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Abstract 

Imogolite and allophane are two strongly curved nanominerals. Indeed, imogolite has a tubular shape 

with a diameter of only 2.5 nm. Allophane is often presented as a spherical nanostructure with a 

diameter of about 5 nm. The mechanism explaining the strong curvature of these two nanominerals has 

been extensively discussed. However, whether or not these two nanomaterials are related to each other 

is not clear and the mechanism responsible for the selection between the two different shapes is not 

well established. In this article, we propose that imogolite and allophane are nanopolymorphs of the 

imogolite local structure and that the transition from spherical to tubular shape occurs at an early stage 

of the precipitation because of edge stress in proto-imogolite. This hypothesis for the shape selection is 

supported by the use of a nanomechanical model tuned to mimic the main characteristics of imogolite-

like nanomaterials. 
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1 Introduction 

It is commonly observed that a material can adopt a variety of structures. For simple elements, this is the 

notion of allotropy. For minerals, this is the notion of polymorphism. Carbon is an emblematic example 

for allotropy as it can form both diamond and graphene. At the nanoscale, carbon atoms with a sp2 

hybridization can arrange in the form of nanospheres (fullerene), nanotubes of various chirality and wall 

number, sheets and other exotic shapes recently called nanoallotropes (Georgakilas et al., 2015). The 

perfect control of the different shapes is however difficult for carbon nanoallotropes. The same 

phenomena is observed for aluminosilicates presenting an imogolite-like local structure (ILS) with 

composition Al2SiO3(OH)4. In this case, it is possible to talk about nanopolymorphs as imogolite and 

allophane can enter the category of nanocrystals. Allophane having an ILS are described as 4-5 nm 
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spheres(Henmi and Wada, 1976) while imogolites are very long nanotubes with a monodisperse 

diameter between 2 and 2.8 nm depending on the formation conditions. Imogolite are believed to be 

obtained from proto-imogolites, which are described as curved pieces of ILS with an average edge size of 

5 nm (Levard et al., 2010).  Unlike carbon, very efficient control over the different shapes is possible 

through adapted synthesis. 

The ILS is a very original structure for clay minerals. Generally, the silicon atoms form a polymerized 

tetrahedral sheet in which each Si atom is linked to a dioctahedral (e.g. Kaolinite or Halloysite) or 

trioctahedral (e.g. Chrysotile) sheet by a single Si-O-Al or Si-O-Mg bond. This is not the case in the ILS 

where Si atoms are isolated and form three bonds within the lacuna of the dioctahedral aluminum sheet 

(Cradwick et al., 1972). The ILS is characterized by a strong curvature. Imogolite has a well-defined radius 

going from 2 nm for natural imogolite to 2.8 nm for synthetic nanotubes. It is possible to vary the size of 

imogolite by changing the temperature (Wada, 1987), the type of chemical precursors(Yucelen et al., 

2012) or by replacing Si atoms by Ge atoms(Wada and Wada, 1982). However, the nanotubes formed in 

the same conditions have all the same diameter. The reasons explaining this well-defined curvature have 

been discussed soon after the imogolite discovery (Farmer et al., 1977). The early explanation was that 

the tetrahedric Si site has to create bonds in the lacuna of the dioctahedral sheet which is larger than its 

relaxed size. Indeed, if one consider gibbsite as a reference structure for uncurved 2D dioctahedral Al 

sheet, the O-O distance (~ edge length of the Al octahedron) is 2.9 Å whereas the O-O edge distance in 

the relaxed Si tetrahedron is ~ 2.6 Å. This size mismatch is the most obvious reason for the spontaneous 

curvature associated with the ILS. However, the size mismatch between the relaxed Si tetrahedron and 

the O-O distance of the dioctahedral Al sheet is not sufficient to explain the very strong spontaneous 

curvature of imogolite. It is also important to consider the role of the electrostatic charges and hydrogen 

bonds (H Bond). The role of the internal Si-OH groups in the stability of imogolite nanotubes has been 

explored by density functional theory (DFT) (Lee et al., 2011). It is demonstrated that the H bond 

network inside the nanotubes contribute to the stability in size and to the selection of a preferential Zig-

Zag organization(Demichelis et al., 2010; Lee et al., 2011). 

