The fundamental diagram of urbanization
Giulia Carra, Marc Barthelemy

To cite this version:
| Giulia Carra, Marc Barthelemy. The fundamental diagram of urbanization. 2017. cea-01502186

HAL Id: cea-01502186
https://hal-cea.archives-ouvertes.fr/cea-01502186
Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The fundamental diagram of urbanization

Giulia Carra
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France

Marc Barthelemy
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France and
Centre d’Analyse et de Mathématique Sociales, (CNRS/EHESS) 190-198,
avenue de France, 75244 Paris Cedex 13, France

The process of urbanization is one of the most important phenomena of our societies and it is only recently that the availability of massive amounts of geolocalized historical data allows us to address quantitatively some of its features. Here, we discuss how the number of buildings evolves with population and we show on different datasets (Chicago, 1930 – 2010; London, 1900 – 2015; New York City, 1790 – 2013; Paris, 1861 – 2011) that this ‘fundamental diagram’ evolves in a possibly universal way with three distinct phases. After an initial pre-urbanization phase, the first phase is a rapid growth of the number of buildings versus population. In a second regime, where residences are converted into another use (such as offices or stores for example), the population decreases while the number of buildings stays approximately constant. In another subsequent phase, the number of buildings and the population grow again and correspond to a re-densification of cities. We propose a stochastic model based on these simple mechanisms to reproduce the first two regimes and show that it is in excellent agreement with empirical observations. These results bring evidences for the possibility of constructing a minimal model that could serve as a tool for understanding quantitatively urbanization and the future evolution of cities.

Keywords: Statistical Physics , Urban change , City growth

INTRODUCTION

Understanding urbanization and the evolution of urban system is a long-standing problem tackled by geographers, historians, and economists and has been abundantly discussed in the literature but still represents a widely debated problem (see for example [1]). The term urbanization has been used in the literature with various definitions, and depending has been considered as a continuous or an intermittent process. In particular, urbanization measured by the fraction of individuals (in a country for example) living in urban areas describes a continuous process that gradually increased in many countries with a quick growth since the middle of the 19th century until reaching values around 80% in most European countries (2). Another definition has been introduced by [3] and presented by [4] as a theory of differential urbanization where it is assumed that in general we observe the three regimes of urbanization, polarization reversal and counter-urbanization, and that are characterized by a gross migration which favors the larger, intermediate, and small-sized cities, respectively.

Another approach to study urban changes is presented in the stages of urban development proposed by [5]. According to this model, the city has a life cycle going from an early growing phase to an older phase of stability or decline, and four main intermediate phases of development are identified. The first one called urbanization consists of a concentration of the population in the city core by migration of the people from outer rings. The second phase of suburbanization is characterized by a population growth of the urban agglomeration as a whole but with a population loss of the inner city and an increase in urban rings. During the third phase of (counterurbanization or disurbanization) the urban population decreases both in the core and the ring. Finally, the last phase of reurbanization displays a re-increase of the urban population. Within this framework, we observe that for most post-second war western countries urbanization was dominating in the 1950s followed by a suburbanization in the 1960s during which the population moved from the city core to the suburbs. The standard theory of suburbanization suggests that it is driven by a combination of technological progress (leading to transport infrastructure development) and rising incomes [2, 6, 7]. In the 1970s we observe in many urbanized areas a regime of counter-urbanization where the population decreases. The significance of this regime and of the re-urbanization period for the 1980s and beyond, and more generally the possibility of a cyclic development are controversial topics (see for example [1]).

Urban development and the spatial distribution of residences in urban areas are obviously long-standing problems and were indeed discussed in many fields such as geography, history and economics. Few of these approaches tackled this problem from a quantitative point of view ([8–15]). Among the first empirical analysis on population density, Meuriot [10] provided a large number of density maps of European cities during the nineteenth century, and Clark [17] proposed the first quantitative analysis of empirical data. Anas [18] presented an economic model for the dynamics of urban residential growth.
where different zones of a region exchange goods, capital, etc. according to some optimization rule. In this same framework, the authors of [19] proposed a dynamical central place model highlighting the importance of both determinism and fluctuations in the evolution of urban systems. For a review on different approaches, one can consult [20], where studies are presented that use model population dynamics in cities and in particular the ecological approach, where ideas from mathematical ecology models are introduced for modeling urban systems. An example is given by [21] where phase portraits of differential equations bring qualitative insights about urban systems behavior. Other important theoretical approaches comprise the classical Alonso-Muth-Mills model [6] developed in urban economics, and also numerical simulations based on cellular automata [22].

More recently, the fractal nature of city structures (see the review [23]) served as a guide for the development of models [16, 24, 25]. In particular, in [25], the authors proposed a variant of percolation models for describing the evolution of the morphological structure of urban areas. This coarse-grained approach however neglects all economical ingredients and suggests that an intermediate way between these purely morphological approaches and economical models should be found.

