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Abstract. The term active nematics designates systems in which apolar elongated

particles spend energy to move randomly along their axis and interact by inelastic

collisions in the presence of noise. Starting from a simple Vicsek-style model for

active nematics, we derive a mesoscopic theory, complete with effective multiplicative

noise terms, using a combination of kinetic theory and Itô calculus approaches.

The stochastic partial differential equations thus obtained are shown to recover

the key terms argued in EPL 62 (2003) 196 to be at the origin of anomalous

number fluctuations and long-range correlations. Their deterministic part is studied

analytically, and is shown to give rise to the long-wavelength instability at onset of

nematic order (see arXiv:1011.5408). The corresponding nonlinear density-segregated

band solution is given in a closed form.

‡ On leave from Department of Physics, Indian Institute of Science, Bangalore 560 012 India.
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1. Introduction

The study of collective properties of systems of interacting active particles [1, 2, 3] is

currently attracting a great deal of interest. In active matter, particles extract energy

from their surrounding and dissipate it to propel themselves in some coherent way

in a viscous fluid and/or over a dissipative substrate. In this last case, or whenever

hydrodynamic effects can be neglected, physicists speak of “dry active matter” [3].

Systems as diverse as animal flocks [4, 5, 6], human crowds [7, 8], subcellular proteins

[9], bacterial colonies [10], and driven granular matter [11, 12, 13] have been described

in this framework.

In the context of dry active matter, there is now some consensus in the physics

community that minimal models such as the celebrated Vicsek model [14, 15] play a

crucial role, since they stand as simple representatives of universality classes which

have started to emerge from a combination of numerical and theoretical results: for

instance, many different microscopic (particle) models have been shown to exhibit the

same collective properties as the Vicsek model, and the continuous equation proposed

by Toner and Tu [16] is widely believed to account for its collective properties. Such

hydrodynamic theories formulated at the mesoscopic level (stochastic PDEs) are the

natural framework to characterize and define universality classes.

In early approaches these mesoscopic theories have been built on the principle

of including all that is not explicitly forbidden, retaining all leading terms (in a

gradient expansion sense) allowed by symmetries and conservation laws [16, 17]. This

grants access to the general structure of these equations and has been successful in

describing relevant features of active matter systems such as their anomalously large

number density fluctuations [16, 12, 18, 13]. Despite the attractions of a gradient

expansion, it typically contains many transport coefficients of unknown dependence on

microscopic control parameters and hydrodynamic fields such as local density. Moreover,

the dependence of the noise terms on the dynamical fields in such equations remains

arbitrary, and frequently neglected, whereas it could have profound consequences

for important phenomena such as spontaneous segregation, clustering and interface

dynamics.

Ideally, thus, one would be able to derive well-behaved mesoscopic theories using

a systematic procedure starting from a given microscopic model. Kinetic-theory-like

approaches [19, 20, 21, 22, 23] go one step towards this goal, by allowing one to

compute hydrodynamic transport coefficients and nonlinear terms. One of the most

successful versions is arguably the “Boltzmann-Ginzburg-Landau” (BGL) framework

recently put forward by some of us [24, 25], where, in the spirit of weakly nonlinear

analysis, one performs well-controlled expansions in the vicinity of ordering transitions.

Kinetic approaches alone thus yield good deterministic “mean-field” equations but one

still need to “reintroduce” fluctuations in order to get bona fide mesoscopic descriptions.

In this work, we show how this complete program can be achieved for the case of

active nematics, i.e. systems where particles are energized individually but not really
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self-propelled, moving along the axis of the nematic degree of freedom they carry, with

equal probability forward or back. (Think of shaken apolar rods aligning by inelastic

collisions [12].) Starting from the Vicsek-style model for active nematics introduced in

[26], we formulate a version of the BGL scheme mentioned above adapted to problems

dominated by diffusion, derive the corresponding hydrodynamic equations, and study

their homogeneous and inhomogeneous solutions. In a last section, we show how these

equations can be complemented by appropriate noise terms using a direct coarse-graining

approach.

