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We study the algebraic and analytic structure of Feynman integrals by proposing an operation
that maps an integral into pairs of integrals obtained from a master integrand and a corresponding
master contour. This operation is a coaction. It reduces to the known coaction on multiple poly-
logarithms, but applies more generally, e.g. to hypergeometric functions. The coaction also applies
to generic one-loop Feynman integrals with any configuration of internal and external masses, and
in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic
representation purely in terms of operations on graphs, namely contractions and cuts of edges.
The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates
a straightforward derivation of the differential equations they admit. In particular, the differen-
tial equations for any one-loop integral are determined by the diagrammatic coaction using limited
information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.

Feynman integrals are central to perturbative quan-
tum field theory (QFT), and it was realized early on that
their analytic structure and discontinuities are directly
connected to the fundamental concept of unitarity [1, 2].
Despite their importance in a broad range of applications
over decades, the explicit computation of Feynman inte-
grals is still difficult, sometimes prohibitively so. Control-
ling the analytic structure of Feynman integrals is key to
precision collider physics, which requires fast evaluation
of scattering amplitudes with an increasing number of
loops and legs. Developing a better understanding of the
analytic structure of Feynman integrals can both help in
devising new methods of computing them and shed light
on fundamental aspects of QFT.

Feynman integrals are not only fundamental to QFT,
but they are also deeply connected to certain areas of
modern mathematics. This connection, in turn, has re-
cently led to major advances in precision computations
in particle physics. Instrumental to this progress was the
realization that large classes of Feynman integrals can be
evaluated in terms of so-called multiple polylogarithms
(MPLs) [3, 4], a class of special functions that general-
ize the classical logarithm and polylogarithms to many
variables. Understanding the mathematics of MPLs and
their algebraic structure has led, for example, to new
ways of evaluating certain classes of integrals in an algo-
rithmic way [5–10], to efficient approaches to solving dif-
ferential equations [11], and to drastic simplifications of
complicated analytical results for Feynman integrals [12].
An important aspect of MPLs is that they can be en-
dowed with a so-called coaction [3, 13–17], an operation
which maps a given MPL into pairs of simpler MPLs, ef-
fectively capturing the algebraic and analytic complexity

of these functions.
However, not every Feynman integral can be evaluated

in terms of MPLs. Indeed, generalizations to elliptic
curves arise beyond one loop [18–29], and the space of
relevant functions has yet to be fully explored. It is
therefore important to investigate the algebraic structure
of Feynman integrals, and the functions they evaluate
to, beyond the context of MPLs. In this letter, we
take a step in this direction: we propose a coaction
that generalizes the one on MPLs to a larger class of
integrals and we explore its consequences for one-loop
Feynman integrals in dimensional regularization. In this
case, our proposed coaction can be cast in a remarkably
elegant form through simple operations on graphs. We
give sample applications of our coaction to the study
of Feynman integrals. In particular, we show how to
obtain a compact representation of the complete set of
differential equations satisfied by one-loop integrals with
an arbitrary number of scales.

A coaction on integrals. Consider a differential form
ω which we assume to be closed (so that ω defines a
cohomology class), and consider a contour γ such that the
integral of ω over γ converges. We propose the following
coaction on such integrals:

∆
(∫

γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω , (1)

where the sum runs over a basis ωi of differential forms,
called master integrands. The contours γi are called mas-
ter contours, and they are dual to the basis elements ωi
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in the following sense:

Pss

(∫
γi

ωj

)
= δij , (2)

where Pss denotes a projector onto the subspace of ‘semi-
simple’ objects, defined as those objects x on which the
coaction acts trivially as ∆(x) = x ⊗ 1. Semi-simple
objects include all rational and algebraic functions [30],
certain transcendental numbers such as 2πi [15] and com-
plete elliptic integrals [31]. In contrast, examples of non-
semi-simple objects include the classical logarithm and
polylogarithm functions, except where they evaluate to
powers of 2πi. The second integral on the right-hand side
of eq. (1) is defined only modulo transcendental semi-
simple objects. We have checked that with these def-
initions, eq. (1) satisfies the axioms of a coaction. In
particular, while individual terms on its right-hand side
depend explicitly on a choice of master integrands, their
sum is independent of this choice.

