exchange in the future develop-
ment of the nonrelativistic QMC model used in the
present study.
The quality of the fit is summarized in the top part of

Table I and compared with the outcome of a fit with the
SV-min Skyrme EDF [15] performed using the same data
set and analysis. We find it encouraging that the QMC EDF,
with only four adjustable parameters, yielded a rms
deviation of 0.36% for binding energies, comparable with
0.24% for the Skyrme SV-min EDF. The more significant
differences are in the surface thickness, diffraction radii,
and the neutron pairing gaps. All these properties are
sensitive to details of the region around the Fermi surface
where subtle differences may occur and will be further
investigated.
Using the best fit parameter set we calculated ground

state binding energies of many nuclei not included in the fit.
In the bottom part of Table I rms deviations between theory
and experiment for 15 superheavy nuclei (SHE), 20 N ¼ Z
nuclei, 22 pairs of mirror nuclei, and 170 spherical and
deformed nuclei with known binding energy from isotopic
chains with Z ¼ 38, 40, 60, 64, 86, 88, 90, 92, and 94 and
isotonic chains with N ¼ 20, 28, 50, 82, and 126 are given.
The most remarkable result was achieved for the SHE,
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where the absolute rms ¼ 1.97 MeV for QMC and
6.17 MeV for SV-min (see top panel of Fig. 1). The
underbinding for SV-min is a general problem in SHE for
any of the standard Skyrme parametrizations [21]. The
other three groups of selected nuclei reveal that the QMC
rms deviation is larger then the corresponding SV-min
value by a factor less than 2. This result is encouraging
considering that the QMC EDF has four parameters and
SV-min thirteen.
Next, we examined predictions of the QMC EDF of

quadrupole (β2), hexadecapole (β4), and octupole (β3)
deformation parameters. Since these parameters are not
observables but are extracted from experimental data in a
model dependent way, we also compare QMC and SV-min
results with the finite-range-droplet model (FRDM) of
Moller et al. [20], which is regarded as the state-of-the-
art benchmark for calculating nuclear masses and shapes.
Where available, we use the quadrupole moment and
lifetime of the Iπ ¼ 2þ1 state or a lifetime-related reduced
transition probability BðE2; 0þ1 → 2þ1 Þ. Indirect evidence
for stable quadrupole deformation comes also as system-
atics of excited states (bands) built on the 0þ ground states.
In Fig. 1 (bottom panel) β2 for SHE, as calculated in

QMC, SV-min, and FDRMmodels, are displayed. The only
experimental evidence for deformation of the SHE comes

from the energies of the Iπ ¼ 2þ1 state in 248–256Fm, 254No,
and 256Rf, which all lie in the range 44–48 keV [22,23], and
the ratio R ¼ Eð4þ1 Þ=Eð2þ1 Þ of energies of the Iπ ¼ 2þ1 and
Iπ ¼ 4þ1 excited states. R is between 3.24–3.52, consistent
with a stable axial rotor. The ground state bands in
248;252;256Fm, 254No, and 256Rf show a close similarity
with bands observed in the neighboring U-Pu-Cm-Cf
region associated with β2 ¼ 0.27–0.30 [24], in excellent
agreement with β2 values in Fig. 1. Thus, both the ground
state binding energies and the shapes of SHE predicted by
QMC are in line with other models and the scant exper-
imental evidence.
β2 and β4 calculated as a function of neutron number for

the Gd (Z ¼ 64) isotopes are presented in Fig. 2, again in
comparison with SV-min and FRDM. The predictions of
QMC are almost identical with the outcome of the other
models. The onset and departure from collectivity is in line
with the ratio R, displayed in the bottom panel. The
magnitude of β2 extracted from BðE2; 0þ1 → 2þ1 Þ is known
in 152–160Gd [24] and the negative sign of the spectroscopic
quadrupole moment Qs of the Iπ ¼ 2þ1 state [25] confirms
the prolate shape of 152–160Gd. There is no experimental
information on the value of β4 but the calculation agrees
well with FRDM results.
Figure 3 demonstrates that the QMC EDF reproduces the

coexistence between spherical, oblate, and prolate defor-
mation in line with many other models of A ∼ 100 nuclei
[26–31] without additional terms or change of parameters
and predicts a transition from single-particle-like structure
below N ¼ 60 to collective behavior for higher N. Very
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FIG. 1. Difference between calculated and experimental ground
state binding energies of SHE as obtained with QMC and SV-min
EDFs (top panel). β2 are shown in the bottom panel, which also
includes FRDM [20] predictions.

