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Abstract. Mechanism of unconventional superconductivity is still unknown even if more than
25 years have been passed since the discovery of high-Tc cuprate superconductors by J.G.
Bednorz and K. A. Muller [1]. Here, we explore the cuprate phase diagram by electronic Raman
spectroscopy and shed light on the superconducting state in hole doped cuprates. Namely, how
superconductivity and the critical temperature Tc are impacted by the pseudogap.

1. Introduction

In conventional superconductors described by BCS theory [2], superconductivity emerges
from a metal and the whole of electronic states around the Fermi surface condense into the
superconducting state. In hole doped cuprates, the situation is more subtle, a metal is built
by holes doping into a Mott insulator state [3, 4, 5]. Superconductivity emerges in a finite
doping range and the k-space distribution of the electronic states involved in superconducting
state is strongly doping dependent. At low doping level, most of electronic states involved in
superconducting state are localized around the diagonal of the Brillouin zone (nodal region).

Such a change in the electronic distribution around the Fermi surface as a function of doping
level is the missing link which a long time have disturbed physicists for understanding the cuprate
phase diagram [6, 7, 8, 9]. This change likely comes from the emergence of a competing order
with superconductivity, the pseudogap phase [10] which reduces the electronic states available
for superconductivity around the principal axes of the Brillouin zone (antinodal region).

Here, we argue from an electronic Raman scattering study that the superconducting dome
circumscribed by Tc is divided in three regions (see fig.1): a high doping level region where
superconductivity develops on the entire Fermi surface, an intermediate doping level region
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where superconductivity is weakened at the antinodes and a low doping level region where
superconductvity is essentially confined around the nodes. For these two last parts, the critical
temperature Tc is no more controled solely by the superconducting gap. The fraction of coherent
Fermi surface where superconductivity settles has to be considered. This gives rise to the
emergence of a new relationship between the superconducting gap and Tc (distinct from the
BCS one available for conventional superconductor) and reveals the compromise which has to
be found for increasing Tc.
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Figure 1. The superconducting dome is divided in three parts depending on the loss of coherent
superconducting excitations (coherent Bogoliubov quasiparticles) along the principal axes of the
Brillouin zone (antinodal region, AN): a full Fermi surface at high doping level, a disturbed
Fermi surface for intermediate doping level (including the optimal one for where Tc reaches its
maximum) and a fractionalized Fermi surface at low doping level.

2. Two critical doping levels revealed from the exploration of the cuprate phase

diagram by electronic Raman scattering

Identifying the changes in the electronic properties inside the superconducting dome is the
first objective. In figure 2 is shown the temperature dependence of the Raman spectra of
Bi-2212 (Bi2Sr2CaCu2O8+δ) single crystals for several doping levels starting from p = 0.22
to 0.10. Temperatures are ranging from well below Tc to approximatively 10 K above Tc.
The first and second panels exhibit the Raman spectra in B1g and B2g geometries which
correspond respectively to the principal axes and the diagonal of the Brillouin zone (BZ). In
these geometries, we probe the antinodal (AN) and nodal (N) regions where the amplitude of
a d−wave superconducting gap is expected to be maximum and vanished respectively [11]. We
observe in these both geometries a broad peak which gradually decreases in intensity as the
crystal is heated up to Tc for disapearing at Tc. These peaks are assigned to coherent peaks
of the superconducting state as demonstrated in earlier investigations [12]. The low energy
B2g Raman response exibits a linear frequency dependence in the superconducting state. This
signals the existence of nodes in the superconducting gap along the diagonal of the BZ. On the
contrary the low energy B1g response is roughtly cubic in frequency which signals a maximum
amplitude for the superconducting gap along the principal axes of the BZ[11].
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Figure 2. Temperature dependence of the Raman spectra of Bi-2212 for several doping levels
(from overdoped (p > 0.16) to underdoped (p < 0.16)) in (a) B1g and (b) B2g geometry. In
these two first panels, special care has been devoted to make reliable quantitative comparisons
between the Raman intensities of distinct crystals with different doping levels measured in the
same geometry, and between measurements in distinct geometries for crystals with the same
doping level. Raman spectra subtracted from the one measured at 10 K above Tc in (c) B1g and
(d) B2g geometry. In the last panel, the B2g Raman intensities (excepted for p = 0.22) have
been magnified by a factor of 2 in order to emphasize the temperature evolution of the B1g and
B2g peaks.[12]