One can verify that eq. (1) reduces to the coaction on
MPLs [3, 15] when acting on this class of functions. In
this case, the master integrands ωi are differential forms
with a subset of the poles of ω. For each ωi, we define a
corresponding master contour γi by encircling the same
subset of poles and dividing by a factor of 2πi for each
pole. Hence the right entries in eq. (1) are obtained by
taking residues of ω at the selected poles. The coaction
of eq. (1) generalizes the one on MPLs to a larger class
of functions while preserving some of its most important
properties. In particular, it interacts with discontinuities
and differential operators in the same way as the MPL
coaction [17, 30]:

∆Disc = (Disc⊗ id)∆ and ∆∂ = (id⊗ ∂)∆ , (3)

where id denotes the identity operator. As an example,
eq. (1) predicts the coaction on certain classes of hyper-
geometric functions. In the simple case of a Gauss hy-
pergeometric 2F1 function, the master integrands are two
independent solutions to the hypergeometric differential
equation, while the corresponding master contours are
two straight lines. In Feynman integral calculations, hy-
pergeometric functions appear when computing integrals
in dimensional regularization, and we are typically inter-
ested in their Laurent expansion around small values of
the dimensional regulator ε. In certain cases, the coeffi-
cients of the Laurent series are MPLs, see e.g. ref. [32–35],
and we have checked that the prediction of eq. (1) for the
coaction prior to expansion reproduces the same result as
acting with the MPL coaction on the Laurent coefficients.
Details will be given in a forthcoming publication.

In the remainder of this letter, we explore the con-
sequences of eq. (1) for one-loop Feynman integrals in
dimensional regularization. We demonstrate that in this
case eq. (1) has a purely diagrammatic interpretation:
the coaction of any one-loop Feynman integral can be
expressed in terms of other Feynman integrals. The
latter correspond to graphs that are obtained from the

original one through two types of graphical operations,
namely contractions and cuts of its edges.

A coaction on one-loop (cut) integrals and graphs.
All one-loop integrals with numerators can be reduced
to scalar integrals with unit numerator. Integrals
with different powers of the propagators are related by
integration-by-parts (IBP) identities [36, 37], and inte-
grals in different spacetime dimensions by dimension-
shift identities [38–40]. It is therefore sufficient to discuss
a basis of one-loop integrals of the form

J̃n = eγEε

iπD/2

∫
dDk

n−1∏
j=0

1
(k − qj)2 −m2

j

, (4)

where γE = −Γ′(1) is the Euler-Mascheroni constant, n is
the number of propagators, and the number of spacetime
dimensions is accordingly chosen to be D = 2dn2 e − 2ε.
It is expected that at one loop all Feynman integrals can
be expressed in terms of MPLs, order by order in the
dimensional regulator ε. The integrals J̃n are a conve-
nient basis, as they are functions of uniform weight dn2 e
(where ε is counted with weight −1). We divide J̃n by its
maximal cut in integer dimensions to define a normalized
integral Jn.
A cut integral CCJn in dimensional regularization [41]

is defined from the uncut integrals of eq. (4) by integrat-
ing the integrand of Jn over a contour encircling the poles
of a subset C of propagators. Each element Jn of our ba-
sis is naturally represented by its Feynman graph G, with
n internal and n external edges. Each edge carries a dis-
tinct label, which can be used to keep track of its mass.
We denote the set of all internal edges of G by EG. Simi-
larly, we represent each cut integral CCJG by a cut graph
(G,C), where C is the subset of edges identifying the
cut propagators, and where the original uncut integral
JG ≡ Jn corresponds to G ≡ (G, ∅).
Within this setting, we find that when restricted to

one-loop integrals, the coaction of eq. (1) has a simple
interpretation as a coaction on cut graphs. We first note
that there is a combinatorial coaction on cut graphs [63]
given by

∆(G,C) =
∑

C⊆X⊆EG

X 6=∅

(
(GX , C) + aX

∑
e∈X\C

(GX\e, C)
)
⊗ (G,X),

(5)
where aX can be any function on subsets of edges that
takes values in Q, and GX is the graph obtained by
contracting all internal edges of G except those in X.
The second entry in the coaction is the cut graph (G,X)
where the set of cut edges X is necessarily nonempty and
contains the subset C. A central result of our paper is
that there exist unique values of aX for which the graph-
ical operation of eq. (5) maps precisely to the coaction of
eq. (1) when acting on one-loop Feynman integrals. To
illustrate this, consider the application of eq. (5) to the
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uncut basis integrals JG (i.e. taking C = ∅), yielding

∆(JG) =
∑

∅6=X⊆EG

(
JGX

+ aX
∑
e∈X

JGX\e

)
⊗ CXJG . (6)

Equation (6) agrees with the coaction of eq. (1) on one-
loop integrals, provided we set aX = 1/2 (aX = 0) when
the number of edges |X| is even (odd). This defines
the operation we call the diagrammatic coaction. Using
eq. (5) it generalizes straightforwardly to any ∆(CCJG),
with the same values for aX . To relate eq. (1) to eq. (6),
we establish that a complete set of contours is given by
those encircling the poles of propagators, as in the cut in-
tegrals above, along with those that additionally encircle
the pole at infinity [41]. These two types of contours are
associated with Landau singularities of the first and sec-
ond types, respectively. A remarkable linear relation [42–
44] then allows us to express the latter in terms of the
former, so that it is indeed sufficient to write cut integrals
CXJG in the second entries of eq. (1). The same linear
relation can be interpreted as generating the terms pro-
portional to aX , with its values fixed uniquely as above,
in order to satisfy eq. (2).