For most of these quantitative studies however, numerical models usually require a large number of parameters that makes it difficult to test their validity and to identify the main mechanisms governing the urbanization process. On the other hand, theoretical approaches propose in general a large set of coupled equations that are difficult to handle and amenable to quantitative predictions that can be tested against data. In addition, even if a qualitative understanding is brought by these theoretical models, empirical tests are often lacking.

The recent availability of geolocalized, historical data (such as in [26] for example) from world cities [27] has the potential to change our quantitative understanding of urban areas and allows us to revisit with a fresh eye long-standing problems. Many cities created open-data websites [28] and the city of New York (US) played an important role with the release of the PLUTO dataset (short for Property Land Use Tax lot Output), where tax lot records contain very useful information about the urbanization process. For example, in addition to the location, property value, square footage etc, this dataset gives access to the construction date for each building. This type of geolocalized data at a very small spatial scale allows to monitor the urbanization process in time and at a very good spatial resolution.

These datasets allow in particular to produce ‘age maps’ where the construction date of buildings is displayed on a map (see Figure 1 for the example of the Bronx borough in New York City). Many age building maps are now available: Chicago [29], New York City US [30], Ljubljana (Slovenia) [31], Reykjavik (Iceland) [32], etc. In addition to be visually attractive (see for example [33, 34]), these maps together with new mapping tools (such as the urban layers proposed in [34]) provide qualitative insights into the history of specific buildings and also into the evolution of entire neighborhoods. [35] studied the evolution of the city of Portland (Oregon, US) from 1851 and observed that only 942 buildings are still left from the end of the 19th century, while 75,434 buildings were built at the end of the 20th century and are still standing, followed by a steady decline of new buildings construction since 2005. Inspired by Palmers map, [30] constructed a map of building ages in his home town of Ljubljana, Slovenia, and proposed a video showing the growth of this city from 1500 until now [37]. Plahuta observed that the number of new buildings constructed each year displays huge spikes that signalled important events: an important spike occurred when people were able to rebuild a few years after a major earthquake hit the area in 1899, and other periods of rebuilding occurred after the two world wars. In the case of Los Angeles (USA), the ‘Built:LA project’ shows the ages of almost every building in the city and allows to reveal the city growth over time [38].

These different datasets allow thus to monitor at a very small spatial resolution urban processes. In particular, we aim to focus on a given district or zone, without considering for the moment their position and their role in the whole urban agglomeration they belong to. We ask quantitative questions about the evolution over time of the population and of the number of buildings, and we aim to understand if different districts of different cities can be compared. Surprisingly enough, such a dual information is difficult to find and – up to our knowledge – was not thoroughly studied at the quantitative level (except...
at a morphological level with fractal studies. Here, we use data for different cities (Chicago, 1930–2010; London, 1900–2015; New York City, 1790–2013; Paris, 1861–2011) in order to answer questions about these fundamental quantities. We want to remark that although these cities are among the most urbanized ones, they are characterized by quite different historical paths, with US cities being usually ‘younger’ compared to the European ones. Chicago for example is a young city founded at the beginning of the 19th century, and Paris instead has an history of about two thousands years.

More precisely, in this study we will show that the number of buildings versus the population follows the same unique pattern for all the cities studied here. Despite the small number of cities studied, the strong similarities observed suggest the possibility of a universal behavior that can be tested quantitatively. In order to go further in our understanding of this unique pattern, we propose a theoretical model and empirical evidences supporting it.

EMPIRICAL RESULTS

We investigate the urban growth of four different cities: Chicago (US), London (UK), New York (US), and Paris (France). We discuss here urbanization from the point of view of two dual aspects. First, we consider the evolution of the population of urban areas and second, the evolution of the number of buildings. These aspects thus concern both an individual-related aspect (the population) and an important physical aspect of cities, the buildings.

We do not study here age maps and in order to go beyond a simple visual inspection of these objects, we study how the number of buildings varies with the population. In most datasets, we essentially have access to buildings that were built and survived until now. In this respect we do not take into account the destruction, replacement or modifications of buildings. Although replacement or modifications do not alter our discussion, replacement with buildings of another land-use certainly has an impact on the evolution of the population and could potentially lead to a major impact on the evolution of cities.

As we will see in the model this can be in a way encoded in the ‘conversion’ process where a residential building is converted into a non-residential one. The important point is to describe the temporal evolution of buildings and their function, and we encode all these aspects in the simpler quantity that is the number of buildings. Further studies are however certainly needed in order to clarify the impact of these points on our results.

The urbanization process can be described by many different aspects and we will concentrate on two main indicators. Urbanization is about concentration of individuals and the first natural parameter is the population. Urbanization is also about built areas and in order to describe the physical evolution of a city, the natural parameter is the number of buildings (for a given area). Once both these parameters are known (density of population and of buildings), we already have an important piece of information. The following question is then how these two parameters relate to each other, and it is then natural to plot the number of buildings versus the population when the city evolves. This ‘fundamental’ diagram contains the core information about the urbanization process and will be the focus of this study.