TABLE I. Results of the fit yielding the parameters of the QMC
EDF (top part). Experimental data selected by Klüpfel et al. [15]
were used. Equivalent results for the Skyrme SV-min force [15]
are added for comparison. rms deviations of calculated ground
state binding energies from experiment for four groups of nuclei,
not used in the fit of parameters, are given at the bottom part of
the table. They include SHE, N ¼ Z nuclei, and N ¼ Z � 2, 4
mirror nuclei, and chains of isotopes and isotones with jN − Zj
from 2 to 60, labeled “other.”No experimental errors were used in
calculation of rms. See text for more explanation.

rms deviations

[%] [absolute]

Data QMC SV-min QMC SV-min

Fit nuclei:
Binding energies 0.36 0.24 2.85 MeV 0.62 MeV
Diffraction radii 1.62 0.91 0.064 fm 0.029 fm
Surface thickness 10.9 2.9 0.080 fm 0.022 fm
rms radii 0.71 0.52 0.025 fm 0.014 fm
Pairing gap (n) 57.6 17.6 0.49 MeV 0.14 MeV
Pairing gap (p) 25.3 15.5 0.052 MeV 0.11 MeV
Spin-orbit splitting (p) 15.8 18.5 0.16 MeV 0.18 MeV
Spin-orbit splitting (n) 20.3 16.3 0.30 MeV 0.20 MeV

Nuclei not included
in the fit:

Superheavy nuclei 0.10 0.32 1.97 MeV 6.17 MeV
N ¼ Z nuclei 2.54 1.44 5.89 MeV 3.47 MeV
Mirror nuclei 3.16 2.83 5.27 MeV 3.37 MeV
Other 0.51 0.30 4.27 MeV 3.19 MeV
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recent results results, from a Coulomb excitation experi-
ment [32], show that deformation driving role in the
N ¼ 60 region remains active for Z as low as 37 and that
the A ∼ 100 region is still of active interest. We emphasise
that the QMC EDF provides naturally the qualitative
change in structure at N ¼ 60 reported in [32].

An interesting suggestion, made by Dudek et al. [33],
that a shape of a higher order tetrahedral symmetry may
occur in the 96Zr ground state and compete with the
quadrupole-octupole deformation, provokes the following
question: is it enough to consider the traditional prolate-
oblate shapes or should one seek higher order symmetries?
The HFþ BCS code used here does not have the capability
to calculate them at this time. However, the suggestion of
tetrahedral symmetry offers an incentive to improve the
code and pursue this feature with the QMC interaction.
Finally, Fig. 4 demonstrates the versatility of the QMC

EDF in application to quadrupole and octupole deformation
in Ra and Th nuclei, again without any parameter adjust-
ment. The evolution of β2, β3 with increasing neutron
number is illustrated in the top (middle) for QMC (SV-min)
EDF showing very similar trends, which also agree with
that obtained for Th isotopes in [34]. The values of β2 agree
with experiment [24] (where available). The scarce data on
β3 provide only the magnitude but not its sign [34,35].
However, the results in Fig. 4 are supported by exper-
imental neutron number dependence of the lowest lying
Iπ ¼ 2þ1 and Iπ ¼ 1−1 and Iπ ¼ 3−1 states in Ra and Th
nuclei (bottom panel), showing close proximity of these
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states to the ground state for 138 ≤ N ≤ 140. The QMC
model is in agreement with this data in that the maximum
jβ3j and the saturation of β2 is found at 138 ≤ N ≤ 140.
SV-min and FRDM result are marginally different in
predicting jβ3j to reach a maximum at N ¼ 136 [see the
(red) arrows in Fig. 4].
In summary, we have demonstrated for the first time that

the QMC EDF, in its present form, predicts properties of
even-even nuclei across the nuclear chart on a level
comparable with the Skyrme EDF which has many more
parameters. The novelty of this approach is that we have
introduced fundamentally new physics into the EDF.
Modeling the nuclear medium effect through the modifi-
cation of the internal structure of the nucleon is unique to
the QMC approach and has not been previously applied to
nuclei to the extent reported here. That in turn led to a
novel, microscopically derived density dependence. The
calibrated parameters are a single, universally applicable set
of four, in contrast to the larger parameter sets used in the
Skyrme-Hartree-Fock mean-field models, often locally fine
tuned and lacking universality. The QMC model is still at
an early stage of development and the aim of this Letter has
been to examine its promise as compared to other models.
Among the many levels of sophistication to consider is the
inclusion of an explicit pion exchange component, known
to reduce the incompressibility of nuclear matter. It will be
especially interesting to explore QMC predictions for
nuclei near the limits of stability and, given its demon-
strated accuracy for SHE, for potential islands of stability at
very large mass number.
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