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We study theoretically the asymptotic behavior of the Shiba bound states associated with
magnetic impurities embedded in both 2D and 1D anomalous superconductors. We calculate
analytically the spatial dependence of the local density of states together with the spin polarization
associated with the Shiba bound states. We show that the latt er quantity exhibits drastic
di�erences between s-wave and di�erent types of p-wave superconductors. Such properties, which
could be measured using spin-polarized STM, o�er therefore a way to discriminate between singlet
and triplet pairing in low-dimensional superconductors, a s well as a way to estimate the amplitude
of the triplet pairing in these systems.

Keywords: unconventional superconductor, Shiba states, localized impurity

I. INTRODUCTION

Despite having been discovered more than thirty years
ago,1,2 research on anomalous superconductors (SCs) re-
mains a very active �eld in condensed matter. This
is in part related to the fact that some unconventional
SCs such as strontium ruthenate3 or doped topologi-
cal insulators4 may o�er a natural platform for topo-
logical superconductivity and therefore for Majorana
fermions.5{7 Besides searching for intrinsically anoma-
lous superconductors, a very promising alternative strat-
egy consists in engineering topological superconductivity
starting from traditional and well-characterized materi-
als. Thus it has been proposed theoretically that arrays
of magnetic impurities or nanoparticles on the surface of
a conventional s-wave superconductor may give rise to
1D and 2D topological superconductivity.8{25 Moreover,
lattices of non-magnetic impurities on p-wave supercon-
ductors have also been proposed to realize p-wave su-
perconductivity with a high Chern number. 26{28 On the
experimental side, zero bias peaks at the extremity of a
chain of iron adatoms deposited on top of lead have re-
cently been observed, consistent with the predicted Ma-
jorana bound states.29{31

The building block in the aforementioned strategy is
the single impurity: a magnetic moment in a s-wave su-
perconductor gives rise to so-called in-gap Shiba bound
states (SBSs)32{35 while SBSs can also emerge around
scalar impurities in p-wave superconductors.36{40 SBSs
have been observed experimentally using scanning tun-
neling microscopy (STM).41{43 It is worth noting that in
these experiments the SBSs were found to be strongly lo-
calized around the impurity (the spatial extent of the SBS
wave function is of orderO(1nm)) However, in recent ex-
periments carried out in [44], a very large spatial extent
of the Shiba wave function (of order O(20 nm)) was found
for a magnetic impurity immersed in a 2D conventional
SC. A partial explanation for this long-range extent is

related to the reduced dimensionality of the host super-
conductor. The local density of states (LDOS) associated
with the SBS decays as 1=r2 in a 3D SC, as 1=r in a 2D
SC, and it does not depends on the distancer from the
impurity in a clean 1D superconductor (we have typi-
cally in mind a proximitized wire). Such a slow decay
makes the information stored in the decay length and in
the period of the Friedel oscillations associated with the
SBS more accessible experimentally. As we show in this
paper, such information turns out to be useful to better
characterize the host bulk superconductor particularly
when the latter is an anomalous SC.

In a previous paper,40 we have analyzed numerically
the behavior of the SBS in 2D p-wave SCs. Here, we
provide analytical expressions for the asymptotic behav-
ior of the LDOS (both non-polarized and spin-polarized)
associated with the SBSs induced by single localized im-
purities (scalar or magnetic) not only in various 2D su-
perconductors but also in 1D proximetized superconduc-
tors. We give also the analytical form of the Shiba
wave functions, which are essential for studying topo-
logical phases of matter engineered with adatom lat-
tices and chains. They are for example used for com-
puting the Chern numbers in such emergent topological
superconductors.14,16,19,20

More speci�cally, we focus mainly on superconductors
with a triplet pairing (of p-wave type) which are char-
acterized by the so-calledd vector, that determines the
plane in which the spins of the Cooper pairs lie. We show
that the spin-polarized local density of states (SP LDOS)
allows not only to determine whether the host supercon-
mductor has a dominant p-wave pairing, but also to dis-
criminate between di�erent directions of the d vector.
This is particularly revealed in the Fourier transform of
the SP LDOS of some Shiba states where the orbital na-
ture of p-wave superconductivity naturally pops up. In
addition, our calculations show how the triplet pairing
parameter alters both the period of the Friedel oscilla-
tions and the superconducting decay length scale, which

http://arxiv.org/abs/1606.06338v2
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may, in principle, allow to estimate the triplet pairing
amplitude by carrying out an experiment similar to the
one in [44]. We did not include the spin-orbit coupling in
the present analysis. A thorough analysis of its impact is
provided in [40] for a p-wave superconductor and in [45]
for a s-wave superconductor.