Two experimental observations can be pointed out from these spectra. First, the doping
dependences of the B1g and B2g peaks energy are distinct (see panels third and fourth of fig.2).
The energy of the B1g peak increases with underdoping while the energy of the B2g peaks
increases up to the optimal doping p = 0.16 before decreasing. Second, the intensity of the
B1g peak is strongly affected as the doping level falls, it decreases before disappearing close to
p = 0.10 (see first panel of fig.2). On the contrary, the intensity of the B2g peak remains sizeable
even at low doping level (see second panel of fig.2).

We focus on the first observation. In figure 3-a is reported the doping evolution of B1g and
B2g peak positions for Bi-2212 and Hg-1201 compounds. At high doping level the B1g and
B2g peak energies exhibit the same doping dependence : they increase as the doping level



decreases down to approximatively p = 0.20. Below this doping level two energy scales appear
[13, 14]. The B1g energy scale increases almost linearly with underdoping while the B2g one
follows Tc (6 kBTc): it increases up to the maximum of Tc and then decreases. We can define
experimentally a critical doping level namely, pc1 = 0.20, where the two energy scales appear in
the superconducting state.

Our second experimental observation is the collapse of the B1g peak intensity as the doping
level is reduced while the intensity of the B2g peak remains sizeable [15]. In figure 3-b we have
reported the normalized integrated area under the B1g and B2g peaks. (They are obtained from
the subtraction between the Raman reponses well below Tc and just above Tc). We see that
the integrated area of the B1g peak (full square) decreases as the doping level is reduced and
vanishes for a doping level close to p = 0.10. This defines a second critical doping level denoted
pc2 close to p = 0.10. pc1 and pc2 delimit the boundaries of the intermediate region (see fig. 1).
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Figure 3. (a) Doping evolution of the B1g and B2g peak positions extracted from the Raman
spectra of Bi-2212 and Hg-1201 compounds [12, 13]. Around pc1 = 0.20, two energy scales
appear. (b) Doping evolution of the integrated area under the B1g and B2g superconducting
peaks extracted from the Raman spectra of Bi-2212. Around pc2 = 0.10, the intensity of the
B1g peak collapses. On the opposite the area of the B2g peak (open square) doesn’t vanish even
at low doping level. All the data have been measured in the superconducting state well below
Tc.

The B1g and B2g peak area can provide a direct estimate of the density of Cooper pairs in
the nodal and antinodal regions. Indeed for a non interacting Fermi liquid, in the framework of
BCS theory, we can show that the integral of the Raman response over Ω when at T = 0 K,
gives [15] :

∫

χ,,
µ(Ω)dΩ = 4π

∑

k

(γµk )
2
∑

k

(ukvk)
2 (1)



where µ refers to the B1g and B2g geometries, γµk is the Raman vertex, v2k and u2k are the
probabilities of the pair (k ↑,−k ↓) being occupied and unoccupied respectively. This sum is
non-vanishing only around the Fermi energy EF in the range of the superconducting gap 2∆k

[16]. This quantity corresponds to the density of Cooper pairs, formed around the Fermi level as
the gap is opening [17]. The integral of the Raman response is then proportional to the density
of Cooper pairs, weighted by the square of the Raman vertex which selects specific parts of the
Brillouin zone: the nodal or the antinodal regions. In summary, the Raman response function
exhibits the coherent Bogoliubov quasiparticles which are the excitated states of the Cooper
pairs and its integral over Ω gives a direct estimate of the density of Cooper pairs.