2. Kinetic approach

2.1. Microscopic dynamics

We consider the microscopic model for active nematics of [26] in two space dimensions.

This Vicsek-style model can be thought of as a minimal model for a single layer of

vibrated granular rods [12] although it does not deal explicitly with any volume exclusion

forces. Here, rather, pointwise particles j = 1, . . . , N are characterized by their position

xtj and an axial direction θtj ∈ [−π/2, π/2]. They interact synchronously with all

neighboring particles situated within distance r0 in a characteristic driven-overdamped

dynamics implemented at discrete timesteps ∆t:

θt+∆t
j =

1

2
Arg

∑
k∈Vj

ei2θ
t
k

+ ψtj (1)

xt+∆t
j = xtj + d0 κ

t
j n̂tj , (2)

where Vj is the neighborhood of particle j, d0 < r0 is the elementary displacement,

n̂tj ≡
(
cos θtj, sin θ

t
j

)T
is the nematic director, and ψ and κ are two white noises:

the random angle ψtj, familiar of Vicsek-style models, is drawn from a symmetric

distribution P̃η(ψ) of variance η2, and the zero average bimodal noise κtj = ±1

determines the actual orientation of motion. Both noises are delta correlated, namely

〈κtjκt
′

k 〉 ∼ 〈ψtjψt
′

k 〉 ∼ δt t′δj k.

In the following, we adopt the convention [n̂n̂]αβ ≡ n̂αn̂β and label coordinates by

greek indices, α, β, . . . = 1, 2, summing over repeated indices.

2.2. Timescales and lengthscales

We consider low density systems in which particles, at a given time, are either non-

interacting or involved in a binary interaction. In this dilute limit we can neglect

interactions between more than two particles. We also treat interactions as collision-like

events, with the mean intercollision time

τfree ≈
τd
d2

0 ρ0

, (3)
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where ρ0 is the global particle density and τd is shortest microscopic timescale of the

dynamics, associated to the inversion of the rods direction of motion τd ∼ ∆t. This

inter-collision time is much larger than the collision timescale

τcoll ≈ τd

(
r0

d0

)2

. (4)

For driven granular rods, τd may be thought of as the inverse of the shaking frequency,

and for typical parameters it is much smaller than both the collision (τcoll) and the mean

intercollision (τfree) timescales; at low enough densities τd � τcoll � τfree. Note that the

timescales (4)-(3) are different from the ones characteristic of ballistic dynamics [20].

To develop a kinetic approach we consider a mesoscopic timescale τB such that

τcoll � τB � τfree. As a consequence, we will treat the inversion of the direction

of motion as a noisy term through Itô stochastic calculus [27]. We also consider a

mesoscopic coarse-graining lengthscale `B which, while being much smaller than the

system size L, is larger than the microscopic scales, such as the step-size d0, the mean

interparticle distance ρ
−1/2
0 and the interaction range r0. To summarize, in a dilute

system one has

τd � τd

(
r0

d0

)2

� τB �
τd
d2

0ρ0

(5)

and

d0 < r0 �
1
√
ρ0

� `B � L (6)

where L is the system size and we have made explicit the condition that the typical

coarse-graining lengthscale `B is such that many particles are contained in a box of

linear size `B, that is ρ0`
2
B � 1.

2.3. Master equation

We now write down a Boltzmann-like master equation in terms of the single particle

probability distribution f(x, θ, t), with −π
2
< θ ≤ π

2
, evolving over the timescale ∆t ≈

τB. The minimal spatial resolution is such that many particles are contained in a spatial

volume d2x centered around the position x. Moreover, we consider a dilute system, so

that interactions (collisions) between particles are sufficiently rare to justify i) binary

interactions (as explained above, particles then either self-diffuse or experience noisy

binary, collision-like interactions), ii) decorrelation of the orientation between successive

binary collisions of the same pair of particles, that is f2(x, θ1, θ2, t) ≈ f(x, θ1, t)f(x, θ2, t).