Considering a variety of one-loop integrals, we have
verified that eq. (6) holds order by order in ε. To this
end, we computed the left-hand side by acting with the
MPL coaction on the first few Laurent coefficients of a
given integral Jn, while on the right-hand side we ex-
panded both the basis integrals and their cuts in ε. In
particular, we have verified eq. (6) for tadpoles, bubbles
and most triangles and boxes with a variety of internal
and external mass configurations [45]. We have also per-
formed consistency checks for the massless pentagon and
hexagon. This leads us to conjecture that eq. (6) holds
to any order in ε for all basis integrals Jn, and hence for
any one-loop integral.

We present some illustrative examples with few edges.
For the uncut bubble with massive propagators, we have

∆
[

1

2

]
= 1 ⊗

1

2

+ 2 ⊗
1

2

+
(

1

2

+ 1
2

1 + 1
2

2

)
⊗

1

2
. (7)

For its two-propagator cut, we obtain

∆
[

1

2

]
=

1

2
⊗

1

2
. (8)

These equations can be read in two ways: according
to eq. (5), as an operation on graphs, or according to
eq. (6), as an operation on the functions obtained by
evaluating the corresponding integrals Jn, as defined in
eq. (4). Equation (8) illustrates the generalization of
eq. (6) to ∆ (CCJn). Since the formula for the coaction
is valid before expansion in ε, masses may be assigned
arbitrarily. In some limits some of the cut integrals can

vanish or contain divergences. These limiting behaviors
do not spoil the validity of our conjecture. For instance,
the coaction on a triangle with massless propagators (in-
dicated by thin edges) is given by

∆
[

2

1

3

]
= 1

2

⊗ 2

1
3 + 1

3

⊗
2

31

+ 2

3

⊗
1

3

2 +
2

1

3 ⊗
31

2
, (9)

since all tadpoles vanish in this case. Given our choice
of basis integrals in eq. (4) where D = 2dn2 e − 2ε, the
integrals corresponding to the uncut graphs on the
left-hand sides of eqs. (7) and (9) are finite, while the
tadpoles in eq. (7) and the massless bubbles in eq. (9)
introduce singularities on the right-hand sides. Owing
to a relation between uncut integrals and their one- and
two-propagator cuts [41], these poles cancel, which is
essential for the validity of eq. (6). This cancellation
is a general feature of finite integrals and a nontrivial
consistency check of our conjecture.

Discontinuities and the first-entry condition.
The existence of a simple formula for the coaction on
Feynman integrals is not only of formal interest. One
class of applications stems from the fact that Feynman
integrals are multivalued functions whose discontinuities
are described by cut integrals. According to eq. (3),
discontinuity operators act only on the first entry of
the coaction. It has already been understood that the
first entries in the coaction encode either branch cuts of
external channels [46] or internal masses [47]. This is
known as the first-entry condition. Equation (6) implies
a stronger version of this condition: the first entries of
the coaction are themselves Feynman integrals. This
generalizes a result of ref. [48] to divergent integrals
in dimensional regularization and also incorporates
the Steinmann relations [49–52]. The known version
of the first-entry condition immediately follows. The
terms in the coaction with tadpoles and bubbles in the
first entry identify branch cuts of internal masses and
external channels, and the corresponding discontinuity
functions appear in the respective second entries. We
refer to eq. (9) as an example: each bubble in the first
entries of the tensor uniquely identifies a channel, and
the corresponding discontinuity function, the relevant
two-propagator cut, appears in the respective second
entry. The relation between single discontinuities and
cuts is thus satisfied by construction. Relations between
iterated discontinuities and multiple cuts [47, 53] are
also built in: for instance, double discontinuities are
apparent in terms with triangles and boxes in the first
entry, and the corresponding three- and four-propagator
cuts in the second.