Applying this analysis to our data reveals that at high doping level, the density of Cooper pairs
is significant in both the nodal and antinodal region. However it decreases at the antinodes as the
doping level is reduced and vanishes close to pc2 = 0.10, while it is still sizeable around the nodes.
Therefore we are led to conclude that the density of Cooper pairs is strongly doping dependent
and for low doping level it is confined in k-space. Cooper pairs are then forming k-space islands
around the nodes. Clues of a such k-space electronic distribution have been recently suggested
by tunneling and photoemission measurements where loss of coherent Bogoliubov quasiparticles
at the antinodes has been reported [18, 19, 20, 21, 22, 23, 24]. Since spectroscopy techniques
detect coherent Bogoliubov quasiparticles which are the excitated states of Cooper pairs, these
measurements are consistent with theoretical pictures where most of the supercurrent is carried
out by electrons small patches centered on the nodal points [25] and the robustness of nodal
fermions [26]. The doping evolution of the density of Cooper pairs is sketched in fig. 4. Although
it seems counter-intuitive, we find that superconductivity is robust in the nodal region where
the amplitude of the superconducting gap is the smallest.
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kxkxkx
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Figure 4. Sketches of the d-wave superconducting gap amplitude in the momentum space for
three distinct doping levels. The dark (red) zone corresponds to a high density of coherent
Cooper pairs and the bright one to a low density of Cooper pairs. Cooper pairs develop
preferentially around the diagonal of the Brillouin zone with falling doping and form like k-
space islands of Cooper pairs.

3. Impact of the pseudo gap on the superconducting state

In order to get a better understanding of the cuprate phase diagram we have to determine the
origin of the emergence of the two energy scales at the pc1 doping level and the strong loss of
Cooper pairs density in the antinodal region at pc2, giving rise to the confinement of Cooper



pairs in the nodal region. For this, we have to consider the pseudogap phase which has been
originally discovered by nuclear magnetic resonance (NMR) [27, 28] and then extensively studied
by transport [29] and spectroscopic probes [30, 31, 10].

The pseudogap can be defined as a loss of electronic states around the Fermi level which are
only restored above the pseudogap temperature T ∗. Its effect on low energy electronic states
is mainly in the antinodal region. The pseudogap manifests itself in the B1g Raman response
function by a low energy depletion of the electronic background as the temperature decreases
[14, 32, 33, 34, 35, 36]. In the left pannel of fig. 5 is displayed the temperature dependence of the
Raman spectra of Bi-2212 crystals for various doping levels. The thick curves (red and black)
underline the depletion in the low energy range of the Raman spectra. There is no depletion
for the overdoped (OD65K) compound. The low energy electronic background increases as
the temperature decreases. This is expected for a metal [11]. Except for the OD 65 K, we
can estimate the pseudogap temperature T ∗ by studying the temperature dependence of the
normalized integrated area of the B1g Raman response (up to 800 cm−1). We have defined T ∗

as the temperature for which the low energy electronic background intensity is restored. Once
the low energy electronic background is restored, it shows a metallic behaviour and decreases in
intensity as the temperature raises. This corresponds to the maximum of the integrated area.
The integrated area are plotted in the middle panel of fig. 5 and the T ∗ values are indicated by
dashed lines. We find T ∗ ≈ 210, 185 and 160 K for the underdoped (UD) 75 K and 85 K and
overdoped (OD) 84 K coumpounds respectively.
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Figure 5. Left panel: selected temperature dependences of the B1g Raman spectra of Bi-
2212 for several doping levels. Thick lines underline the low energy electronic background
depletion. Middle panel: Normalized integrated area for the B1g Raman spectra. Normalization
was achieved by dividing the integrated area by its maximum value. The vertical dotted line
indicates T ∗ and the thin line corresponds to a polynomial fit. Right panel: subtraction between
the Raman spectra measured at T ∗ and just above Tc. No T ∗ and ωPG values were detected
for the OD 65 crystal. Notice that the shape of electronic background changes drastically with
doping between OD 84 and OD 65. [36]



We can also define the pseudogap energy by subtracting the Raman response measured close
to T ∗ from the one just above Tc. The subtracted spectra are shown in the right panel of fig. 5.
The pseudogap energy ωPG is defined as the end of the energy range inside which the depletion
sets in (see arrow).