The paper is organized as follows: in Section II, we
describe our general model and introduce the methods
used in further calculations. In Section III, we recon-
sider the case of 2D s-wave SC, although it has already
been discussed e.g. in [19]. This allows to �x our nota-
tions but also us to provide a comparative study noting
that these previous results do not fully coincide with the
ones presented below. In Section IV, we consider Shiba
states in 2D superconductors with two di�erent types of
triplet pairing and analyze the asymptotic behavior of
both the non-polarized and SP LDOS. Similarly, Section
V contains the description of SBSs in 1D superconduc-
tors with di�erent types of order parameter. Finally, we
provide a short conclusion in Section VI and leave some
technical details to appendices.

II. MODEL HAMILTONIAN

We consider either a 2D SC lying in the (x; y) plane
(see Sections III and IV) or a 1D superconducting wire
directed along the x-axis (see Section V). The Hamil-
tonian for these two systems can be written in a general
form in the Nambu basis 	 k = (  " k ;  #k ;  y

#� k ; �  y
"� k )T

as:

H 0(k ) =
�

� k � 0 �( k )
� y(k ) � � k � 0

�
; (1)

where

�( k ) = � s� 0 + { d(k ) � � ; (2)

is a general pairing function with a s-wave (singlet) com-
ponent � s and a p-wave (triplet) component { . Below we
consider either the case of pure singlet pairing ({ = 0) or
pure triplet pairing (� s = 0). The Pauli matrices � are
acting in the spin subspace, the operator y

� k creates a
particle of spin � = " ; # of momentum k � (kx ; ky ) for the
2D limit and k � k in 1D. The vector d(k ) parametrizes
the odd-parity triplet pairing term and will be discussed
in detail in subsection IV. Note that the concept of the d
vector is not usually introduced for 1D systems, but we
use it here to simplify our notation. The energy disper-
sion in the normal state is given by � k � k 2

2m � "F . This
dispersion is a low-energy approximation for the tight
binding Hamiltonian on the square lattice model that we
used to obtain the numerical results in [40]. We thus ex-
pect the analytical results in this paper to qualitatively
reproduce the numerical results in [40] in the infrared
limit.

Our goal is to study the e�ect of a single localized
magnetic impurity on the system described above. Such

impurity has both a scalar componentU and a magnetic
component J = ( Jx ; Jy ; Jz ), and can be taken into ac-
count by means of the Hamiltonian:

H imp = V � (r ) �
�

U � 0 + J � � 0
0 � U� 0 + J � �

�
� (r );

(3)
where U and J are the scalar and magnetic components
respectively, r � (x; y) in the 2D limit, and r � x in 1D.
The delta-like form of the impurity potential implies that
the scattering occurs only in thes-channel. Also, in what
follows we consider only classical impurities (e.g. we ne-
glect quantum e�ects giving rise to phenomena such as
the Kondo e�ect). In 2D the spin of the impurity can
be decomposed without losing generality into an out-of-
plane component plus an in-plane component (in 1D the
equivalent decomposition is into a component perpendic-
ular to the wire and one along the wire). In what follows,
we will therefore consider an impurity spin oriented ei-
ther along the z-axis, J = (0 ; 0; Jz), or along the x-axis
J = ( Jx ; 0; 0). These two limits are generic enough to
capture all the relevant physics.

In order to �nd the energy levels of the Shiba states
we follow the method introduced in [14] and seek the
eigenvalues using:

[I4 � V G0(E; r = 0)] �( r = 0) = 0 : (4)

The corresponding eigenfunctions are obtained by using

�( r ) = G0(E; r )V �( 0): (5)

We note that to this purpose we need the explicit form
of the Green's function at r = 0, as well as for r 6=
0. The form of the Green's function in real space
can be obtained by a Fourier transform of the momen-
tum space Green's function. The unperturbed retarded
Green's function in momentum space can be written as
G0(E; k ) = [( E + i� )I4 � H 0(k )] � 1, where we have intro-
duced a �nite inverse quasiparticle lifetime � (while this
is kept �nite in the numerical simulations, 40 it will be set
to zero in the �nal results of the analytical calculations.)

Once the eigenfunctions �(r ) are found, we can com-
pute the full local density of states (LDOS), as well as
the spin-polarized local density of states (SP LDOS) for
the Shiba states using

� (E; r ) = � y(r )
�

0 0
0 � 0

�
�( r ); (6)

and

S(E; r ) = � y(r )
�

0 0
0 �

�
�( r ); (7)

where we take into account only the hole components of
the spinor wave function. We focus only on these com-
ponents. We note however that there is no qualitative
di�erence between the hole components and electronic
ones. The integration over the real-space coordinates in
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(6-7) gives access to the average total DOS and corre-
spondingly to the average spin polarization of the Shiba
states.