Choice of the areal unit

An important discussion concerns the choice of the scale at which we study the urbanization process. We have to analyse the processes of urban change at a spatial scale that is large enough in order to obtain statistical regularities, but not too large as different zones may evolve differently. Indeed geographers observed that the population density is not homogeneous and decreases in general with the distance to the center and in the literature the core of the city is often analysed in relation to its suburbs. In this study we aim to simplify the analysis and we focus on a fixed area without considering its role in the whole urban agglomeration; nevertheless we would like this area to be mostly homogeneous and not mixing zones behaving in different ways.

We choose to focus here on the evolution of administrative districts of each city. At this level, data is available and we can hope to exclude longer term processes. We will show in the following that even if this choice appears as surprising, districts in the different cities considered here display homogeneous growth. More precisely, we consider here the 5 boroughs of New York, the 9 sides of Chicago, the 20 arrondissements of Paris and the 33 London districts. Also, in this way we do not have to tackle the difficult problem of city definition and its impact on various measures (see for example [41]) and focus on the urban changes of a given zone with fixed surface area. The datasets for these cities come from different sources (see Materials and Methods) and cover different time periods. 1930–2010 for Chicago, 1900–2015 for London, 1790–2013 for New York, and 1861–2011 for Paris. An important limitation that guided us for choosing these cities is the simultaneous availability of building age and historical data for district population.

The cities studied here display very different scales, ranging from Paris with 20 districts for 2–3 millions inhabitants and an average of 5 km² per district, to New York City with 5 boroughs of very diverse area (from 60 km² for Manhattan to 183 km² and 283 km² for Brooklyn and Queens, respectively). The most important as...
Homogeneity of growth in districts. Average distance between buildings at a given time (this distance is normalized by the maximum distance found for each district). Top: Chicago (central and far southwest sides). Middle: New York City (Manhattan and Staten Islands). Bottom: Paris (1st and 14th arrondissements). The dotted line represents the average value computed for a random uniform distribution and the grey zone the dispersion computed with this null model.

Population density growth

In order to provide an historical context, we first measure the evolution of the population density and then analyse the evolution of the number of buildings in a given district and its population. In Fig. 3 we show the average population density for the four cities studied here. This plot reveals that these different cities follow similar dynamics, at least at a coarse-grained level. After a positive growth and a population increase that accelerates around 1900, we observe a density peak. After this peak, the density decreases (even sharply in the case of NYC) or stays roughly constant. This decreasing regime is associated to the post World War years, defined by geographers as the suburbanization/counter-urbanization period. In the last years, New York City, Paris and London display a re-densification period. The possibility of this latter period has been proposed in some cyclic model as the stages of urban development one [5]. Nevertheless, evidences or interpretations about this phase are still an highly discussed topic. At least, this first figure highlights the existence of a seemingly 'universal' pattern governing the urban change process, probably driven by technological changes.

However, at the smaller scale of districts, these large cities display different behavior shown in Fig. 4 where we plot the time evolution of some district densities (all results are presented in the Supplementary material). In the case of London (Fig. 4 top panels), we note that the district City of London reached a density peak before
1800 while other districts (for example Lewisham, Brent and Newham) display all the different phases of urbanization described above. For Chicago (see the Supplementary material) and Paris (Fig. 4, bottom panels), the different districts are not all synchronized and display simultaneously different urbanization phases. The central districts of Paris (the 1st and the 4th for example) typically reached their density peak before 1860, while less central districts (11th to 20th) reached their density peak in the first half of the 20th century, consistently with the idea of a centrifugal urbanization process.

For the five boroughs of New York (see the Supplementary material), we observe that Manhattan (MN), the Bronx (BX) and Brooklyn (BK) already passed through the different phases of urbanisation, and are now in a redistribution period. In contrast, Staten Island (SI) and Queens (QN) are still in the urbanization process and didn’t reach yet a density peak.

These preliminary results highlight the importance of spatial delimitations when studying a city. The dynamics of different districts might be the same as also suggested by qualitative models presented in the introduction, but are not necessary simultaneous mainly because of the difference between districts belonging to the core of the city and districts belonging to the ring, and further the distance from the core of the city, later the district will reach the second phase. For this reason, we will not consider in the following cities as a whole, but rather follow the evolution of various quantities for each district which display a better level of homogeneity.

We note here that a large number of empirical studies have already been performed where the densification and the disurbanization phase were observed. In most of these studies, the analysis was performed focusing in the dependence between the behavior of the core and of the ring districts or on the size of the urban agglomeration.

Number of building vs. population

We now turn to the main result of this paper which is the characterization of the urbanization from the point of view of both the physical aspect via the number of buildings, and the individual aspect described here by the population.