We find that T ∗ and ωPG increase with underdoping with ωPG ≈ 4.3T ∗ in good agreement
with previous studies on the pseudogap [37].

Our study on the pseudogap reveals that the pseudogap emerges between 0.19 and 0.22
very close to the pc1 doping level. This is illustrated in fig. 6 where the normalized area of
the electronic background depletion (fingerprint of the pseudogap in B1g Raman spectra) is
reported as a function of doping level (open star). We clearly see that the depletion opens close
to pc1. This is the doping range (shaded zone) for where the two energy scales appear in the
superconducting state, see fig.3.

In fig. 6, the area of the B1g peak varies in opposite manner with the strength of the
pseudogap. The area of the B1g peak decreases for vanishing at pc2 while the pseudogap depletion
becomes more and more pronounced as the doping level is reduced. As seen previously, the
B1g peak area provides a direct estimate of the density of Cooper pairs in the antinodal region.
This gives us experimental evidence that the pseudogap acts again the formation of Cooper pairs
in the antinodal region.

It has not escaped to the reader that pc2 is a key doping level several times mentioned by
many experimental studies: neutrons [38], scanning tuneling spectroscopy (STS) [18, 39], NMR
[40], transport properties [41, 42] and resonant soft X-rays scattering [43].

At this specific doping level fluctuating charge-density wave or magnetic field induced charge
density wave or combination of charge and spin orders have been reported in hole doped cuprates.
pc2 seems to be the specific point for which an effective magnetic field induced rearrangement
of the Fermi surface is observable [44, 45, 46]. Focusing on Bi-2212 compound near pc2 a
checkerboard charge ordering have been detected from STS (without magnetic field) which is
coincident with antinodal quasiparticle decoherence [18].

In our interpretation the superconducting gap and the pseudogap coexist and compete each
other below pc1. This is also supported by earlier and recent studies [47, 48, 49, 50, 51, 52, 53,
54, 55].

In summary, our two main Raman experimental observations in the superconducting state
are originated from the impact of the pseudogap on superconductivity. An uniform distribution
of supercondcutivity around the whole Fermi surface is no more available for high-Tc cuprates.
The pseudogap opens at pc1 and causes a progressive loss of coherent Bogoliubov quasiparticles
around the antinodes and the emergence of two energy scales as we move to pc2. In a such a
way only fractions of coherent Fermi surface (for which coherent Bogoliubov quasiparticles have
been detected) persist around the nodes. Below pc2 superconductivity is mostly confined around
the nodes.

4. A new relationship between the superconducting gap and Tc: a clue for

increasing Tc?

Once it has been shown that pseudogap is directly related to the loss of antinodal coherent
Bogoliubov quasiparticles and the emergence of two energy scales in the superconducting state,
it remains us to simulate the Raman spectra in the superconducting state by taking into account
the impact of the pseudogap on superconductivity. In order to proceed we have considered
a simple d− wave function for the superconducting gap and a loss of coherent Bogoliubov
quasiparticle spectral weight at the antinodes [12].

Within a Fermi liquid description we define the quasiparticle contribution to the Raman
response by:
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Figure 6. Doping evolution of the normalized area of the pseudogap depletion and the pair
breaking peak in B1g geometry. Normalization was achieved from dividing the area by their
maximum values in the doping range of interest.Notice that the pseudogap depletion emerges
around pc1 and the integrated area of the B1g peak collapse at pc2.
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(Ω) =

2πNF

Ω

〈

γ2B1g ,B2g
(φ) (ZΛ(φ))2

∆(φ)2
√

(Ω)2 − 4∆(φ)2

〉

FS

(2)

The angle φ is associated with momentum k on the Fermi surface. The gap function is described
by ∆(φ) = cos 2φ. It vanishes at the nodal point ∆(φ = 450) = 0 while it is maximal at
the antinodes ∆(φ = 0) = ∆max . Its amplitude increases as the doping level is decreasing as
sketched in the top left panel of fig.7.