In the following sections we study the formation of
Shiba states �rst in 2D superconducting materials and
subsequently in 1D superconducting wires.

III. SHIBA STATES IN A 2D PURE S-WAVE
SUPERCONDUCTOR

We begin by considering the pure s-wave case, i.e.
{ = 0. As mentioned above, this situation has already
been addressed in previous works such as [19] and [39].
However, we are revisiting this limit here since the re-
sults presented in the previous references are not fully
general, and contain as well inaccuracies that do not al-
low one to have a completely correct and general form
for the non-polarized and SP LDOS of the Shiba states
in such systems.

In order to obtain the real space form of the retarded
Green's functions we need to integrate the momentum
space Green's function over all momenta. For this we
need �rst to perform the following two integrals:

X 0(0) = �
Z

dk
(2� )2

1
� 2

k + ! 2 ; (8)

X 1(0) = � p:v:
Z

dk
(2� )2

� k

� 2
k + ! 2 ; (9)

where ! 2 = � 2
s � E 2. Using the principal value (abbre-

viated as p:v:) for the second integral is fully equivalent
to performing the calculation with a natural UV energy
cut-o�, such as the Debye frequency! D , and then tak-
ing the limit of ! D ! 1 . We rewrite

R
dk

(2 � )2 = �
R

d� k ,
where � = m

2� , and we �nd

X 0(0) = � ��
1
!

; X 1(0) = 0 : (10)

Therefore, the bare Green's function is given by

G0(E; r = 0) = �
��
!

�
E� 0 � s � 0
� s� 0 E� 0

�
: (11)

Using (4) it is easy to show that there are no sub-gap
states for a purely scalar impurity (J = 0); while in the
case of a purely magnetic impurity (U = 0) we obtain
two energy levels independent of the direction ofJ :

E1;�1 = �
1 � � 2

1 + � 2 � s ; where� = ��J: (12)

The presence of two symmetric energy levels is a direct
consequence of the imposed particle-hole symmetry of the
Bogoliubov-de-Gennes Hamiltonian. The value� c = 1
corresponds to a change in the ground state parity.

The corresponding eigenvectors are given by

� �1(0) =
�
1 0 � 1 0

� |
; � 1(0) =

�
0 1 0 1

� |
(13)

for an impurity along the z-axis and

� �1(0) =
�
1 1 � 1 � 1

� |
; � 1(0) =

�
1 � 1 1 � 1

� |

(14)

for an impurity along the x-axis.
To �nd the coordinate dependence and the asymptotic

behavior of the Shiba states we perform the Fourier trans-
forms:

X 0(r ) = �
Z

dk
(2� )2

ei kr

� 2
k + ! 2 ; (15)

X 1(r ) = �
Z

dk
(2� )2

� k ei kr

� 2
k + ! 2 : (16)

We detail this calculation in appendix A and here we
only give the �nal results:

X 0(r ) = � 2� �
1
!

� = (K 0 [� i (1 + i 
) kF r ]) ; (17)

X 1(r ) = � 2� � < (K 0 [� i (1 + i 
) kF r ]) ; (18)

where 
 � !
vF kF

and K 0 denotes the modi�ed Bessel
function of the second kind. It is worth noting that
these functions diverge at r = 0, but this divergence
can be disregarded as it occurs only at the point where
the impurity is localized and, therefore, the Schr•odinger
equation is not well-de�ned. However, this problem can
be always avoided by introducing an infrared cut-o� if
needed. Since these functions have spherical symmetry
we can write down the unperturbed Green's function as

G0(E; r ) =
�

[EX 0(r ) + X 1(r )] � 0 � sX 0(r )� 0

� sX 0(r )� 0 [EX 0(r ) � X 1(r )] � 0

�
;

where r = jr j. Using (5) we �nd for an impurity along
the z-axis:

� �1(r ) = + Jz

0

B
@

(E �1 � � s)X 0(r ) + X 1(r )
0

� (E �1 � � s)X 0(r ) + X 1(r )
0

1

C
A ;

� 1(r ) = � Jz

0

B
@

0
(E1 + � s)X 0(r ) + X 1(r )

0
(E1 + � s)X 0(r ) � X 1(r )

1

C
A :

The formation of Shiba states implies the breaking of
Cooper pairs, and subsequently the coupling of the elec-
trons to the spin of the impurity. Therefore there is no
physical reason for the Shiba states to be polarized in any
other direction than the direction of the impurity spin.
Thus we expect intuitively that Sx