An indirect experimental confirmation of the role of an internal H bond network has been obtained by 

Bottero et al. (2011). Indeed, they obtained a synthetic nanomineral having an ILS by using 

triethoxymethylsilane as a silicon source in the co-precipitation step. The obtained nanoparticles are still 

curved; the concave part being covered by Si-CH3 groups instead of Si-OH making strongly hydrophobic 

nanoconfined cavities. This chemical modification prevents the formation of an internal network of H 

bond. It is observed that these nanotubes are significantly larger than their natural Si-OH analogue 

(Amara et al., 2015) confirming indirectly the important role of H bond for the determination of their 

spontaneous curvature. 

The spontaneous curvature of imogolite has been studied by many different types of molecular dynamic 

(MD) and DFT techniques. It is always concluded that it exists a spontaneous curvature of minimum 

energy (Tamura and Kawamura, 2002; Alvarez-Ramirez, 2007; Li et al., 2008; Demichelis et al., 2010) 

even if the model may predict different values. An elegant analytical expression has been proposed 

considering a dissymmetric surface tension on a flexible thin material (Guimarães et al., 2007). This 

expression seems to capture the essential physics behind the curvature of ILS and nicely describes the 
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shape of the energy minimum obtained by different simulations. Based on such simplified analytical 

expressions, it is possible to successfully explain the single to double wall transition in germanium based 

imogolite (Thill et al., 2012). A generalized version has been used to describe the structure and 

thermodynamic of curved clay minerals (Belloni and Thill, 2016). While this phenomenological model 

enables to nicely relate the spontaneous curvature to the mechanical properties of ILS, it does not allow 

to predict the sphere/tube transition essentially because it neglects border effects.   

DFT simulations have been coupled to experiments to propose a mechanism for the selection of the two 

types of curvature (spherical and tubular). It is concluded that the ions and pH seems to play an 

important role (Abidin et al., 2007; Bac et al., 2009). The use of Si-CH3 groups for the internal surface of 

the ILS nanominerals maintains a spontaneous curvature without the formation of H bond network and 

electrostatic interactions. Modifications of the synthesis proposed by Bottero et al. (2011) allow to 

obtain both shapes with hybrid Si-CH3 ILS. Obviously, in this case, the transition from spherical to tubular 

morphology cannot be linked to the deprotonation of Si-OH groups or the formation of internal H bond 

network and this result calls for an alternative explanation.  

In this work, we propose a hypothesis for the shape transition saying that it is linked to a competition 

between surface and border tensions in proto-imogolite. To test this hypothesis, we use a simplified 

computer model to explore the curvature of proto-imogolites of various sizes. We used a hybrid model 

which is close to the atomistic description of the ILS and thus allows us to account for border effects. We 

will not try to perform a realistic mechanical description of imogolite or allophane as in MD or DFT 

models. We rather explore a general problem using a simplified mechanical system. The questions of 

interest are: i) Is it possible to correctly mimic the mechanical behavior of imogolite with such a 

simplified description? ii) Is it possible to observe a transition from a spherical to a tubular shape without 

interaction with the solvent? We will then discuss the implications of this simplified curvature 

mechanism on the formation mechanism of the different ILS nanominerals. 

 

2 Methods 

2.1 Numerical model of the hybrid ILS 

In the Guimarães et al. (2007) model, a plastic 2D thin material is subjected to different surface tensions 

on its two sides. In this case, the mechanical energy per unit surface as a function of the radius of 

curvature R of the 2D material reads  

𝐸 =
𝑌ℎ3

3𝑅2
−

𝜎ℎ

𝑅
+∑          [1] 

where Y is the Young modulus of a 2D slab of thickness 2h,  is the difference in surface tension between 

the two surfaces and  is a constant. This equation can be identified with a quadratic expression of the 

form  
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𝐾𝑐
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(
1

𝑅
−

1

𝑅0
)
2

          [2] 

with Kc = 2Yh3/3 and R0 = 2Yh2/3. Considering the estimation of the Young modulus of the ILS which is 

predicted to be of the order of 300 GPa and considering the thickness of the dioctahedral sheet to be 

2h = 2.9 Å, Kc is about 150 kT. This simple expression enables to reproduce the shape of the curve E = f(R) 

obtained by advanced DFT simulations. For example, the results of Guimarães et al. (2007) for the energy 

of imogolite of various radius can be fitted with eq. 2 using Kc = 156 kT and R0 = 9.2 Å. 

