Skip to Main content Skip to Navigation
Journal articles

Patterning of spontaneous rolling thin polymer films for versatile microcapillaries

Abstract : We investigate the spontaneous rolling of polydimethylsiloxane(PDMS) thin films and demonstrate the fabrication of capillaries with topographical and chemical patterns on the inner wall. Thin films of polydimethylsiloxane(PDMS) are either coated by a layer of hard material or have their surface hardened by plasma oxidation. They are then driven out of equilibrium by selective solvent swelling in vapor phase resulting in a tubular rolled-up system. The inner diameter of those is measured as a function of layer thickness for different solvents and capping types. Those results are shown to be in good agreement with Timoshenko theory. Before rolling, the future inner surface can be characterized and functionnalized. We demonstrate topographical and chemical patterning, respectively by embossing and microcontact printing. These methods are very simple and can easily produce cylindrical capillaries with inner diameter between 20 and some hundreds of microns with fully functionnalized inner surface, overcoming many difficulties encountered in conventional soft lithography techniques.
Document type :
Journal articles
Complete list of metadata
Contributor : Serge Palacin Connect in order to contact the contributor
Submitted on : Monday, March 6, 2017 - 7:42:19 AM
Last modification on : Friday, January 7, 2022 - 3:53:50 AM
Long-term archiving on: : Wednesday, June 7, 2017 - 12:24:40 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Rémy Brossard, Valeriy Luchnikov, Patrick ´ Guenoun, Florent ´ Malloggi. Patterning of spontaneous rolling thin polymer films for versatile microcapillaries. Journal of Polymer Science Part B: Polymer Physics, Wiley, 2017, 55, pp.721-728. ⟨10.1002/polb.24322⟩. ⟨cea-01483491⟩



Record views


Files downloads