1;�1(r ) = Sy
1;�1(r ) = 0 for

both � 1; � �1 and this is indeed the case. Moreover we
have

Sz
�1 (r ) = + � �1(r ) = + J 2

z [(E �1 � � s)X 0(r ) + X 1(r )]2 ;

Sz
1 (r ) = � � 1(r ) = � J 2

z [(E1 + � s)X 0(r ) + X 1(r )]2 :
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Similarly, for an impurity along the x-axis we have

� �1(r ) = + Jx

0

B
@

(E �1 � � s)X 0(r ) + X 1(r )
(E �1 � � s)X 0(r ) + X 1(r )

� (E �1 � � s)X 0(r ) + X 1(r )
� (E �1 � � s)X 0(r ) + X 1(r )

1

C
A ;

� 1(r ) = � Jx

0

B
@

(E1 + � s)X 0(r ) + X 1(r )
� (E1 + � s)X 0(r ) � X 1(r )
(E1 + � s)X 0(r ) � X 1(r )

� (E1 + � s)X 0(r ) + X 1(r )

1

C
A :

For the same reasons as before, we haveSy
1;�1(r ) =

Sz
1;�1(r ) = 0, and

Sx
�1 (r ) = + � �1(r ) = +2 J 2

x [(E �1 � � s)X 0(r ) + X 1(r )]2 ;

Sx
1 (r ) = � � 1(r ) = � 2J 2

x [(E1 + � s)X 0(r ) + X 1(r )]2 :

Note that all the functions given above are not normal-
ized. This choice is made for the sake of simplicity; more-
over, since we are only interested in the form of the spa-
tial dependence, the overall normalization constant is not
relevant for our analysis.

The asymptotic forms of the functions X 0 and X 1 for
r ! 1 are derived in the appendix B, and are given by

X 0(r ) � �
p

2� � �
1
!

sin (kF r + �= 4)
p

kF r
e� kS r ;

X 1(r ) � �
p

2� � �
cos (kF r + �= 4)

p
kF r

e� kS r ;

where kS = 
 kF = !=v F is the inverse superconducting
decay length, and the Friedel oscillations have a period
corresponding to the Fermi momentumkF .

We should note that these results agree only qualita-
tively with previous studies of the Shiba states in 2D
s-wave superconductors (see e.g. [19], [39]). First of all,
unlike the previous results expressed in terms of Bessel
functions of the �rst kind and Struve functions, 19,39 the
form that we �nd for the Shiba states wavefunctions can
be written in terms of modi�ed Bessel functions of the
second kind. The crucial di�erence between our results
and the previous calculations is that the Bessel functions
of the �rst kind and the Struve functions of complex argu-
ments actually diverge for r ! 1 ! Therefore, an expres-
sion containing these functions cannot correctly capture
the full behavior of the wavefunctions of the SBS46. On
the contrary, the functions X 0(r ) and X 1(r ), given by
(17-18), display a consistent behavior for large values of
r , namely they go to zero whenr ! 1 . Another minor
di�erence between our results and the ones in [19] and
[39] is a di�erence in the phase shift of the oscillating
terms in the asymptotic expansions at larger .

IV. SHIBA STATES IN A 2D PURE P-WAVE
SUPERCONDUCTOR

We now exploit the model introduced in section II to
study a pure p-wave SC for which we take � s = 0. We

only consider triplet superconductors which are gapped.
Similar to our previous numerical analysis,40 we study
here di�erent d vectors describing the triplet p-wave
SCs.47 We focus on two di�erent types of d vectors which
are generic enough to describe all 2D unconventional
triplet gaped superconductors: an in-plane d vector,
dk (k ) = ( ky ; � kx ; 0), which corresponds to an uncon-
ventional time-reversal-invariant SC; and an out-of plane
d vector, d? (k ) = (0 ; 0; kx + ik y ) which corresponds to
a time-reversal symmetry-breaking SC. The latter model
has been used to describe the properties of Sr2RuO4.3

Note that for these two d vectors, the system is charac-
terized by two conserved quantities which can be written
as

M z
k = L z + � z=2 for dk ; (19)

M z
? = L z � � z=2 for d? ; (20)

correspondingly. Here� z is the Pauli matrix acting in
the particle-hole subspace andL = r � p is the orbital
momentum operator.