Here, a simplified description of the ILS is used consisting in an assembly of flexible octahedra and 

tetrahedra (Figure 1). Harmonic bond and angle potentials are used to tune the shape and flexibility of 

the structure(Konduri et al., 2006). The assembly of flexible octahedra will play the role of the flexible 2D 

material and the difference in surface tension will be induced by the bonding on only one side of flexible 

tetrahedra. The amplitude of the surface tension difference is controlled by the size and rigidity of the 

tetrahedra.  

 

 

Figure 1. The model is based on flexible octahedra and tetrahedra having potential energy for center-

vertice stretching Es = ½ Ks(x-x0)
2 and vertice-center-vertice bending Eb = ½ Kb(-0)

2. The values Ks, x0, Kb, 

and 0 are not the same for octahedra and tetrahedra (see text). The octahedra are linked by edges in a 

Gibbsite-like 2D hexagonal structure. The tetrahedra are linked to 6 neighbors octahedra through three 

bonds. The positions in the 2D Gibbsite like structure are conveniently obtained with the two unit 

vectors a1 and a2.  
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The octahedra are sharing edge links as in a gibbsite-like structure. In the lacuna of the 2D gibbsite-like 

structure the tetrahedra share three common vertices with the octahedra. The centers of the octahedra 

and tetrahedra mimic the Al and Si atoms in the ILS, respectively. The vertices of octahedra and 

tetrahedra correspond to the positions of O atoms in the ILS. The interactions in the structure are 

computed using exclusively harmonic potentials for the stretching and bending of the center-vertices 

bonds and angles, respectively. The energy for the stretching term is given by Es ~ ½ Ks(x-x0)
2 where Ks is 

the stretching rigidity of the bond and x0 its equilibrium distance. For the bending energy Eb ~ ½ Kb(-0)
2 

where Kb is the bending rigidity and 0 the equilibrium angle. We have considered a single object of a 

given size without periodic boundary conditions. Indeed, usual simulations with periodic boundary 

conditions impose a tubular shape. The structure is composed only of octahedra and tetrahedra and only 

tetrahedra bonded to three octahedra are considered. To prevent interpenetration of distant polyhedra 

upon curvature of very large structures, non-bond interactions are computed using Lennard-Jones 

potentials for points separated by at least three bonds. The Lennard Jones parameters are taken from 

the CLAYFF force field(Cygan et al., 2004) considering the vertices as O atoms and the centers of 

tetrahedral and octahedra as Si and Al atoms, respectively. 

Konduri et al. (2006) have studied the curvature of Al/Si and Al/Ge imogolite using such simplified 

description with harmonic potentials. They show that this type of model can mimic the shape of the 

strain energy as a function of the radius of imogolite. From the comparison with MD simulations, they 

proposed values for the stretching rigidity and bond equilibrium distance of Ks = 6.06 eV.Å-2 and x0 = 1.59 

Å for Si-O, Ks = 2.52 eV.Å-2 and x0 = 1.97 Å for Al-O. In their analysis, the bending angles of O-Si-O and O-

Al-O were considered fixed at respectively 109.5° and 90°. These approximations certainly induce an 

underestimation of the stretching rigidities. For example, the harmonic approximation of the CLAFF 

potential around the energy minimum gives a stretching rigidity of Ks = 40.5 eV.Å-2 and a distance at 

minimum energy of 1.43 Å. Such rigidity is in better agreement with the IR wavenumber around 1000 

cm-1 for the absorbance attributed to the stretching of the Si-O bond. In the CLAYFF, the bending rigidity 

of the O-Si-O and O-Al-O angles is 1.302 eV.rad-2. Thus, compared to the Konduri et al. (2006) 

approximation, MD simulations based on the CLAYFF tend to model the structure with relatively rigid 

distances and rather flexible angles. In the following, we will adopt the bending rigidity proposed by the 

CLAYFF and consider the stretching rigidity and equilibrium distance as adjustable parameters of our 

model. To choose appropriate values, we will rely on well-known characteristics of the imogolite 

nanotubes i.e. the distance between successive tetrahedra in a Zig-Zag nanotube structure and the 

correct shape of the E = f(R) curve.  

