H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities, 1995.

E. M. Purcell, Spontaneous Emission Probabilities at Radio Frequencies, Phys. Rev, vol.69, p.681, 1946.
DOI : 10.1007/978-1-4615-1963-8_40

K. H. Drexhage, IV Interaction of Light with Monomolecular Dye Layers, Prog. Opt, vol.12, pp.163-232, 1974.
DOI : 10.1016/S0079-6638(08)70266-X

M. Pelton, Modified spontaneous emission in nanophotonic structures, Nature Photonics, vol.14, issue.7, pp.427-435, 2015.
DOI : 10.1038/nphoton.2015.103

J. Seelig, Nanoparticle-Induced Fluorescence Lifetime Modification as Nanoscopic Ruler:?? Demonstration at the Single Molecule Level, Nano Letters, vol.7, issue.3, pp.685-689, 2007.
DOI : 10.1021/nl0627590

B. Ji, Non-blinking quantum dot with a plasmonic nanoshell resonator, Nature Nanotechnology, vol.9, issue.2, pp.170-175, 2015.
DOI : 10.1038/nnano.2014.298

URL : https://hal.archives-ouvertes.fr/hal-01350067

G. P. Acuna, Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas, Science, vol.338, issue.6106, pp.506-510, 2012.
DOI : 10.1126/science.1228638

A. G. Curto, Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna, Science, vol.329, issue.5994, pp.930-933, 2010.
DOI : 10.1126/science.1191922

C. Belacel, Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas, Nano Letters, vol.13, issue.4, pp.1516-1521, 2013.
DOI : 10.1021/nl3046602

URL : https://hal.archives-ouvertes.fr/hal-00821543

A. J. Meixner, Coupling single quantum dots to plasmonic nanocones: optical properties, Faraday Discuss., vol.20, p.321, 2015.
DOI : 10.1039/C5FD00074B

B. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nature Materials, vol.10, issue.3, pp.207-210, 2005.
DOI : 10.1103/PhysRevLett.92.083901

A. Kinkhabwala, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics, vol.4, issue.11, pp.654-657, 2009.
DOI : 10.1038/nphoton.2009.187

D. Punj, A plasmonic ???antenna-in-box??? platform for enhanced single-molecule analysis at micromolar concentrations, Nature Nanotechnology, vol.95, issue.7, pp.512-516, 2013.
DOI : 10.1038/nnano.2013.98

URL : https://hal.archives-ouvertes.fr/hal-00840847

G. Zengin, Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates, Scientific Reports, vol.425, p.3074, 2013.
DOI : 10.1038/srep03074

G. M. Akselrod, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas, Nature Photonics, vol.16, issue.11, p.835, 2014.
DOI : 10.1038/nphoton.2014.228

T. B. Hoang, Ultrafast spontaneous emission source using plasmonic nanoantennas, Nature Communications, vol.16, p.7788, 2015.
DOI : 10.1038/ncomms8788

URL : http://doi.org/10.1038/ncomms8788

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Physical Review Letters, vol.97, issue.1, p.17402, 2006.
DOI : 10.1103/PhysRevLett.97.017402

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and Quenching of Single-Molecule Fluorescence, Physical Review Letters, vol.96, issue.11, p.113002, 2006.
DOI : 10.1103/PhysRevLett.96.113002

S. Schietinger, M. Barth, T. Aichele, and O. Benson, Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal???Diamond Hybrid Structure at Room Temperature, Nano Letters, vol.9, issue.4, pp.1694-1698, 2009.
DOI : 10.1021/nl900384c

S. Khatua, Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods, ACS Nano, vol.8, issue.5, pp.4440-4449, 2014.
DOI : 10.1021/nn406434y

K. Lee, Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface, Optics Express, vol.20, issue.21, p.23331, 2012.
DOI : 10.1364/OE.20.023331

