K. Von-klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, vol.45, issue.6, p.494, 1980.
DOI : 10.1103/PhysRevLett.45.494

S. Datta, Electronic Transport in Mesoscopic Systems, 1995.

C. Albrecht, Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance, Physical Review Letters, vol.86, issue.1, p.147, 2001.
DOI : 10.1103/PhysRevLett.86.147

C. R. Dean, Hofstadter???s butterfly and the fractal quantum Hall effect in moir?? superlattices, Nature, vol.11, issue.7451, p.598, 2013.
DOI : 10.1038/nature12186

L. A. Ponomarenko, Cloning of Dirac fermions in graphene superlattices, Nature, vol.6, issue.7451, p.594, 2013.
DOI : 10.1038/nature12187

B. Hunt, T. Taniguchi, P. Moon, M. Koshino, and R. C. Ashoori, Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, vol.340, issue.6139, p.1427, 2013.
DOI : 10.1126/science.1237240

Y. Ji, An electronic Mach???Zehnder interferometer, Nature, vol.385, issue.6930, p.415, 2003.
DOI : 10.1103/PhysRevB.46.4026

URL : http://arxiv.org/abs/cond-mat/0303553

C. W. Beenakker, Annihilation of Colliding Bogoliubov Quasiparticles Reveals their Majorana Nature, Physical Review Letters, vol.112, issue.7, p.70604, 2014.
DOI : 10.1103/PhysRevLett.112.070604

B. Jeckelmann and B. Jeanneret, The quantum Hall effect as an electrical resistance standard, Reports on Progress in Physics, vol.64, issue.12, p.1603, 2001.
DOI : 10.1088/0034-4885/64/12/201

M. O. Goerbig, Ultracold Gases and Quantum Information In Lecture Notes of the Les Houches Summer School in Singapore

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, 38393 | DOI: 10.1038/srep38393 11 Experimental observation of the quantum Hall effect and Berry's phase in graphene, Scientific RepoRts | Nature, vol.6, issue.438, p.201, 2005.

K. S. Novoselov, Room-Temperature Quantum Hall Effect in Graphene, Science, vol.315, issue.5817, p.1379, 2007.
DOI : 10.1126/science.1137201

K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature, vol.78, issue.7270, p.196, 2009.
DOI : 10.1038/nature08582

L. Banszerus, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper, Science Advances, vol.1, issue.6, p.1500222, 2015.
DOI : 10.1126/sciadv.1500222

P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger, Quantum Hall Effect in Graphene with Superconducting Electrodes, Nano Letters, vol.12, issue.4, p.1942, 2012.
DOI : 10.1021/nl204415s

V. E. Calado, Ballistic Josephson junctions in edge-contacted graphene, Nature Nanotechnology, vol.16, issue.9, p.761, 2015.
DOI : 10.1038/nnano.2015.156

L. Wang, One-Dimensional Electrical Contact to a Two-Dimensional Material, Science, vol.342, issue.6158, p.614, 2013.
DOI : 10.1126/science.1244358

C. Berger, Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, pp.19912-19916, 2004.
DOI : 10.1021/jp040650f

X. Wu, Half integer quantum Hall effect in high mobility single layer epitaxial graphene, Applied Physics Letters, vol.95, issue.22, p.223108, 2009.
DOI : 10.1063/1.3266524

URL : https://hal.archives-ouvertes.fr/hal-01002933

K. Takase, S. Tanabe, S. Sasaki, H. Hibino, and K. Muraki, Impact of graphene quantum capacitance on transport spectroscopy, Physical Review B, vol.86, issue.16, p.165435, 2012.
DOI : 10.1103/PhysRevB.86.165435

A. Satrapinski, S. Novikov, and N. Lebedeva, Precision quantum Hall resistance measurement on epitaxial graphene device in low magnetic field, Applied Physics Letters, vol.103, issue.17, p.173509, 2013.
DOI : 10.1063/1.4826641

J. A. Alexander-webber, Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene, Physical Review Letters, vol.111, issue.9, p.96601, 2013.
DOI : 10.1103/PhysRevLett.111.096601

J. A. Alexander-webber, Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene, Scientific Reports, vol.21, issue.1, p.30296, 2016.
DOI : 10.1002/adma.200901136

A. Tzalenchuk, Towards a quantum resistance standard based on epitaxial graphene, Nature Nanotechnology, vol.36, issue.3, p.186, 2010.
DOI : 10.1038/nmat2382

F. Lafont, Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide, Nature Communications, vol.23, issue.742, p.6806, 2015.
DOI : 10.1038/ncomms7806

URL : http://doi.org/10.1038/ncomms7806

R. Ribeiro-palau, Quantum Hall resistance standard in graphene devices under relaxed experimental conditions, Nature Nanotechnology, vol.10, issue.11, p.965, 2015.
DOI : 10.1103/PhysRevB.89.085422

N. Mott, Conduction in non-crystalline materials, Philosophical Magazine, vol.24, issue.160, pp.835-852, 1969.
DOI : 10.1103/PhysRev.148.741

J. D. Sanchez-yamagishi, Observation of Helical Edge States and Fractional Quantum Hall Effect in a Graphene Electron-hole Bilayer, Nature Nanotechnology, 2016.

Y. Tabuchi, Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science, vol.349, issue.6246, p.405, 2015.
DOI : 10.1126/science.aaa3693

G. Viola and D. P. Divincenzo, Hall Effect Gyrators and Circulators, Physical Review X, vol.4, issue.2, p.21019, 2014.
DOI : 10.1103/PhysRevX.4.021019

URL : http://doi.org/10.1103/physrevx.4.021019

A. C. Mahoney, On-Chip Microwave Quantum Hall Circulator. ArXiv:1601, p.634, 2016.
DOI : 10.1103/physrevx.7.011007

URL : http://doi.org/10.1103/physrevx.7.011007