Two different initial configurations are considered (González et al., 2014). First, a tubular initial 

configuration (TIC) will be used to choose the model parameters. Then, a hypothetical planar initial 

configuration (PIC) where the octahedra form a flat sheet and the tetrahedra are initially stretched. This 

simplified description is not appropriate for an accurate description of the ILS as it neglects the 

interaction with the solvent, the long range electrostatic interactions and the formation of H bond 

networks. But if it can reproduce the correct shape of the E=f(R) curve, we believe it can illustrate our 

hypothesis regarding the mechanical control of the sphere/tube shape transition.  
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2.2 Tubular initial configuration 

Like in many theoretical works concerning imogolite, the formalism to describe the structure of carbon 

nanotubes is used. The nanotubes are noted (n,m) where n and m are the coordinates of the rotation 

vector R = na1+ma2 in an hexagonal network with |a1| = |a2| = 2/31/2 (see figure 2) where  is half the 

repeat distance along the c-axis of the Zig-Zag nanotube. The norm of R gives the nanotube perimeter 

and thus the nanotube radius is r = |R|/2π. As the ILS has a thickness of about 6 Å, the actual radius 

depends on a reference position in the layer. In the following, the radius is calculated considering the 

plane containing the centers of the octahedra. 

It is interesting to note that the imogolite structure is oriented (see figure 1 and 2). Indeed, because of 

the presence of the tetrahedral Si atom, the structure is not symmetric upon a rotation of 180°. 

Therefore, each imogolite nanotube has two distinct sides noted + and -. (n,m)+ and (n,m)- tubes can be 

built depending on the alignment of the structure with respect to the z axis. Implications of this 

orientation have never been discussed in the literature. For example, it has been demonstrated that a 

significant part of the nanotubes growth occurs through tip-tip collisions (Maillet et al., 2011; Yucelen et 

al., 2013). In these tip-tip collisions, it is of course needed that the two colliding tubes have the same 

rotation vector but they also need to be aligned in the same direction. The tip on the + side of the 

nanotube has to come in contact with the tip on the - side for the creation of bonds to be possible. This 

fact is another contribution explaining the slow growth of the nanotubes even at high concentrations. 

 

2.3 Planar initial configuration 

In PIC, the octahedra are placed on a 2D hexagonal lattice of unit vector a1 and a2. The borders of the 2D 

PIC are defined by the vector R = na1+ma2 of norm LR and the perpendicular vector T of norm LT. When 

the structure is defined in such a way, the coordination of the border atoms may not be satisfied. As we 

have chosen to work with only octahedra and tetrahedra bonded to three octahedra, the coordination of 

atoms is completed and whenever a tetrahedron is not bonded to three octahedra, it is removed. The 2D 

PICs are described by the (n,m) indices defining R and the ratio between LR and LT. The behavior of PICs 

of various sizes and two orientations of the R vector (n = i,m = 0) and (n = m = i) with i between 2 and 20 

are considered. The values LR and LT cannot be equals as for (n = i, m = 0) LR ~ /31/2 and LT ~  and for (n = 

m = i) LR ~  and LT ~ /31/2. We choose i and LT to have LR/LT as close as possible to 1 in order to avoid any 

preferential axis initially. The figure 2 shows examples of (14,0) and (8,8) PIC structures and the 

corresponding tubes obtained after rolling the PIC. 
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 Figure2.  The construction of PIC and TIC uses the convention adopted for the description of carbon 

nanotube structure. The hexagonal lattice of unit vector a1 and a2 is used to define two vectors R = 

na1+ma2 of norm LR and a perpendicular vector T of norm LT. Examples of a (14,0) and (8,0) LR/LT ~ 1 PIC 

are shown. The tubes obtained with the rolling of the two PIC structures are also shown. For PIC, LR and 

LT are the length of the borders, in TIC LR is the perimeter of the tube and LT its length. The nanotubes are 

oriented due to the presence of the tetrahedron (see text). 

 

2.4 Numerical simulations 

The initial configurations are used with the LAMMPS code to compute the zero Kelvin minimum energy 

using a conjugated gradient minimization (Plimpton, 1995). MD trajectories are also computed using a 

thermostat at 300 K to follow the shapes of various TIC and PIC configurations for 120 ps. For the TIC, the 

average energy is computed for zigzag configurations from (8,0) to (25,0) and for armchair from (6,6) to 

(14,14). The radius of the nanotube is computed at the plane containing the centers of the octahedra.   

is obtained from the length of the nanotube and the number of repeated circumferences. 