For each district, we then study the relation between the number of buildings \(N_b \) and the population \(P \) of different districts (Fig. 5), and plot \(N_b \) versus \(P \). We thus connect an element of the infrastructure - the building - to the population which allows us to get rid of exogenous effects that governs the time evolution of population for example. This plot encodes these two basic fundamental aspects of the urbanization process and we refer to this representation as ‘the fundamental diagram’. In Fig. 5 we observe an apparent diversity of behaviors but, as we will see in the following, they can all be interpreted and compared in the framework of a simple quantitative model. In Fig. 5 top-left we show the result for the five boroughs of New York City. We observe that Staten Island and Queens (dashed lines) are in a growing phase characterized by a positive value of \(dN_b/dP \), while Manhattan, Brooklyn and Bronx (plotted in continuous line) reached other dynamical regimes. In Fig. 5 top-center-left we plot the nine sides of Chicago, and we observe a clear growth phase followed by a ‘saturation’ (corresponding to the density peak) for the Far North, Northwest, Southwest, Far Southeast and Far Southwest sides (plotted in continuous line). In contrast, the other sides (Central, North, West and South), in dotted line, seem to have reached a saturation before 1930. Indeed, the dotted lines (that have to be read chronologically from the right to the left) do not display the growth regime, suggesting that it stopped before 1930, year of the earliest available data. In Fig. 5 top-centre-right, we represent the evolution for some Paris arrondissements. We observe the growth regime followed by a saturation for the 10th, 12th, 16th and 18th arrondissement (in continuous line), the 13th seem not having reach a saturation yet, while the others have reached saturation before 1861. In the top-right plot of Fig. 5 for London districts, we observe that all districts displayed here reached a saturation, but that the district Tower Hamlets (dotted line) reached it before 1900, year of the first available data.

These various plots show that for different districts we have essentially the same trajectory in the plane \((P, N_b) \) at different stage of their evolution. We show illustrative examples for various cities in Fig. 5 (bottom) that reached
FIG. 5: Number of buildings versus population. We represent with continuous lines the districts that have reached their density peak, with dashed lines for districts that are still in the growing phase. We use dotted line for the districts that reached the density peak before the first year available in the dataset. (Top panels) Results for districts in the cities studied here. (Bottom) We show examples illustrating the ‘universal’ diagram for districts in different cities that display all the regimes described in the text.

The second regime after a saturation point (while other districts are still in the first regime). The evolution of these ‘mature’ districts of these different cities can thus be represented by a typical path shown in Fig. 6. This path is characterized by a first phase of rapid growth of the number of buildings versus population. In a second regime, the population decreases while the number of buildings stays roughly constant. In a last – and more recent – phase, the number of buildings and population both grow again. The behavior of the urban changes emerging by studying the relation between population and number of buildings in a fixed area is thus analogous to the one described in the stages of urban development model of [5], in which a qualitative understanding of the first two phases is widely recognized, while the last one remain widely discussed. We remark that the year at which the second or the third phase begins is not necessary the same for all districts and depends mainly on the role and function of the district in the whole urban agglomeration.

THEORETICAL MODEL

The data studied in the previous section display a pattern that seems to encompass specific features of the different cities and we propose a theoretical model based on the following interpretation for these different regimes. The first regime corresponds to the urbanization where buildings are constructed on empty lots until the ‘saturation point’ \((P^*, N^*_b)\), which signals the beginning of the second regime (we note that not all districts reached this saturation point and can still be in the first growing phase). In this second regime, land-use is modified (for example from residential to stores or offices) and the population naturally decreases while the number of buildings stays approximately constant. We emphasize here that this ‘conversion’ is meant here as a generic term that describes the process in which a part or the whole of a building changes from a residential use to a non-residential one. In the last regime, both the number of buildings and the population grow again, corresponding to the ‘re-densification’ of cities. This last phase which

FIG. 6: Schematic representation of the fundamental curve. We represent here the typical district growth curve characterized by three main phases: after a pre-urbanization period, there is first an urbanization phase with a positive growth rate \(dN_b/dP\) that stops at the ‘saturation point’ \((P^*, N^*_b)\). A second ‘conversion’ phase follows, during which the population decreases. Finally, we observe a last re-densification phase where both the population and the number of buildings increase.
occurs mostly at the same period for the different cities seems to be triggered by external factors such as governance. This is why we will focus on the first two regimes and to understand the reasons and control parameters of the saturation point. In order to provide quantitative evidences for these first two phases, we propose a simple model based on the simple interpretation described above and – very importantly – that allows us to make predictions that we can test against data.