A. Energies of Shiba states and Shiba
wavefunctions at r = 0

The eigenvalues corresponding to the energies of the
Shiba states, as well as the Shiba wavefunctions atr = 0
are independent of thed vector choice, and can be found
using the method introduced in [14]:

[I4 � V G0(E; r = 0)] �( r = 0) = 0 : (21)

Therefore, the �rst step is to calculate analytically
G0(E; r = 0). For this we note that the spectrum of
H 0(k ) is given by E(k ) = �

p
� 2

k + { 2k 2, with a triplet
gap parameter � t � { kFp

1+~{ 2 , where ~{ � { =vF . We need
to perform the following integrals:

X 0(0) = �
Z

dk
(2� 2

1
� 2

k + { 2k 2 � E 2 ; (22)

X 1(0) = � p:v:
Z

dk
(2� )2

� k

� 2
k + { 2k 2 � E 2 ; (23)

X �
2 (0) = �

Z
dk

(2� )2

i { k�

� 2
k + { 2k 2 � E 2 ; (24)

where k� = kx � ik y and the symbol 'p:v:' corresponds
to the principal value. The last integral is zero due to
the angular part. The second integral has a UV diver-
gence thus we need to use a natural cut-o� which, in this
particular case, is equivalent to computing the principal
value of the integral. We linearize � p around the Fermi
level, and using the spherical symmetry of the integrals
we change variables� k � vF (k � kF );

R
dk

(2 � )2 = �
R

d� k ,
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where � = m
2� , and �nally we obtain:

X 0(0) = �
��

p
1 + ~{ 2

1
p

� 2
t � E 2

; (25)

X 1(0) =
��

p
1 + ~{ 2

� tp
� 2

t � E 2

~{
p

1 + ~{ 2
; (26)

X �
2 (0) = 0 : (27)

The Green's function for r = 0 then takes the form:

G0(E; r = 0) = �
��

p
1 + ~{ 2

� (28)

�
1

p
� 2

t � E 2

�
(E �  � t ) � 0 0

0 (E +  � t ) � 0

�
;

where  � ~{p
1+~{ 2 . Using this form for the Green's func-

tion and (21) we compute below the eigenvalues and
eigenfunctions for r = 0 for di�erent types of impuri-
ties, as in Section III.

1. Scalar impurity

Unlike for pure s-wave SCs, in p-wave SCs a purely
scalar impurity ( J = 0) creates two pairs of degenerate
Shiba states with energies

E �1;�2 = �
� � 2 +

p
1 + � 2(1 �  2)

1 + � 2 � t ; (29)

E1;2 = +
� � 2 +

p
1 + � 2(1 �  2)

1 + � 2 � t ; (30)

where � = ��Up
1+~{ 2 , and eigenfunctions

� �1(0) =
�
0 1 0 0

� |
; � �2(0) =

�
1 0 0 0

� |
; (31)

� 2(0) =
�
0 0 0 1

� |
; � 1(0) =

�
0 0 1 0

� |
: (32)

A possible explanation of the existence of these states
is that a p-wave SC contains Cooper pairs with non-zero
angular momentum due to the triplet pairing, and thus
there are intrinsic magnetic �elds impossible to observe
unless one introduces a defect into the system, e.g. an
impurity of any type. While in the case of a p-wave SC
with a non-magnetic impurity we seem to have two pairs
of degenerate states, we can think about this situation
as having only two Shiba bound states within the gap
mixing particle and hole degrees of freedom. Because
the particle and hole components are the parts of the
same state, they appear symmetrically in energy rela-
tive to the chemical potential, the positive and negative
energy counterparts corresponding to the particle and
hole component of the same bound state wave function
respectively.35,48{50

2. Magnetic impurity

Since in the case of a purely magnetic impurity (U = 0)
two types of coupling between the Cooper pairs and the

impurity are possible, there are four Shiba states with
energies independent of the impurity spin direction:

E1;�1 = �
� 2 +

p
1 + � 2(1 �  2)
1 + � 2 � t ; (33)

E2;�2 = �
� � 2 +

p
1 + � 2(1 �  2)

1 + � 2 � t ; (34)

where � = ��Jp
1+~{ 2 . For weak impurities these levels

are ordered as followsE �1 < E �2 < E 2 < E 1, while for
a stronger impurities the middle levels exchange places,
changing the order to E �1 < E 2 < E �2 < E 1.

The behaviour of these energy levels is qualitatively
di�erent in s-wave SCs than in p-wave SCs. First of all,
when increasing the impurity strength, the Shiba states
in a s-wave SC approach the gap and eventually merge
with the continuum, whereas in the p-wave case they re-
main in the gap and asymptotically approach�  � t (see
Fig. 1). Second, the crossing point in the s-wave case
is always at � = 1 independent of the singlet pairing
� s, while for p-wave SCs the crossing point appears at
� = 1 = � 1 and thus depends on the value of the triplet
pairing ~{ . Some realistic values of� can be extracted
from experimental data given e.g. in [44] for an s-wave
SC: the superconducting gap is about 1 meV and the
Shiba state appears at 0:1 meV, therefore � � 0:9 (close
to the crossing point in �gure 1). Since no p-wave su-
perconductor has been unambiguously discovered so far
(there are only some candidates like Sr2RuO4

3), there is
no experimental data available. However, taking compa-
rable impurity strengths, we therefore expect the experi-
ments to be in the regime much before the crossing point
(see �gure 1). We believe that it is unlikely to observe
that point experimentally, because the dimensionless im-
purity strength must be too large (� � 10 since � 1).
Furthermore, in this regime the gap is renormalised (or
even utterly suppressed), and the problem requires a self-
consistent approach leading to a qualitatively di�erent
result, namely, the Shiba states might transform into the
Andreev bound states (see [51] for further details). Also
note that the physical meaning of the crossing point is
the change in the ground state parity for both types of
pairing.