For the PIC, the two principal radii of curvature are computed at the surface containing the N centers of 

the octahedra located at absolute positions xi, yi, zi, with i = 1,N. Nothing is known a priori about the 

location, orientation or shape of this surface. The first step consists in shifting the atomic positions 
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relative to that of the center of mass G, so to replace xi by xi-xG, etc. The matrix of inertia is constructed 

according to: 

 

2 2

2 2

2 2

Y Z XY XZ

XY X Z YZ

XZ YZ X Y

   
 
   

    

 (3) 

where one defines 2 2 , ,...i i i i i

i i

X m x XY m x y   This matrix is diagonalized into 1

2

3

0 0

0 0

0 0

I

I

I

 
 
 
 
 

 in 

order to derive the three principal moments I1, I2, I3 and the three corresponding principal axis u1, u2, u3. 

The idea of seeing the whole collection of atoms as a weakly curved surface is meaningful only if the 

excursion along one of the main axis, say u3, remains small compared to the two others, so only if one of 

the main moments is detected in practice to be close to the sum of the two others, say I3 ≈ I1+I2. If this 

happens, the surface deviates only weakly from a plane of normal u3 and the notion of local curvatures is 

relevant. The absolute atomic coordinates are then transformed into the coordinates v1,i, v2,i, v3,i in the 

local frame characterized by the vectors u. Finally, these positions are best fitted with an arc of 

paraboloid, v3 = av1
2+bv2

2+c, and the required principal radii of curvature are simply R1 = 1/2a and 

R2 = 1/2b. 

 

3 Results and Discussions 

The shape and elasticity of the structures in the proposed model depend on the choice of the bending 

and stretching potentials of octahedra and tetrahedra. To choose values able to reproduce the main 

behavior of hybrid ILS, we have compared the structure predicted by the model with experimentally 

accessible imogolite characteristics i.e. the spontaneous curvature and rigidity (E = f(R)) and the repeat 

distance 2 along the c-axis of the tube. Then the model is applied to PIC of various size to mimic the 

curvature of proto-imogolite. 

3.1 Parameters to reproduce the curvature, rigidity and c-axis periodicity of the tubes. 

The relationship between the number of Al atoms in the imogolite nanotube section and the energy of 

the nanotube has been studied by several authors ( Tamura and Kawamura, 2002; Alvarez-Ramirez, 

2007; Creton et al., 2008; Li et al., 2008; Zhao et al., 2009; Demichelis et al., 2010). The curves may have 

different values but the trends and shape are always very similar with the existence of a spontaneous 

curvature and a shape nicely described by the analytical model proposed by Guimarães et al. (2007). Our 

model will not be able to reproduce the radius of imogolite with realistic bond parameters as the 

curvature is partly linked to internal H bond network and electrostatic interactions. However, we should 

be able to obtain an energy curve giving a radius of minimum energy close to the hybrid Si-CH3 imogolite 

where all these effects are not active. According to Bottero et al. (2011) the external radius of hybrid 

imogolite determined by XRD is 15.1 Å.  Amara et al. (2015) obtained exactly the same radius with Small 
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Angle X-ray Scattering (SAXS). This corresponds to a radius of ~ 13 Å for the plane containing the Al 

atoms. Recently, DFT model were used to obtain the curve E = f(R). They obtain a surprisingly higher 

rigidity ~ 3 times higher than Si-OH imogolite and a radius of 12.3 Å at the Al plane. Figure 3 is the energy 

curves for Zig-Zag tubes from (10,0) to (20,0) and Armchair tubes from (6,6) to (14,14) as a function of 

the radius at the center of the octahedra (Al atoms) taking x0 = 1.4 Å, 2.15 Å and Ks = 81 eV.Å-2, 55 eV.Å-2 

for the equilibrium distances and stretching rigidities of the center-vertice of respectively tetrahedra and 

octahedra. The curves are fitted with equation 2 to obtain the radius at minimum energy R0 and the 

rigidity Kc. The same R0 for Zig-Zag and Armchair nanotubes is obtained at 13 Å in very good agreement 

with the experimental data. The rigidity Kc is almost the same for the two configurations (125 and 120 kT 

for respectively Zig-Zag and Armchair). This rigidity is slightly less than the one predicted for imogolite Si-

OH (~ 150 kT). 