Differential equations for one-loop integrals. An-
other important application of eq. (6) is the possibility to
easily derive differential equations for one-loop Feynman
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integrals. For this, we focus on the terms of eq. (6) with
a logarithm in the second entry. According to eq. (3),
differential operators act only on the second entry of the
coaction, turning the logarithms into algebraic functions.
The resulting tensor can thus be trivially lifted to a func-
tion. As an example, consider the pentagon integral J5
in 6−2ε dimensions. The terms on the right-hand side of

eq. (6) with a logarithm in the second entry are very few:
they are the maximal cut of the pentagon at O(ε1), and
the next-to-maximal and next-to-next-to-maximal cuts
at O(ε0). From eq. (3), it follows that the derivative
of J5 is related exclusively to the Feynman integrals ap-
pearing in the first entries corresponding to these cuts,
namely J5, J4 and J3. Consequently, we obtain

d

  =
∑
(ijk)

j

i

k d

 i

k
j

+ 1
2
∑
l

i

k
j

l


ε0

+
∑

(ijkl)
i

j

k

l

d

 i

k
j

l


ε0

+ε d

 
ε1

, (10)

where i, j, k and l run over distinct edges of the graph.
We stress that the differential equation in eq. (10) is valid
for a general pentagon integral, with any configuration of
internal and external masses, and to all orders in ε.

Similarly, one may derive differential equations for
any one-loop integral, with an arbitrary number of
propagators n and an arbitrary number of scales. It is
a general feature that the arguments of the d log forms
in these differential equations, also known as the letters
of the alphabet of the integral, are associated exclusively
with Feynman integrals Jn with at most two uncut
propagators. These cuts can be computed explicitly for
any n using the techniques of ref. [41]. Hence, we are
able to write down the system of differential equations
for any one-loop integral. We note that this system
is characterized by a simple triangular structure: the
equation for Jn involves only Jn, Jn−1 and Jn−2. Details
will be given in a forthcoming publication [45].

Discussion. In this letter we have proposed a coaction
on certain classes of integrals. When acting on MPLs, it
reduces to the known coaction on this class of functions.
Our proposal, however, goes beyond this case, and we
have demonstrated its validity by constructing a coaction
on one-loop integrals that admit a Laurent expansion in
terms of MPLs, reproducing the coaction on MPLs order
by order in ε. Remarkably, when restricted to one-loop
integrals, eq. (1) has a simple combinatorial interpreta-
tion in terms of cut graphs, given by eq. (5).

The resulting diagrammatic coaction of eq. (6) effec-
tively encodes the algebraic and analytic structure of one-
loop integrals. It therefore has immediate applications in
identifying the discontinuities of these integrals in terms
of cuts, and in deriving the differential equations they
admit. These equations are determined by limited in-
formation on cut integrals. Standard methods to derive
such differential equations rely instead on solving systems
of IBP identities, which often becomes a computational
bottleneck. Obtaining the differential equation from the
diagrammatic coaction circumvents this difficulty. It also
sheds light on the general structure of these systems of

differential equations and the resulting alphabet.
It is natural to speculate how our discussion might gen-

eralize beyond one loop, in particular to cases where the
integrals can no longer be expressed in terms of MPLs.
The concept of master contour has a natural interpreta-
tion in the context of two-loop integrals [54], so it is rea-
sonable to expect that eq. (1) continues to hold if the ap-
propriate master contours are considered. Starting from
two loops, several master integrals may share the same
propagators, and differ only by the powers to which prop-
agators are raised or by polynomials in the numerator.
In such cases we cannot expect that the master contours
can only be labeled by subsets of propagators; rather, the
contours will depend crucially on Landau singularities
of the second type. As a consequence, while we believe
that eq. (1) continues to hold beyond one loop, it is still
unclear how eq. (6) generalizes. Integrations over more
complicated classes of contours may be required, includ-
ing integrations over cycles of surfaces of higher genus in
cases where the integral cannot be expressed in terms of
MPLs. The study of homology groups associated to cer-
tain two-loop integrals [55] may help in identifying the
relevant contours.
Finally, let us comment on connections to pure mathe-

matics. First, the search for a combinatorial coaction on
Feynman graphs which agrees with the coaction on MPLs
has been an active area of research, see e.g. ref. [56].
So far, however, coproducts and coactions on Feynman
graphs have focused on Feynman graphs without cut
edges [57–60]. Equation (6) suggests that it is in fact
also necessary to take cut Feynman graphs into account.
It would therefore be interesting to examine the litera-
ture in the light of eq. (6). Second, it would be inter-
esting to compare eq. (1) with the motivic coaction in-
troduced by Brown [30] and its application to Feynman
integrals [48, 61]. The motivic coaction takes a slightly
different form. In particular, its second entry does not
have a direct interpretation in terms of integrals, so its
relation to eq. (1) is not straightforward. Our results may
shed new light on some of these concepts in pure math-
ematics, while the motivic coaction might elucidate the
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origin of the simple form of the diagrammatic coaction
at one loop, paving the way for its generalization. We
expect that eq. (1) should apply equally well to two-loop
integrals and hypergeometric functions that cannot be
expressed in terms of MPLs, but require the introduction
of elliptic curves. Equation (1) thus makes a prediction
for a coaction on elliptic generalizations of MPLs, and
it would be interesting to explore this direction, and its
connection to the motivic coaction.
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