We first omit collisions and angular diffusion, only considering Eq. (2) to get

f(x, θ, t+ ∆t) =
1

2
[f(x + n̂(θ)d0, θ, t) + f(x− n̂(θ)d0, θ, t)] , (7)

where we have considered that a particle moves along one of the two orientations of n̂

with equal probability. On the mesoscopic timescale τB � τd ∼ ∆t, Itô calculus [27] to

second order gives

∂tf(x, θ, t) = D0∂α∂β[n̂α(θ)n̂β(θ)f(x, θ, t)] (8)
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where

D0 =
d2

0

2τd
(9)

is the microscopic diffusion parameter.

To account for angular diffusion and binary collisions, the appropriate integrals

need to be added to the right hand side of Eq. (8),

∂tf(x, θ, t) = D0 ∂α∂β[n̂α(θ)n̂β(θ)f(x, θ, t)] + Idiff [f ] + Icoll[f, f ] . (10)

The diffusion integral describes self-diffusion which takes place at a rate λ = 1/τd

Idiff [f ] = −λf(θ) + λ

∫ π/2

−π/2
dθ′f(θ′)

∫ ∞
−∞

dζP (ζ) δπ(θ′ − θ + ζ) (11)

where we used the simplified notation f(θ) ≡ f(x, θ, t), δπ is a generalized Dirac delta

imposing that the argument is equal to zero modulo π and P (ζ) is a symmetric noise

distribution of variance σ2, corresponding to the effective noise arising at the timescale

τB from the sum of the microscopic stochastic contributions to angular dynamics.

Binary collisions are described by

Icoll[f, f ] = − f(θ)

∫ π/2

−π/2
dθ′f(θ′)K(θ, θ′) (12)

+

∫ π/2

−π/2
dθ1

∫ π/2

−π/2
dθ2f(θ1)K(θ1, θ2)f(θ2)

∫ ∞
−∞
dζP (ζ) δπ(Ψ(θ1, θ2)−θ+ζ) ,

where, for the sake of simplicity, we have used the same noise distribution P (ζ) as in the

self-diffusion integral, and the out-coming angle Ψ from deterministic binary collisions

is, for −π
2
< θ1, θ2 ≤ π

2
,

Ψ(θ1, θ2) =
1

2
(θ1+θ2)+h(θ1−θ2) with h(θ) =

{
0 if |θ| ≤ π

2
π
2

if π
2
< |θ| ≤ π

(13)

Note that the role of the function h(θ) is to ensure that Ψ(θ1, θ2) is π-periodic with

respect to θ1 and θ2 independently. The collision kernel K(θ1, θ2), i.e. the number of

collisions per unit time and volume, is calculated as follows. Consider two particles

with nematic axis n̂(θ) and n̂(θ′) located in the volume d2x centered around position

x. In the reference frame of the first particle the second one diffuses either along the

|n̂(θ) − n̂(θ′)| or the |n̂(θ) + n̂(θ′)| nematic axis. In unit time, taking into account the

characteristic timescales τd and step-size d0 of its motion, it sweeps a surface (its cross

section, which is conserved going back to the lab reference frame) equal to

K(θ, θ′) =
r0d0

τd
[|n̂(θ)− n̂(θ′)|+ |n̂(θ) + n̂(θ′)|]

= 2α0

[∣∣∣∣sin θ − θ′2

∣∣∣∣+

∣∣∣∣cos
θ − θ′

2

∣∣∣∣] , (14)

where we have introduced the microscopic collision parameter

α0 =
r0d0

τd
. (15)
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Note that K(θ, θ′) ≡ K̃(θ− θ′) is an even function of the difference (θ− θ′), and fulfills

the nematic symmetry, being invariant under rotation of either angle by π.

Before proceeding to derive hydrodynamic equations, we simplify all notations by

rescaling time t̃ = λt = t/τd and space x̃ =
√

2
d0
x. As in [24, 25] we also set the collision

surface S = 2r0d0 to 1 by a global rescaling of the one-particle probability density f ,

without loss of generality. This amounts to set λ0 = 1, D0 = 1 and 2α0 = 1, so that,

dropping the tildes, our Boltzmann-like master equation now depends only on the global

density ρ0 and the noise intensity σ.