We model the evolution of a given zone of surface area \(A \) by a two-dimensional square grid where each cell of surface \(a_t \) represents an empty, constructible lot. The maximum number of lots is then given by \(N_{\text{max}} = A/a_t \). Each cell can be empty or occupied (a building has already been built) and each building on a lot \(i \) is characterized by its number of residential floors \(h_r(i) \), commercial floors \(h_c(i) \) (the total number of floors is \(h(i) = h_r(i) + h_c(i) \)). At each time step \(t \rightarrow t + \Delta t \) (in the following we count the time \(t \) in units of \(\Delta t \)), we pick at random a cell \(i \) and if it is empty we update it with

\[
\begin{align*}
 P &\rightarrow P + \Delta P , \\
 N_b &\rightarrow N_b + 1 , \\
 h(i) &\rightarrow h(i) + 1 , \\
 h_c(i) &\rightarrow 0 ,
\end{align*}
\]

where \(\Delta P \) is the number of people per residential floor (we assume here that the number of person per floor does not change too much in time which is certainly true in terms of order of magnitude). If a building is already present on the chosen cell, we add an extra residential floor with probability \(p_h \) or convert a residential floor into a non-residential one (such as offices or stores) with probability \(p_c \):

\[
\begin{align*}
 h_r(i) &\rightarrow h_r(i) + 1 \\
 h_c(i) &\rightarrow h_c(i) & \text{with prob. } p_h \\
 P &\rightarrow P + \Delta P \\
 h_r(i) &\rightarrow h_r(i) - 1 \\
 h_c(i) &\rightarrow h_c(i) + 1 & \text{with prob. } p_c \\
 P &\rightarrow P - \Delta P
\end{align*}
\]

Finally, nothing happens with probability \(1 - p_h - p_c \). Each district is thus characterized by the parameters \(\Delta P \), \(p_c \) and \(p_h \). The mean-field equations describing the evolution of \(H_r = \sum_i h_r(i) \) (the total number of residential floors in the district), the total number of buildings \(N_b \) and the total population \(P \) in the district are

\[
\begin{align*}
 \frac{dH_r}{dt} &= \frac{N_b}{N_{\text{max}}}(p_h - p_c) + \left(1 - \frac{N_b}{N_{\text{max}}} \right) , \\
 \frac{dN_b}{dt} &= 1 - \frac{N_b}{N_{\text{max}}} , \\
 \frac{dP}{dt} &= \Delta P \frac{dH_r}{dt} .
\end{align*}
\]

Solving Eq. (5) and Eq. (6) leads to

\[
\begin{align*}
 N_b(t) &= N_{\text{max}} \left(1 - e^{-t/N_{\text{max}}} \right) , \\
 P(t) &= \Delta P ((p_h - p_c) + N_{\text{max}}(1 + p_c - p_h)(1 - e^{-t/N_{\text{max}}}) \right) .
\end{align*}
\]

Eqs. (4), (5), and (6) imply that the population is an increasing function of the number of building up to a saturation value \(N_b^{*} \) corresponding to the population \(P^{*} \), after which the population decreases (i.e. above which \(dP/dt \) becomes negative). After simple calculations (see Supplementary material for details), we obtain

\[
\begin{align*}
 N_b^{*} &= \frac{N_{\text{max}}}{1 + p_c - p_h} , \\
 \frac{P^{*}}{\Delta PN_{\text{max}}} &= (p_h - p_c) \log \left(1 + \frac{p_c - p_h}{p_c - p_h} \right) + 1 .
\end{align*}
\]

The saturation happens only if \(N_b^{*} < N_{\text{max}} \) and thus if \(p_c > p_h \) which expresses the fact that the conversion rate should be large enough in order to observe a saturation point (if the conversion rate is too small, the first phase of growth will continue indefinitely). Defining the normalized variables \(\tilde{N}_b = N_b/N_{\text{max}} \) and \(\tilde{P} = P^{*}/N_{\text{max}} \), we can rewrite the above equation as

\[
\tilde{P} = \Delta P \left[1 + (1/\tilde{N}_b^{*} - 1) \log(1 - \tilde{N}_b^{*}) \right] .
\]

This relation allows us to determine the average number of people per building floor \(\Delta P \) for each district (see the Supplementary material for a discussion about this parameter). Also, the theoretical results given by Eq. (7) and Eq. (8) imply a scaling that can be checked empirically. Indeed, if we make the following change of variables

\[
\begin{align*}
 X(t) &= \frac{N_b(t)}{N_{\text{max}}} , \\
 Z(t) &= \frac{\frac{P(t)}{\Delta PN_{\text{max}}}}{\frac{N_b(t)}{N_{\text{max}}}} ,
\end{align*}
\]

then the curves for the different districts at different times should all collapse on the same curve given by

\[
Z = \log(1 - X) .
\]

In order to test this model, we focus on all districts that have already reached saturations (the others are still in the first growth phase). From the data we know the area \(A \) of each district and the average building footprint surface \(a_t \) of each district. This allows us to compute the maximum number of buildings \(N_{\text{max}} = A/a_t \) of the district. Moreover, the empirical curves allow us to determine the saturation values \((P^{*}, N_b^{*}) \), corresponding to the value of the population and the number of buildings after which the density growth rate becomes negative.
(and we can then compute \((P^*, N_0^*)\)). At this point, we thus have estimated from empirical data all the parameters that characterize a district, without performing any fit. We can now test the scaling Eq. \((13)\) predicted by the model. As explained above, the curves obtained for different districts should all collapse on the theoretical one. In Fig. 7 we plot the theoretical prediction (red line) and the values for the different districts (represented by different symbols and different colors for the different districts). An excellent collapse is observed, supporting the validity of the model.