The angular average over the Fermi surface is denoted 〈(· · ·)〉FS . NF is the density of states
at the Fermi level. We assume here that the density of states NF does not depend sensitively
on doping level between p = 0.10 and 0.20. γB1g ,B2g

are the Raman vertices which read

γB1g
(φ) = γ0B1g

cos 2φ and γB2g
(φ) = γ0B2g

sin 2φ, respectively. ∆(φ)2/
√

Ω2 − 4∆(φ)2 is the
BCS coherence factor.

The function ZΛ(φ) is the renormalized spectral weight of the Bogoliubov quasiparticles.
Λ(φ) is a Fermi liquid parameter associated with the coupling of these quasiparticles to the
electromagnetic field.

The effect of the pseudogap is to decrease the renormalized spectral weight ZΛ(φ) around the
antinodes φ = 0 as the doping is reduced. To proceed in the simplest way, we consider a crenel-
like shape for ZΛ(φ), centered at φ = 45o and define the angular extension φc for which ZΛ(φ)
is significant . This corresponds to the fraction of coherent Fermi surface fc ≡ (45o − φc)/(45

o)
inside which superconductivity settles. As the doping level is reduced fc narrows and the crenel
function shrinks. The quasiparticle spectral weight (QPSW) remains significant around the
nodes and decreases at the antinodes (see the left bottom panel of fig.7). [66]

The angular dependence of the quasiparticle renormalization φc plays a key role in accounting
for the disapearance of the B1g peak and the emergence of the two energy scales.



Let us first consider the B1g geometry. The Raman vertex γB1g
(φ) is peaked at the antinode

φ = 0 which dominates the B1g response, resulting in a pair-breaking coherence peak at
h̄ΩB1g

= 2∆max due to the singularity of the BCS coherence factor. The weight of this peak is

directly proportional to the antinodal quasiparticle renormalization (ZΛAN )2 = (ZΛ)2(φ = 0).
Hence, the fact that the B1g coherence peak looses intensity at low doping (and even disappears
altogether at low doping) is due to the decrease of ZΛAN as doping falls down.

In the B2g geometry, the situation is more subtle because the Raman vertex is largest at the
nodes, where the gap function (and hence the BCS coherence factor) vanishes. As a result, the
energy of the coherence peak depends sensitively on the angular dependence of the quasiparticle
renormalization ZΛ(φ). If the latter is approximately constant along the Fermi surface, then
the energy of the B2g peak is determined solely by the angular extension of the Raman vertex
γB2g

(φ). In contrast, the angular extension φc around the node is smaller than the intrinsic width
of the Raman vertex γB2g

(φ) (see left bottom panel of fig.7). Then, it is φc itself which controls
the position of the B2g peak: h̄ΩB2g

= 2∆(φc). This explains the origin of the differentiation
between the two energy scales in the underdoped regime: while the B1g coherence peak increases
in energy with falling doping, ∆(φc) decreases because of the rapid contraction of the coherent
fraction fc , leading to the decrease of the B2g peak energy and therefore the opposite doping
dependence of the two scales as illustrated in the right pannel of fig.7. We can also notice
that because the QPSW is still significant around the nodes, the intensity of the B2g peak
remains detectable while the B1g peak intensity strongly decreases and disapears for moderately
underdoping.

Interestingly, we note that linearizing the gap function in the nodal region (see top left panel
of fig.7) is a reasonable approximation, leading to the relation h̄ΩB2g

= 45ofc v∆ ∝ kBTc which
links the nodal (B2g ) energy scale (proportional to Tc), the nodal velocity and the coherent
fraction [67]. Since for a simple d-wave gap : v∆ ∝ ∆max , the relation between the critical
temperature (or ΩB2g

) and the coherent fraction reads: kBTc ∝ fc∆max . This relation carries
a simple physical meaning, namely that it is the suppressed coherence of the quasiparticles that
sets the value of Tc, while ∆max increases with falling doping. This relation differs from the
standard BCS theory. Crucially, Tc in cuprates depends on the gap ∆max but also a prefactor,
fcwhich is doping dependent.

