Symmetry-selected spin-split hybrid states in C$_{60}$ / ferromagnetic interfaces - Archive ouverte HAL Access content directly
Journal Articles Physical Review B: Condensed Matter and Materials Physics (1998-2015) Year : 2016

Symmetry-selected spin-split hybrid states in C$_{60}$ / ferromagnetic interfaces

(1) , (1) , (2) , (2) , (2) , (2) , (2) , (2) , (1)
1
2

Abstract

The understanding of orbital hybridization and spin-polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spin-split hybrid states of C$_{60}$ deposited on various ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001) and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin-polarization of the hybrid orbitals. We find that a large spin-polarization in vacuum above the buckyball can only be achieved if the molecule is adsorbed upon a bcc-(001) surface by its pentagonal ring. Therefore, bcc-Cr(001), bcc-Fe(001) and bcc-Co(001) are the optimal candidates. Spin-polarized scanning tunneling spectroscopy measurements on single C$_{60}$ adsorbed on Cr(001) and Co/Pt(111) also confirm that both the symmetry of the substrate and of the molecular conformation have a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin filtering devices through single molecular orbitals.
Fichier principal
Vignette du fichier
1509.06787.pdf (6.17 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-01481437 , version 1 (02-03-2017)

Identifiers

Cite

Dongzhe Li, Cyrille Barreteau, Seiji Leo Kawahara, Jérôme Lagoute, Cyril Chacon, et al.. Symmetry-selected spin-split hybrid states in C$_{60}$ / ferromagnetic interfaces. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 93, pp.085425. ⟨10.1103/PhysRevB.93.085425⟩. ⟨cea-01481437⟩
86 View
97 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More