This collapse is a validation of the model: it shows that the non-trivial relation between variables (Eq. \((13)\) predicted by the model is in agreement with the data. We observe deviations for larger values of \(X\) for districts in London that might be explained by the uncertainty in determining the area of buildings in this city.

DISCUSSION AND PERSPECTIVES

Theoretical urban models can be roughly divided in two categories. On one hand there are economics models characterized by complex mathematical equations rarely amenable to quantitative predictions that can be tested against data. On the other hand, there are computer simulations (such as agent-based models or cellular automata) that are characterized by a large number of parameters, preventing to understand the hierarchy of processes governing the phenomenon. In the approach presented here, we build a simple model with the smallest number of parameters and able to describe quantitatively the evolution of various quantities such as the number of buildings and the population for a given district.

The agreement with data is tested with a data collapse which does not rely on a parameter fit. The excellent agreement observed shows that the model is able to explain empirical data. However, this agreement is not a definitive proof that the model described here is the fundamental one. Ideally one should compare with other existing models but in this case our proposal seems to be the first attempt to describe quantitatively the evolution of fundamental quantities with the help of simple fundamental mechanisms. Interestingly enough this random model relies on a set of simple reasonable assumptions such as growth and conversion and also on non-correlated growth of buildings inside districts, an assumption that seems to be both supported by empirical measures on districts and the theoretical model.

Further quantitative studies are however needed and are of two types. First other datasets for other cities are needed in order to test for the validity of the quantitative behavior observed here. Also, the comparison with other competing theoretical models could be very fruitful and we can only encourage the construction of such models.

Our empirical analysis confirms that there are essentially three different phases of the urbanization process: a growth phase where we observe an increase of both the number of buildings and the population; a second regime where the population decreases while the number of buildings stays roughly constant, and a last phase where both population and the number of buildings are increasing. The first two phases are well described by the simple model proposed here and which integrate the crucial ingredient of converting residential space into commercial activities. We observe empirically the existence of a ‘re-densification’ phase where both population and the number of buildings increase after the conversion phase. This phase seems to happen simultaneously for the different districts in a city which suggests that it is an effect due to planning decisions and not resulting from self-organization. Modelling the appearance of this regime is thus at this point a challenge for future studies.

Beside showing that a minimal modeling for describing urbanization is possible despite the large variety of cities, we believe that this approach could constitute the basis for more elaborated models. These models could then be thoroughly tested against data, could describe the impact of various parameters and also help to understand some features of the possible future evolution of cities.
MATERIALS AND METHODS

Data description

New York data

We used data from the Primary Land Use Tax Lot Output (PLUTO) data file, developed by the New York City Department of City Planning’s Information Technology Division (ITD)/Database and Application Development Section [47]. It contains extensive land use and geographic data at the tax lot level. PLUTO data files contain three basic types of data: tax lot characteristics, building characteristics and geographic/political/administrative districts. In particular for each building of the city we focused on the building’s borough, the building age and the surface of the lot. For each borough we compute the average building surface \(a_l \) (assumed to be given by the average building lot surface) over all the buildings in the borough and with known age (for New York city we have this information for 94% of buildings). New York data cover the period from 1790 to 2013. For the historical population data, we used different sources [48, 51].

Chicago data

We used the Building Footprints dataset (deprecated August 2015) provided by the Data portal of the City of Chicago [52]. For each building we have the information on the geometrical shape from which we compute the building surface, the year built and the position. By using the shapefiles of the 77 Chicago communities [53], we can deduce the community (and thus the side) where the building is located in. For each side we compute the average building surface \(a_l \) and average this quantity over all the buildings with known year built, situated in the side. For Chicago the percentage of buildings with known built year is 54%. Population data from each community area comes from [54] and they cover the period from 1930 to 2010.

Paris data

We used the dataset ‘Emprise Batie Paris’ provided by the open data initiative of the ‘Atelier Parisien d’urbanisme (APUR)’ [55]. For each building we have the information on the geometrical shape, from which we compute the building surface, the year built and the arrondissement the building is situated in. For each arrondissement we compute the average building surface \(a_l \) averaging this quantity over all the buildings with known year built (i.e. the 57% of the buildings), situated in the arrondissement. Population data comes from [56] and since the actual arrondissements where defined in 1859, population data at the level of the arrondissements covers the period from 1861 to 2011.