For an impurity with spin along z-axis we have:

� �1(0) =
�
0 0 1 0

� |
; � �2(0) =

�
1 0 0 0

� |
; (35)

� 2(0) =
�
0 0 0 1

� |
; � 1(0) =

�
0 1 0 0

� |
: (36)

For an impurity with spin along x-axis, we have:

� �1(0) =
�
0 0 1 1

� |
; � �2(0) =

�
1 1 0 0

� |
; (37)

� 2(0) =
�
0 0 1 � 1

� |
; � 1(0) =

�
1 � 1 0 0

� |
: (38)
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Figure 1. The energies of the Shiba states (in arbitrary unit s)
for a s-wave SC (red lines) and a p-wave SC (blue lines) as
function of the dimensionless impurity strength � = ��J .
The red and blue dashed lines denote the s-wave and p-wave
SC gaps correspondingly. We setkF = 1 ; � s = 0 :3; ~{ = 0 :2.

B. Coordinate dependence of the Shiba
wavefunctions

To �nd the spatial dependence of the Shiba states
wavefunctions we use

�( r ) = G0(E; r )V �( 0): (39)

While G0(E; r = 0) is independent of the choice ofd,
G0(E; r 6= 0), and thus the spatial dependence of the
eigenfunctions, as well as the spatial dependence of the
LDOS and SP LDOS change drastically with the choice
of d. In what follows for every choice of thed vector we
construct the retarded Green's function and the corre-
sponding eigenfunctions for di�erent types of impurities,
for which we also compute all the polarized and non-
polarized components of LDOS. However, we note �rst
that for both choices of d vector we need to perform the
following integrations:

X 0(r ) = �
Z

dk
(2� )2

ei kr

� 2
k + { 2k 2 � E 2 ; (40)

X 1(r ) = �
Z

dk
(2� )2

� k ei kr

� 2
k + { 2k 2 � E 2 ; (41)

X �
2 (r ) = �

Z
dk

(2� )2

i { k� ei kr

� 2
k + { 2k 2 � E 2 ; (42)

Below we give the results of the calculations, the details
of which can be found in appendix A.

X 0(r ) = �
2�

1 + ~{ 2 �
1
!

� = K 0
�
� i (1 �  2 + i 
) kF r

�

(43)

X 1(r ) = �
2�

1 + ~{ 2 � =
��

i �
 2




�
� (44)

� K 0
�
� i (1 �  2 + i 
) kF r

�	

X �
2 (r ) = �

2�
1 + ~{ 2 �

{ kF

!
� e� i' r � (45)

� <
��

1 �  2 + i 

�

K 1
�
� i (1 �  2 + i 
) kF r

�	
;

where we denote 
 � !
vF kF

= 1
vF kF

p
� 2

t � E 2
p

1+~{ 2 , and

e� i' r �
x � iy

p
x2 + y2

=
x � iy

r

reects all the characteristic asymmetry originating from
the p-wave pairing orbital nature. We use the fact that

 � 1, which holds for all sub-gap energies. We give also
the asymptotic behavior of these integrals (see appendix
B for a full derivation):

X 0(r ) � �

p
2� �

p
1 + ~{ 2

�
1

p
� 2

t � E 2

sin (k0
F r + �= 4)

p
k0

F r
e� kS r ;

(46)

X 1(r ) � +

p
2� �

1 + ~{ 2 � ~{
� tp

� 2
t � E 2

�
sin (k0

F r + �= 4)
p

k0
F r

e� kS r ;

(47)

X �
2 (r ) � �

p
2� �

1 + ~{ 2 �
� tp

� 2
t � E 2

� e� i' r � (48)

�
cos (k0

F r + �= 4)
p

k0
F r

e� kS r ;

wherekS = 
 kF =
p

� 2
t � E 2

vF
p

1+~{ 2 is the inverse superconduct-

ing decay length scale, andk0
F = kF

1+~{ 2 .