2.4. Hydrodynamic description

In two spatial dimensions, hydrodynamic fields can be obtained by expanding the single

particle probability density f in Fourier series of its angular variable θ ∈ [−π/2, π/2]§:

f(x, θ, t) =
1

π

k=∞∑
k=−∞

f̂k(x, t)e
−i2kθ (16)

and

f̂k(x, t) =

∫ π/2

−π/2
dθf(x, θ, t)ei2kθ . (17)

The number density and the density-weighted nematic tensor field w ≡ ρQ are then

given by

ρ(x, t) =

∫ π/2

−π/2
dθf(x, θ, t) = f̂0(x, t) (18)

and

w11(x, t) = −w22(x, t) =
1

2

∫ π/2

−π/2
dθf(x, θ, t) cos(2θ) =

1

2
Ref̂1(x, t) (19)

w12(x, t) = w21(x, t) =
1

2

∫ π/2

−π/2
dθf(x, θ, t) sin(2θ) =

1

2
Imf̂1(x, t) (20)

Note that when Imf̂1 = 0 the nematic field is aligned either along the x (Ref̂1 > 0) or

the y (Ref̂1 < 0) axis.

Injecting the Fourier expansion (16) in the master equation (10), one gets, after

some lengthy calculations detailed in Appendix A, the infinite hierarchy:

∂tf̂k(x, t) =
1

2
∆f̂k(x, t) +

1

4

(
∇∗2f̂k+1 +∇2f̂k−1

)
+
[
P̂k − 1

]
f̂k(x, t)

+
1

π

∑
q

f̂q(x, t)f̂k−q(x, t)

[
P̂kĴk,q −

4

1− 16q2

]
(21)

§ These k-modes are equivalent to even harmonics if one would define particles orientation in [−π, π]

in spite of the symmetry under rotations by π (with odd ones being zero by symmetry).
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where P̂k is the Fourier transform of the noise distribution P (ζ) (namely, P̂k =∫∞
−∞ dζP (ζ)ei2kζ) and

Ĵk,q = 4
1 + 2

√
2(2q − k)(−1)q sin

(
kπ
2

)
1− 4(2q − k)2

(22)

and we have introduced the following “complex” operators

∇ ≡ ∂x + i∂y

∇∗ ≡ ∂x − i∂y

∆ ≡ ∇∇∗

∇2 ≡ ∇∇
∇∗2 ≡ ∇∗∇∗

The equation at order k = 0 is thus expressed in the simple form

∂tρ =
1

2
∆ρ+

1

2
Re
(
∇∗2f̂1

)
(23)

and is nothing but the continuity equation for diffusive active matter with local

anisotropy characterized by f̂1.

Eq. (21) possesses a trivial, isotropic and homogeneous solution: ρ(x, t) = f̂0(x, t) =

ρ0 and f̂k(x, t) = 0 for |k| > 0. We are interested in a nematically ordered homogeneous

solution which could eventually arise following some instability of the isotropic solution

above. In analogy to the scaling ansatz used for polar particles [20, 25], the interaction

term in Eq. (21) suggests a simple scaling ansatz to close the infinite hierarchy of

equations on f̂k(x, t): Near an instability threshold with continuous onset, Fourier

coefficients should scale as f̂k(x, t) ∼ ε|k| where ε is a small parameter characterizing

the distance to threshold. Moreover, the curvature induced current (last term of (23))

also induces an order ε variation in the density field, ρ(x, t) − ρ0 ∼ ε. Then, assuming

spatial derivatives to be of order ε, the request that all terms in Eq. (23) are of the

same order also fixes the diffusive structure of the scaling of time and spatial gradients:

∂t ∼ ∇2 ∼ ∆ ∼ ε2.