London data

We used the dataset ‘Dwelling Age Group Counts (LSOA)’ [57], which contain the residential dwelling ages, grouped into approximately 10-year age bins from pre-1900 to 2015 (the bin 1940 – 1944 is missing). The number of properties is given for each LSOA area and each age bin. From these data we deduced the number of buildings for each London district as function of the year. Data for the historical population of the London boroughs were obtained from ‘A Vision of Britain through time’ [58]. Finally we used OSOpenMapLocal [59] containing the geometrical shape of the buildings in London for computing the average footprint surface for each district. We note that in this last dataset some buildings are aggregated and rendered as homogeneized zones. For this reason we computed the average building surface of each district by averaging over all the buildings belonging to the district having a footprint surface smaller than 700 m\(^2\). In order to locate the district to which a building belongs to, we used the shapefile of London districts boundaries [60].

ACKNOWLEDGEMENTS

GC thanks the Complex Systems Institute in Paris (ISC-PIF) for hosting her during part of this work and Riccardo Gallotti for interesting discussions. MB thanks the program Paris 2030 for financial support.

* Electronic address: marc.barthelemy@cea.fr

SUPPLEMENTARY MATERIAL

The model: calculations

We analyze here Eq. [6]. In particular, we show that there is in this model a critical value of \(N_b \) above which the population decreases (ie. above which \(dP/dt \) becomes negative). We thus solve:

\[
\frac{dP}{dt} \geq 0 \quad \Delta P \frac{N_b}{N_{\text{max}}} (p_h - p_c) + \Delta P (1 - \frac{N_b}{N_{\text{max}}}) \geq 0 ,
\]

and obtain the following condition

\[
N_b \leq \frac{N_{\text{max}}}{1 + p_c - p_h} \quad (14)
\]

which then implies that

\[
N^*_b = \frac{N_{\text{max}}}{1 + p_c - p_h} \quad . (15)
\]

We thus observe a saturation effect only if \(N^*_b < N_{\text{max}} \) and thus if \(p_c > p_h \).

We can then compute the time \(t^* \) for which saturation happens: knowing that

\[
N^*_b = N_{\text{max}} \left(1 - e^{-t^*/N_{\text{max}}} \right) \quad (16)
\]

we get

\[
t^* = N_{\text{max}} \log \left(\frac{1 + p_c - p_h}{p_c - p_h} \right) . (17)
\]

Using Eq. [8], we then obtain

\[
P^* = \Delta P (p_h - p_c) N_{\text{max}} \log \left(\frac{1 + p_c - p_h}{p_c - p_h} \right) + \Delta PN_{\text{max}} . (18)
\]

Additional measures

Analysing the relation between the number of buildings and the population during a city district growth, we observed the emergence of a 'universal' pattern characterized by three regimes: urbanization, conversion and densification.

Chicago sides

Concerning Chicago, 5 sides saturated, three of them in 1970 and two of them in 1960. Just one of them began a re-densification process in 1980. In the converting period we have a variation of the population equals to \(-16992\) corresponding to a decrease of 6.5\% of the population.

Paris arrondissements

The first four arrondissements seem to have saturated before the first data available. The 13th seems not yet saturated and the others with the exception of the 6th present all three phases even if often the re-densification one is quite recent.

The average value of the saturation year is

\[
Year_s = 1932 \pm 28 ,
\]
the average value of the re-densification date is

\[Year_d = 1993 \pm 10 , \]

the average period of conversation in years is

\[\Delta t_c = 60 \pm 30 , \]

the average period of conversation in population is

\[\Delta P_c = -58940 \pm 25434 , \]

that corresponds to an average decrease of

\[\frac{\Delta P_c}{P^*} = -0.33 \pm 0.16\% . \]

The behaviors seem thus quite various.

London districts

Eight of the 33 London districts seem saturated before the first data available. The others show all the three regimes.

We have

\[Year_s = 1949 \pm 15 , \]

\[Year_d = 1992 \pm 2.43 , \]

\[\Delta t_c = 43 \pm 15 , \]

\[\Delta P_c = -63054 \pm 62908 , \]

\[\frac{\Delta P_c}{P^*} = -0.2 \pm 0.15\% . \]

In particular one remarks that 23 of the 25 districts have \(Year_d = 1992 \)

New York boroughs

In New York city only three of the five boroughs reached saturation and all of these present a densification regime.

We have

\[Year_s(MN) = 1910 \quad Year_s(BK) = 1950 \quad Year_s(BX) = 1970 , \]

all the boroughs began de re-densification phase in 1980.
List of districts in the data collapse and measure of ΔP

The parameter ΔP introduced in the model, defined as the number of people per residential floor has been estimated as explained in the main text from the equation

$$\frac{P^*}{N_{\text{max}}} = \Delta P \left[1 + \left(\frac{N_{\text{max}}}{N_b^*} - 1\right) \log \left(1 - \frac{N_b^*}{N_{\text{max}}}\right)\right] = \Delta P f(N_b^*, N_{\text{max}}).$$

(19)

In the tables below we reported for each district the estimation we obtained. These latter allowed us to test the validity of the model through a data collapse in which we used data for all the districts that already reached a saturation point. These correspond to the districts for which we estimated the ΔP value in the tables below.