1. In-plane dk

The retarded Green's function in this case can be writ-
ten using the integrals given above:

G0(E; r ) =
�

[EX 0(r ) + X 1(r )] � 0 D k (r )
D k (r ) [EX 0(r ) � X 1(r )] � 0

�
;

where we denote:

D k (r ) �
�

0 X �
2 (r )

X +
2 (r ) 0

�
:
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The wavefunctions for the SBS arising for di�erent
types of impurities can be calculated subsequently using
(39).

Scalar impurity. In this case we �nd

� �1(r ) = + U

0

B
@

0
E �1;�2X 0(r ) + X 1(r )

X �
2 (r )
0

1

C
A ;

� �2(r ) = + U

0

B
@

E �1;�2X 0(r ) + X 1(r )
0
0

X +
2 (r )

1

C
A ;

� 2(r ) = � U

0

B
@

X �
2 (r )
0
0

E1;2X 0(r ) � X 1(r )

1

C
A

� 1(r ) = � U

0

B
@

0
X +

2 (r )
E1;2X 0(r ) � X 1(r )

0

1

C
A :

It is worth noting that the Hamiltonian in (1) with
a scalar impurity described by (3) with J = 0 still
commutes with M z

k and therefore the states described
above are also the eigenstates of this operator, namely:
M z

k � 1;�1 = + 1
2 � 1;�1 and M z

k � 2;�2 = � 1
2 � 2;�2. Therefore, we

expect no explicit symmetry breaking nor any explicit p-
wave orbital features to be observed in the full LDOS or
in the SP LDOS. Indeed, we �nd that for all the states
we haveSx (r ) = Sy (r ) = 0. Also, we note that the z-
component of the SP LDOS and the LDOS are radially
symmetric:

Sz
�1 (r ) = + � �1(r ) = � U2X �

2 (r )X +
2 (r ) > 0;

Sz
�2 (r ) = � � �2(r ) = + U2X �

2 (r )X +
2 (r ) 6 0;

Sz
2 (r ) = � � 2(r ) = � U2 [E1;2X 0(r ) � X 1(r )]2 6 0;

Sz
1 (r ) = + � 1(r ) = + U2 [E1;2X 0(r ) � X 1(r )]2 > 0:

We can see that the degenerate states have exactly op-
posite spin, and thus the total SP LDOS corresponding
to the SBS energies, which is obtained by summing up
over the two states with the same energy, is exactly zero,
consistent also with the numerical simulations.

Moreover, when comparing the asymptotic behavior
for the SP LDOS, as derived from the asymptotic ex-
pressions in (46,47,48), with the one obtained for the
pure s-wave SC, we see that we have an additional factor
k0

F = kF
1+~{ 2 depending on the p-wave parameter{ that

renormalizes the Fermi momentum and also changes the
decay length scale. Such renormalization, if detected,
may serve to measure the triplet pairing parameter by
analysing the spatial structure of the SBS using STM.

Magnetic impurity with spin k z. For this type of im-

purity we �nd

� �1(r ) = + Jz

0

B
@

0
X +

2 (r )
E �1X 0(r ) � X 1(r )

0

1

C
A ;

� �2(r ) = + Jz

0

B
@

E �2X 0(r ) + X 1(r )
0
0

X +
2 (r )

1

C
A ;

� 2(r ) = � Jz

0

B
@

X �
2 (r )
0
0

E2X 0(r ) � X 1(r )

1

C
A ;

� 1(r ) = � Jz

0

B
@

0
E1X 0(r ) + X 1(r )

X �
2 (r )
0

1

C
A :

Like in the case of a scalar impurity, we note that the
Hamiltonian still commutes with M z

k , and therefore the
states found above are also the eigenstates ofM z

k , such

that M z
k � �1;�2 = + 1

2 � �1;�2, and M z
k � 1;2 = � 1

2 � 1;2. For all
the states Sx (r ) = Sy (r ) = 0. Below we give the expres-
sions for the z-component of the SP LDOS, and for the
non-polarized LDOS, which are fully radially symmetric,
same as for a scalar impurity:

Sz
�1 (r ) = + � �1(r ) = + J 2

z (E �1X 0(r ) � X 1(r )) 2 > 0;

Sz
�2 (r ) = � � �2(r ) = + J 2

z X �
2 (r )X +

2 (r ) 6 0;

Sz
2 (r ) = � � 2(r ) = � J 2

z (E2X 0(r ) + X 1(r )) 2 6 0;

Sz
1 (r ) = + � 1(r ) = � J 2

z X �
2 (r )X +

2 (r ) > 0:

We can see from this expressions that the average SP-
DOS, obtained by integrating these expressions over all
space, is positive for the �rst and fourth states, and nega-
tive for the second and third. Thus, the analytical results
are perfectly consistent with the numerical simulations
given in [40].