Our interpretation reconciles the distinct doping dependence of the two energy scales with the
thermal conductivity measurements of underdoped cuprates. Quasiparticle thermal conductivity
measurements interpreted within the clean limit and a Fermi velocity vF almost constant [68]
show that K0/T ∝ vF

v∆
decreases with falling doping and v∆ ∝ ∆max [59, 60].

It is also in agreement with previous observations on Giaver and Andreev Saint-James
(ASJ) tunneling experiments which pointed out the existence of two distinct energy scales in
superconducting state of underdoped cuprates [62]. The high energy scale was assigned to the
single particle exictation energy. This is the energy of the first excited state required to break
a Cooper pair in Giaver tunneling experiment [63]. This corresponds to the Raman B1g scale
associated to the pair breaking peak energy. The low energy scale was assigned to the energy
range over which Cooper pairs can flow in the ASJ tunnelling. It is directly related to the
Raman B2g scale since, this last one, is controlled by fc around the nodes where supercurrents
flow.

Our experimental observations and simulations show that Tc is limited by fc such as
kBTc ∝ fc∆max . In parallel way, such a relationship can be also achieved by considering
the Uemura relation (valid in the underdoped regime) and Homes’ law [69, 70]. Indeed, ρS ∝ Tc

and ρS ∝ σdc∆max (valid in the dirty limit) lead to Tc ∝ σdc∆max . ρS and σdc are respectively
the superfluid density and dc-conductivity. Tc is thus driven by the maximum amplitude of
the superconducting gap and the physical quantity which controles the current flows namely
σdc or fc . Our prediction is therefore that cuprates with the largest σdc above Tc close to
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Figure 7. Left panel: at the top, doping evolution of a single d-wave superconducting gap. The
shaded area correspond to the fraction of coherent Fermi surface, fc , around the nodes. At the
bottom: the doping dependence of the quasiparticle spectral weight (QPSW). φc angle delimits
the extension of fc . When φc is smaller than the B2g vertex width (gray dashed line) φc itself
controls the position of the B2g peak. Right panel: Calculated Raman spectra in B1g and B2g for
several doping levels.

the optimal doping level will give the highest Tc. This explains why Tc can be reduced in
Zn and Ni-substituted optimally doped Y-123 compounds although ∆max remains unchanged
[71, 72]. The reason is that σdc decreases by Zn and Ni substitutions while preserving the carrier
concentration.

In conclusion, our experimental findings reveal that the superconducting state is disturbed
by the emergence of the pseudogap. Contrary to the conventional superconductors for which
all the electronic states near the Fermi level are involved in the superconducting state, only a
part of these electronic states is involved in superconductivity of underdoped cuprates. This
disturbance of the Fermi surface is caused by the emergence of the pseudogap which develops
along the antinodes. This gives rises to three regions inside the superconducting states delimited
by pc1 and pc2 which signal respectively the begining and the end of the disturbance of the Fermi
surface at the antinodes. Between pc1 and pc2, Fermi surface transforms into fractions of coherent
Fermi surface centered around the nodes. The coherent Bogoliubov quasiparticles are distroyed
around the antinodes. This k-space dichotomy leads to two energy scales in the superconducting
state. The B1g energy scale is related to the maximum amplitude of the superconducting gap
at the antinodes and the B2g one to the non vanishing amplitude of the superconducting gap at
the ends of the coherent fractions of the Fermi surface.



Although the superconducting gap increases with falling doping level, the loss of well defined
Bogoliubov quasiparticles in the antinodal region locks Tc and leads to its decrease. Preserve
available coherent Bogoliubov quasiparticules at the antinodes for superconducting current flow
is from our point of view the crucial point for increasing Tc.
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