Quench cooling under reduced gravity - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Year : 2013

Quench cooling under reduced gravity

Abstract

We report quench cooling experiments performed with liquid O2 under different levels of gravity, simulated with magnetic gravity compensation. A copper disk is quenched from 300 to 90 K. It is found that the cooling time in microgravity is very long in comparison with any other gravity level. This phenomenon is explained by the insulating effect of the gas surrounding the disk. A weak gas pressurization (which results in subcooling of the liquid with respect to the saturation temperature) is shown to drastically improve the heat exchange, thus reducing the cooling time (about 20 times). The effect of subcooling on the heat transfer is analyzed at different gravity levels. It is shown that this type of experiment cannot be used for the analysis of the critical heat flux of the boiling crisis. The film boiling heat transfer and the minimum heat flux of boiling are analyzed as functions of gravity and subcooling.
Fichier principal
Vignette du fichier
1303.6217.pdf (1.12 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-01481067 , version 1 (02-03-2017)

Identifiers

Cite

D. Chatain, C. Mariette, V.S. Nikolayev, D. Beysens. Quench cooling under reduced gravity. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2013, 88, pp.013004. ⟨10.1103/PhysRevE.88.013004⟩. ⟨cea-01481067⟩
47 View
277 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More