Magnetic impurity with spin k x. Unlike the cases of
a scalar impurity and of a magnetic impurity along z,
the Hamiltonian describing a magnetic impurity with the
spin along x no longer commutes withM z

k and therefore
the SBS are not the eigenstates of this operator, and are
thus expected to break the rotational symmetry that we
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have observed in the previous limits. Indeed we obtain:

� �1(r ) = Jx

0

B
B
@

X �
2 (r )

X +
2 (r )

+ E �1X 0(r ) � X 1(r )
+ E �1X 0(r ) � X 1(r )

1

C
C
A ;

� �2(r ) = Jx

0

B
B
@

+ E �2X 0(r ) + X 1(r )
+ E �2X 0(r ) + X 1(r )

X �
2 (r )

X +
2 (r )

1

C
C
A ;

� 2(r ) = Jx

0

B
B
@

X �
2 (r )

� X +
2 (r )

� E2X 0(r ) + X 1(r )
+ E2X 0(r ) � X 1(r )

1

C
C
A ;

� 1(r ) = Jx

0

B
B
@

� E1X 0(r ) � X 1(r )
+ E1X 0(r ) + X 1(r )

X �
2 (r )

� X +
2 (r )

1

C
C
A :

We exploit once more (6-7) to compute the LDOS and
the SP LDOS and we �nd:

Sx
�1 (r ) = + � �1(r ) = +2 J 2

x (E �1X 0(r ) � X 1(r )) 2 > 0;

Sy
�1 (r ) = Sz

�1 (r ) = 0 ;

Sx
�2 (r ) = � J 2

x

n�
X +

2 (r )
� 2

+
�
X �

2 (r )
� 2

o
;

Sy
�2 (r ) = + iJ 2

x

n�
X +

2 (r )
� 2

�
�
X �

2 (r )
� 2

o
;

Sz
�2 (r ) = 0 ;

� �2(r ) = � 2J 2
x X �

2 (r )X +
2 (r );

Sx
2 (r ) = � � 2(r ) = � 2J 2

x (E2X 0(r ) � X 1(r )) 2 6 0;

Sy
2 (r ) = Sz

2 (r ) = 0 ;

Sx
1 (r ) = + J 2

x

n�
X +

2 (r )
� 2

+
�
X �

2 (r )
� 2

o
;

Sy
1 (r ) = � iJ 2

x

n�
X +

2 (r )
� 2

�
�
X �

2 (r )
� 2

o
;

Sz
1 (r ) = 0 ;

� 1(r ) = � 2J 2
x X �

2 (r )X +
2 (r ):

Indeed, we see that thex-components of the spin of the
states �1 and 2 are opposite in sign, while the rotational
symmetry for these states is preserved. However the
states �2 and 1 show peculiar orbital features characteris-
tic for the p-wave, that we show in �gure 2 by plotting
the corresponding SP LDOS. The rings of high intensity
appearing in these �gures correspond to Friedel oscilla-
tions with the wavevector 2k0

F de�ned above. The strong
radially asymmetric behavior of the Sx component for an
x-impurity is consistent with the cos 2� r dependence aris-
ing in the asymptotic expansion of

�
X +

2 (r )
� 2

+
�
X �

2 (r )
� 2

.
Let us focus on the states�2 and 1 and particularly on

their average spin. Noticing that

X �
2 (r ) = � e� i' r F (r );

Figure 2. SP LDOS (in arbitrary units) in coordinate space,
for an in-plane d vector, and for an energy E = E �2 . We
consider a magnetic impurity with spin along z (upper panel)
and along y (lower panel), with impurity strengths of Jz = 2
and Jx = 2 respectively. The SP LDOS in the upper panel
is radially symmetric, whereas in the lower one it reects th e
characteristic p-wave four-fold symmetry. We set � s = 0,
{ = 0 :2 and an inverse quasiparticle lifetime � = 0 :01.

where F (r ) has no angular dependence, we thus �nd

Z
dr

�
X �

2 (r )
� 2

=

+ 1Z

0

rF 2(r )dr

2�Z

0

e� 2i' r d' r = 0

due to the angular part. Therefore, we �nd that the
average spin for the states�2 and 1 is exactly zero which is
consistent with previous numerical analysis.40 This result
can be directly traced back to the p-wave nature of the
host superconductor which manifests in some of the Shiba
states.

In Fig. 3 we present a qualitative comparison of these
analytical results with the previously obtained numerical
simulations on a square lattice by calculating Sx

�2 for a
x-impurity (in arbitrary units) in coordinate space. The
two approaches agree very well except at small distances
from the impurity. This is expected since the analyti-






