 Figure3.  Average potential energy of Zig-Zag and Armchair nanotubes with radius between 8 and 20 Å. 

The energy is given in meV/atom where the atom number corresponds to vertices (counted only once 

when shared) and centers of tetrahedral and octahedral. The lines are fits of the curves <E> = f(R) with 

the equation <E> = E0+0.5Kc(1/R-1/R0)
2.  

The case of the nanotube periodicity in the c-axis  is less often discussed in detail. Indeed, as most of 

the simulations are using periodic boundary conditions,  is generally a fixed parameter. The 

experimental value of  can be obtained by SAXS experiment. Indeed, a small reflection  is obtained for a 

2 Bragg angle of 20.3° (Cu K) corresponding to a second order reflection for the repeat distance of 

2= 8.72 Å (Russell, 1969; Taché et al., 2016). With the present simplified model, the simulation is 
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performed on a single nanotube of finite size. The modifications of the bending and stretching rigidities 

have thus an impact on both the curvature and . We have examined the finite size effect on the 

nanotube strain energy. Indeed, the borders offer an additional relaxation possibility through an 

additional local curvature. Figure 4 presents the average strain energy and the mean  as a function of 

the nanotube length from 10 to 200 Å.  

 Figure 4. Average potential energy <E> in meV/atom (atom number obtained as described in figure 3) 

and repeat distance  in the c-axis for nanotubes of increasing length between 10 and 200 Å. The dotted 

line corresponds to the experimentally observed  value for hybrid imogolite. The full line is given by 

equation <E> = <E∞> + Kb/L. 

The average energy follows a trend <E>L = <E>∞ + Kb/L where Kb corresponds to an excess border energy. 

The effect of the finite size is noticeable on the shape of the nanotube border with a slight decrease of 

the radius. This effect is not negligible for almost the whole range of size of practical interest. Indeed, in 

classical imogolite synthesis, the average length of the nanotube reaches about 200 nm. The same effect 

is observed for the  value. A slight decrease of  is associated to the shortest nanotubes.  

The simple description of the ILS with flexible octahedra and tetrahedra is able to reproduce the 

mechanical behavior of the nanotube with the correct shape of the energy as a function of the radius. 

Even if the goal is not to approach an accurate atomistic description of the ILS, it is interesting to note 
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that the parameters able to mimic the strain behavior give the correct value for the repeat distance  

along the c-axis of the nanotube.  

3.2 Curvature of the PIC as a function of their size. 

Using this set of parameters, we have performed MD simulations on PIC of growing size. The figure 5 

shows the average potential energy as a function of (LR+LT)/2. On the same graph, the average values of 

the two principal curvatures are also plotted.  

 Figure 5. Average curvatures <C> and average stretching energy <Eb> for PIC of increasing size from 5 to 

100 Å. The decrease of the largest curvature for the sizes above the threshold may be partly due to a 

failure of the algorithm for the largest PIC giving spirals after rolling. 

The energy of the PIC increases with the size. The rate of increase is however not constant. For the 

smallest PIC up to (LR+LT)/2 = 40 Å, the energy increases at a fast rate with the size. Above this value, the 

rate significantly decreases. For the principal curvatures, a modification also occurs at the same size. 

Before (LR+LT)/2 = 40 Å, the two principal curvatures C1 and C2 follow similar trend with values increasing 
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from 0.01 to 0.06 Å-1. After the size threshold, the two principal curvatures evolve in opposite direction 

giving a maximum curvature with C1 ~ 0.1 Å-1 similar to the spontaneous TIC curvature and a minimum 

curvature C2 which vanishes. Snapshots of the PIC during the MD simulation clearly show two distinct 

morphologies before and after the size threshold. Before the threshold, the PIC behaves like a portion of 

sphere without clear privileged direction. After the threshold, an axis of low curvature can be identified. 

The shape transition is even clearer if one plots the two principal curvatures during the MD simulation 

for the two situations (below and above the size threshold). Figure 6 presents the curvature evolution as 

a function of time for (LR+LT)/2 = 20 Å and 60 Å.  