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitcha, and M. C. Wu, Optical antenna enhanced spontaneous emission, Proc. Nat. Acad. Sci, pp.1704-1709, 2015.
DOI : 10.1073/pnas.1423294112

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330772

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities, Nano Letters, vol.16, issue.1, pp.270-275, 2016.
DOI : 10.1021/acs.nanolett.5b03724

URL : http://doi.org/10.1021/acs.nanolett.5b03724

M. J. Fernée, P. Tamarat, and B. Lounis, Spectroscopy of single nanocrystals, Chemical Society Reviews, vol.12, issue.3, p.1311, 2014.
DOI : 10.1039/c3cs60209e

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, Antibunching Single-Photon Emission and Blinking Suppression of CdSe/ZnS Quantum Dots, ACS Nano, vol.3, issue.10, pp.3051-3056, 2009.
DOI : 10.1021/nn900760u

X. Ma, H. Tan, T. Kipp, and A. Mews, Fluorescence Enhancement, Blinking Suppression, and Gray States of Individual Semiconductor Nanocrystals Close to Gold Nanoparticles, Nano Letters, vol.10, issue.10, pp.4166-4174, 2010.
DOI : 10.1021/nl102451c

D. Canneson, Enhancing the fluorescence of individual thick shell CdSe/CdS nanocrystals by coupling to gold structures, New Journal of Physics, vol.14, issue.6, p.63035, 2012.
DOI : 10.1088/1367-2630/14/6/063035

URL : https://hal.archives-ouvertes.fr/hal-01342987

S. J. Leblanc, M. R. Mcclanahan, M. Jones, and P. J. Moyer, Enhancement of Multiphoton Emission from Single CdSe Quantum Dots Coupled to Gold Films, Nano Letters, vol.13, issue.4, pp.1662-1669, 2013.
DOI : 10.1021/nl400117h

Y. Park, Super-Poissonian Statistics of Photon Emission from Single CdSe-CdS Core-Shell Nanocrystals Coupled to Metal Nanostructures, Physical Review Letters, vol.110, issue.11, p.117401, 2013.
DOI : 10.1103/PhysRevLett.110.117401

D. Canneson, Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature, Physical Review B, vol.89, issue.3, p.35303, 2014.
DOI : 10.1103/PhysRevB.89.035303

URL : https://hal.archives-ouvertes.fr/hal-01340738

F. Wang, Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways, Nanoscale, vol.96, issue.21, p.9387, 2015.
DOI : 10.1039/C5NR00772K

X. Chen, M. Agio, and V. Sandoghdar, Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission, Physical Review Letters, vol.108, issue.23, p.233001, 2012.
DOI : 10.1103/PhysRevLett.108.233001

K. Karrai and I. Tiemann, Interfacial shear force microscopy, Physical Review B, vol.62, issue.19, pp.13174-13181, 2000.
DOI : 10.1103/PhysRevB.62.13174

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy, vol.202, issue.1, p.72, 2001.
DOI : 10.1046/j.1365-2818.2001.00817.x

B. Hoffmann, Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement, Nanotechnology, vol.26, issue.40, p.404001, 2015.
DOI : 10.1088/0957-4484/26/40/404001

Y. Chen, ???Giant??? Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking, Journal of the American Chemical Society, vol.130, issue.15, p.5026, 2008.
DOI : 10.1021/ja711379k

Y. Ghosh, New Insights into the Complexities of Shell Growth and the Strong Influence of Particle Volume in Nonblinking ???Giant??? Core/Shell Nanocrystal Quantum Dots, Journal of the American Chemical Society, vol.134, issue.23, pp.9634-9643, 2012.
DOI : 10.1021/ja212032q

J. Vela, Effect of shell thickness and composition on blinking suppression and the blinking mechanism in ???giant??? CdSe/CdS nanocrystal quantum dots, Journal of Biophotonics, vol.91, issue.10-11, p.706, 2010.
DOI : 10.1002/jbio.201000058