New York

<table>
<thead>
<tr>
<th>borough</th>
<th>ΔP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>184.84</td>
</tr>
<tr>
<td>BK</td>
<td>16.73</td>
</tr>
<tr>
<td>BX</td>
<td>29.36</td>
</tr>
</tbody>
</table>

Paris

<table>
<thead>
<tr>
<th>arrondissement</th>
<th>ΔP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>104</td>
</tr>
<tr>
<td>8</td>
<td>146</td>
</tr>
<tr>
<td>9</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>159</td>
</tr>
<tr>
<td>11</td>
<td>149</td>
</tr>
<tr>
<td>12</td>
<td>103</td>
</tr>
<tr>
<td>13</td>
<td>116</td>
</tr>
<tr>
<td>14</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>76</td>
</tr>
<tr>
<td>17</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>128</td>
</tr>
<tr>
<td>19</td>
<td>118</td>
</tr>
<tr>
<td>20</td>
<td>127</td>
</tr>
</tbody>
</table>

Chicago

<table>
<thead>
<tr>
<th>side</th>
<th>ΔP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far North Side</td>
<td>16.1</td>
</tr>
<tr>
<td>Far Southeast Side</td>
<td>11.2</td>
</tr>
<tr>
<td>Northwest Side</td>
<td>10.2</td>
</tr>
<tr>
<td>Far Southwest Side</td>
<td>9.2</td>
</tr>
<tr>
<td>Southwest Side</td>
<td>13</td>
</tr>
</tbody>
</table>
London

<table>
<thead>
<tr>
<th>district</th>
<th>ΔP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambeth</td>
<td>10.7</td>
</tr>
<tr>
<td>Greenwich</td>
<td>15</td>
</tr>
<tr>
<td>Sutton</td>
<td>6.6</td>
</tr>
<tr>
<td>Lewisham</td>
<td>8</td>
</tr>
<tr>
<td>Barnet</td>
<td>6.4</td>
</tr>
<tr>
<td>Hammersmith and Fulham</td>
<td>6.6</td>
</tr>
<tr>
<td>Barking and Dagenham</td>
<td>6.6</td>
</tr>
<tr>
<td>Enfield</td>
<td>6.7</td>
</tr>
<tr>
<td>Croydon</td>
<td>5.2</td>
</tr>
<tr>
<td>Merton</td>
<td>6.4</td>
</tr>
<tr>
<td>Haringey</td>
<td>6.9</td>
</tr>
<tr>
<td>Harrow</td>
<td>6.3</td>
</tr>
<tr>
<td>Hounslow</td>
<td>7.1</td>
</tr>
<tr>
<td>Kingston upon Thames</td>
<td>6.5</td>
</tr>
<tr>
<td>Havering</td>
<td>6.5</td>
</tr>
<tr>
<td>Waltham Forest</td>
<td>7</td>
</tr>
<tr>
<td>Hillingdon</td>
<td>5.8</td>
</tr>
<tr>
<td>Bexley</td>
<td>5.4</td>
</tr>
<tr>
<td>Ealing</td>
<td>6.1</td>
</tr>
<tr>
<td>Bromley</td>
<td>5.6</td>
</tr>
<tr>
<td>Redbridge</td>
<td>6.4</td>
</tr>
<tr>
<td>Newham</td>
<td>14.9</td>
</tr>
<tr>
<td>Wandsworth</td>
<td>8.8</td>
</tr>
<tr>
<td>Richmond upon Thames</td>
<td>6.3</td>
</tr>
<tr>
<td>Brent</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Additional empirical results

For the sake of completeness, we present here additional results for the cities studied here.
FIG. 8: Chicago districts: population density VS year

FIG. 9: Paris arrondissements: population density VS year
FIG. 10: New York boroughs: population density VS year
FIG. 11: London districts: population density VS year
FIG. 12: London districts: number of buildings VS population. In continuous line we have districts that reached the saturation point. In dashed line we have districts that are still in the growing phase and in dotted line the ones that reached the saturation points before the year of the first available data.
FIG. 13: **Paris arrondissements: number of buildings VS population.** In continuous line we have districts that reached the saturation point. In dashed line we have districts that are still in the growing phase and in dotted line the ones that reached the saturation points before the year of the first available data.

FIG. 14: **Chicago sides: homogeneity of growth in districts.** Average distance between buildings at a given time (this distance is normalized by the maximum distance found each district). The dotted line represents the average value computed for a random uniform distribution and the grey zone the dispersion computed with this null model.
FIG. 15: Paris arrondissements: homogeneity of growth in districts. Average distance between buildings at a given time (this distance is normalized by the maximum distance found each district). The dotted line represents the average value computed for a random uniform distribution and the grey zone the dispersion computed with this null model.
FIG. 16: New York boroughs: homogeneity of growth in districts. Average distance between buildings at a given time (this distance is normalized by the maximum distance found each district). The dotted line represents the average value computed for a random uniform distribution and the grey zone the dispersion computed with this null model.