Using the above scaling ansatz, we proceed by discarding all terms appearing in

(21) of order higher than ε3. For k = 1, 2 we get:

∂tf̂1 =
1

2
∆f̂1 +

1

4
∇2ρ+ a1(ρ)f̂1 + b1f̂

∗
1 f̂2 (24)

and

0 =
1

4
∇2f̂1 − a2(ρ)f̂2 + b2f̂1f̂1 (25)

where the coefficients are

a1(ρ) =
8

3π

[
(2
√

2− 1)P̂1 −
7

5

]
ρ− (1− P̂1) , (26)

b1 =
8

315π

[
13− 9P̂1(1 + 6

√
2)
]

(27)
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a2(ρ) = (1− P̂2) +
8

3π

(
P̂2

5
+

31

21

)
ρ (28)

and

b2 =
4

π

(
1

15
+ P̂2

)
. (29)

Eq. (25) shows that at this order f̂2 is enslaved to f̂1 (given that a2 > 0) and, further,

a2(ρ0)f̂2 ≈
1

4
∇2f̂1 + b2f̂1f̂1 , (30)

where the coefficient a2 is evaluated at the mean density ρ0, since the δρ = ρ − ρ0

corrections are of higher order. By substituting Eq. (25) into (24) one finally gets,

neglecting the term f̂ ∗1∇2f̂1 ∼ ε4,

∂tf̂1 =

(
µ− ξ

∣∣∣f̂1

∣∣∣2) f̂1 +
1

4
∇2ρ+

1

2
∆f̂1 (31)

where we have introduced the transport coefficients

µ =
8

3π

[(
2
√

2− 1
)
P̂1 −

7

5

]
ρ−

(
1− P̂1

)
(32)

ξ =
32ν

35π2

[
1

15
+ P̂2

] [(
1 + 6

√
2
)
P̂1 −

13

9

]
(33)

with ν =

[
8

3π

(
31

21
+
P̂2

5

)
ρ0 +

(
1− P̂2

)]−1

. (34)

Note that the coefficient ξ is only a function of the average density ρ0, as space and

time dependent corrections are of order ε4. Note also that the coefficients µ and ξ are

exactly the same as those found for the nematic field equation of nematically-aligning

polar particles [25] ‖
Eqs. (23) and (31) can be expressed in tensorial notation. To this aim, we

introduce the linear differential operator Γ, such that Γ11 = −Γ22 ≡ ∂1∂1 − ∂2∂2 and

Γ12 = Γ21 ≡ 2∂1∂2, and the Frobenius inner product A : B = AαβBαβ (note that

w : w = ||w||2 and Γ : w = 2∂α∂βwαβ). After some manipulation of the terms and the

use of Eqs. (19,20), we obtain the hydrodynamic equations for the density and nematic

field

∂tρ =
1

2
∆ρ+

1

2
(Γ : w) , (35)

∂tw = µw − 2ξw (w : w) +
1

2
∆w +

1

8
Γρ (36)

Although the tensorial notation might be more familiar to some readers, it is in fact

easier here to continue manipulating the complex field f̂1 and the complex operators

‖ Note that in [25], the equations obtained are not entirely correct: (i) there is a sign error and a

misplaced factor π in the expression of ξ; (ii) the term ν
4∇

2f2 should read ν
4∆f2, where ∆ is the

Laplacian. In addition, let us emphasize that the Fourier coefficients P̂k have a different definition in

[25], due to the absence of global nematic symmetry: P̂k here corresponds to P̂2k in [25], leading to

(only apparent) differences.
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defined above. Moreover, in the following we drop the “ˆ” superscript to ease notations.

Eqs. (35) and (36) are also derived from an apolar Vicsek-style model in [29].

The parameter-free character of the Laplacian term in (36) means, consistent with

our expansion in ε, that the nematic phase of our system will be characterized by a

single Frank constant [28]. The nonlinearities studied in [30] are therefore also absent

to this order. The last term in Eq. (23) (or Eq. (35)), i.e. 1
2
Re (∇2f1) (or 1

2
(Γ : w)),

is a curvature induced current which couples the density and the nematic field. While

its existence was first deduced from general principles [17], here we have computed it

directly from microscopic dynamics. Our calculations also give an exact expression for

the corresponding transport coefficient, which is equal to the diffusive one (in Eq. (23)

or Eq. (35)), here set to 1/2 by our rescaling. In Appendix B, we show explicitly that

this curvature-induced current originates from the coupling of orientation with motility.