N. J. Orfield, Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation, ACS Nano, vol.10, issue.2, pp.1960-1968, 2016.
DOI : 10.1021/acsnano.5b05876

G. Nair, J. Zhao, and M. G. Bawendi, Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics, Nano Letters, vol.11, issue.3, pp.1136-1140, 2011.
DOI : 10.1021/nl104054t

Y. Park, Nanocrystals Measured Using Single-Particle Spectroscopy, Physical Review Letters, vol.106, issue.18, p.187401, 2011.
DOI : 10.1103/PhysRevLett.106.187401

I. Chung, K. T. Shimizu, and M. Bawendi, Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy, Proc. Nat. Acad. Am, pp.405-408, 2003.
DOI : 10.1073/pnas.0133507100

X. Brokmann, M. Ehrensperger, J. Hermier, A. Triller, and M. Dahan, Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy, Chemical Physics Letters, vol.406, issue.1-3, pp.210-214, 2005.
DOI : 10.1016/j.cplett.2005.03.007

G. A. Narvaez, G. Bester, A. Franceschetti, and A. Zunger, Excitonic exchange effects on the radiative decay time of monoexcitons and biexcitons in quantum dots, Physical Review B, vol.74, issue.20, p.205422, 2006.
DOI : 10.1103/PhysRevB.74.205422

V. I. Klimov, J. A. Schaller, and R. D. , Scaling of multiexciton lifetimes in semiconductor nanocrystals, Physical Review B, vol.77, issue.19, p.195324, 2008.
DOI : 10.1103/PhysRevB.77.195324

S. J. Kress, Wedge Waveguides and Resonators for Quantum Plasmonics, Nano Letters, vol.15, issue.9, pp.6267-6275, 2015.
DOI : 10.1021/acs.nanolett.5b03051

W. Lukosz, Light emission by magnetic and electric dipoles close to a plane dielectric interface III Radiation patterns of dipoles with arbitrary orientation, Journal of the Optical Society of America, vol.69, issue.11, pp.1495-1503, 1979.
DOI : 10.1364/JOSA.69.001495

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. Van-hulst, Optical antennas direct single-molecule emission, Nature Photonics, vol.69, issue.4, pp.234-237, 2008.
DOI : 10.1038/nphoton.2008.32

URL : http://doc.utwente.nl/72434/1/optical.pdf

A. V. Malko, From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids, Applied Physics Letters, vol.81, issue.7, pp.1303-1305, 2002.
DOI : 10.1063/1.1497708

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity, Advanced Materials, vol.1, issue.4, pp.317-321, 2002.
DOI : 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U

C. Dang, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films, Nature Nanotechnology, vol.43, issue.5, pp.335-339, 2012.
DOI : 10.1038/nnano.2012.61

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovi?, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photonics, vol.8, issue.1, pp.13-23, 2013.
DOI : 10.1038/nphoton.2012.328

K. G. Lee, A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), pp.166-169, 2011.
DOI : 10.1109/CLEOE.2011.5943376

X. Chu, Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter, Optica, vol.1, issue.4, p.203, 2014.
DOI : 10.1364/OPTICA.1.000203

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, Imaging a Single Quantum Dot When It Is Dark, Nano Letters, vol.9, issue.3, pp.926-929, 2009.
DOI : 10.1021/nl801735y

X. Chen, V. Sandoghdar, and M. Agio, Coherent Interaction of Light with a Metallic Structure Coupled to a Single Quantum Emitter: From Superabsorption to Cloaking, Physical Review Letters, vol.110, issue.15, p.153605, 2013.
DOI : 10.1103/PhysRevLett.110.153605

R. Chikkaraddy, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature, vol.114, issue.7610, pp.127-130, 2016.
DOI : 10.1038/nature17974

M. Agio, Optical antennas as nanoscale resonators, Nanoscale, vol.5, issue.3, pp.692-706, 2012.
DOI : 10.1039/C1NR11116G

URL : http://arxiv.org/abs/1111.1302