 Figure 6. Time evolution of the two principal curvatures for PIC of 20 Å (top graph) and 60 Å (bottom 

graph) which are respectively bellow and above the sphere/tube size threshold. 
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In both case, fluctuations of the principal curvatures with time are observed. For the smallest PIC, C1 and 

C2 fluctuate in opposite phase with the same amplitude between 0.025 and 0.05 Å-1. The largest PIC 

shows a clear separation between the two principal curvatures values. One value fluctuates at about 

0.1 Å-1 whereas the other one is vanishing. So our model of the PIC curvature clearly demonstrates that a 

transition from a spherical to a tubular shape occurs as the size increases. For the particular case of the 

selected parameters of the model, the threshold is occurring for a size of 4 nm which is slightly smaller 

than the average proto-imogolite size of 5 nm obtained from SAXS and DLS measurements (Levard et al., 

2010; Mukherjee et al., 2005). 

 

3.3 Implications for imogolite, allophane synthesis 

Based on this result, we propose an alternative hypothesis which could explain the formation of 

allophane or imogolite. The transition could be due to modifications of the nucleation stage of the proto-

imogolite. Indeed, the precipitation of an amorphous phase of type HASA (Exley et al., 2002) and its 

further internal restructuration could well produce proto-imogolites of various average sizes depending 

on the synthesis conditions. Concentration, pH and type of Si precursors seem to potentially control the 

formation of allophane or imogolite (Denaix et al., 1999). These parameters may influence the average 

size of proto-imogolites. Three scenarios can be envisioned. First, the average size of the proto-imogolite 

is well below the threshold for the sphere/tube shape transition. In this case, spherical proto-imogolite 

will probably self-assemble and eventually lead to the formation of allophane. In the second situation, 

the obtained proto-imogolites have an average size well above the threshold for the sphere/tube shape 

transition. In this case, only tubular shaped proto-imogolites interact and self-assemble into imogolite. 

An intermediate situation may exist when the average size of the proto-imogolite is roughly equal to the 

threshold for the sphere/tube shape transition. In this case, both spherical and tubular proto-imogolite 

will co-exist (Henmi and Wada, 1976). This particular case could explain why in some synthesis, 

imogolites tend to co-exist with proto-imogolites even after a prolonged growth period (Koenderink et 

al., 1999). While it is clear that tubular shaped proto-imogolites could not easily assemble into a 

spherical shape, it is less obvious to understand why proto-imogolites below the threshold will not self-

assemble in a way promoting their shape transition once they get larger than the threshold for the 

sphere/tube shape transition. For our scenario to be possible, we have to consider i) a separation of a 

”nucleation” and growth stage of proto-imogolite and ii) an incompatibility between proto-imogolites 

below and above the shape transition during the growth stage. Validation of this scenario will require the 

exploration of the shape and average size of proto-imogolite for different synthesis leading toward 

allophane and imogolite. This scenario with incompatible initial nanostructures could legitimate the use 

of “proto-imogolite” for ILS nanostructures above the sphere/tube size threshold and “proto-imogolite 

allophane“ for ILS nanostructures below the sphere/tube size threshold. 

4 Conclusions 

A mechanical model based on flexible octahedra and tetrahedra associated in the ILS enables to mimic 

the mechanical behavior of imogolite. Indeed, the model reproduces the radius of minimum energy, the 
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rigidity and the repeat distance along the c-axis of hybrid imogolite with bond parameters having 

reasonable values. In order for such model to reproduce the characteristic of normal Si-OH imogolite, 

selection of unrealistic bond parameters would have to be performed. This further demonstrates the fact 

that H bond networks and electrostatic interactions are very important to explain the strong curvature of 

pristine imogolite. Using this model for the simulation of single objects without the use of boundary 

conditions, a size threshold for which the structure of minimum energy goes from a spherical to a tubular 

shape is observed. For the chosen parameters, this size threshold is found at about 4 nm. This value is 

slightly smaller than the size obtained experimentally for proto-imogolite in the synthesis of imogolite 

nanotubes. Finally, we make the hypothesis that the average size of the proto-imogolite initially formed 

at the expense of an amorphous phase controls the shape of the final objects (imogolite or allophane). 
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