We note finally that Eqs. (35,36) are similar to those found by Baskaran and

Marchetti [22] but simpler, largely due to our simpler starting point.

2.5. Homogeneous solutions

From now on, we use for P (ζ) a centered Gaussian distribution of variance σ2, in which

case P̂k = e−2k2σ2
. The linear stability with respect to homogeneous perturbations of

the disordered solution ρ(x, t) = ρ0, f̂1(x, t) = 0 is given by the sign of µ(ρ0) which

yields the basic transition line

σt =

√√√√1

2
ln

[
5

8(2
√

2− 1)ρ0 + 3π

56ρ0 + 15π

]
. (37)

Note that in the dilute limit ρ0 � 1, where the equations have been derived, one has

σt ∼
√
ρ0.

For σ < σt, µ > 0, and the homogeneous nematically ordered solution

|f1| =
√
µ

ξ
(38)

exists and is stable w.r.t. homogeneous perturbations. The critical line is shown in

Fig. 1a (black solid line). Note that for σ < σt, all transport coefficients (32-34) are

positive. This will be useful in the rest of the paper.

3. Linear stability analysis

We now study the linear stability of the above homogeneous solutions w.r.t. to arbitrary

perturbations. Linearizing Eqs. (23) and (31) around a homogeneous solution, f1 =

f1,0 + δf1 and ρ = ρ0 + δρ, one has

∂tδρ =
1

2
∆δρ+

1

2
Re
(
∇∗2δf1

)
(39)

∂tδf1 =
(
µ0 − ξ |f1,0|2

)
δf1 + µ′f1,0 δρ− 2ξf1,0 Re

(
f ∗1,0 δf1

)
+

1

4
∇2δρ+

1

2
∆δf1 (40)
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where µ0 ≡ µ(ρ0) and µ′ is the derivative of µ w.r.t. ρ. We then introduce the real and

imaginary parts of the order parameter perturbation, δf1 = δf
(R)
1 + iδf

(I)
1 , and express

the spatial dependence of all perturbation fields in Fourier space, with a wavevector

q = (qx, qy), by introducing the ansatz

δρ(x, t) = δρq e
st+iqr , (41)

δf
(R)
1 (x, t) = δf

(R)
1,q e

st+iqr , δf
(I)
1 (x, t) = δf

(I)
1,q e

st+iqr . (42)

The stability of the stationary solution f1,0 is then ruled by the real part of the growth

rate s.

3.1. Stability of the disordered isotropic solution

We first study the stability of the disordered solution f1,0 = 0, in the case µ0 < 0.

Substituting Eqs. (41), (42) in Eqs. (39), (40), one has

s δρq = − q2

2
δρq −

1

2
(q2
x − q2

y)δf
(R)
1,q − qxqyδf

(I)
1,q , (43)

s δf
(R)
1,q = − 1

4
(q2
x − q2

y)δρq +

(
µ0 −

q2

2

)
δf

(R)
1,q ,

s δf
(I)
1,q = − 1

2
qxqy δρq +

(
µ0 −

q2

2

)
δf

(I)
1,q ,

where q2 = q2
x + q2

y. All directions of the wavevector q being equivalent, we choose for

simplicity qx = q and qy = 0. From Eq. (43), one then sees that the component δf
(I)
1,q

becomes independent from δρq and δf
(R)
1,q , yielding the negative eigenvalue s = µ0 − q2

2
.

The eigenvalues of the remaining 2× 2 block of the stability matrix are solutions of the

second order polynomial

s2 + s
[
q2 − µ0

]
+
q2

2

[
q2

4
− µ0

]
≡ s2 + β1s+ β0 = 0 . (44)

In the disordered state µ0 < 0, so that β1 and β2 are positive and one always has

Re(s) < 0. Therefore, the homogeneous disordered solution is stable w.r.t. to all

perturbations if µ0 < 0, i.e. σ > σt.

3.2. Stability of the ordered solution

To study the stability of the anisotropic ordered solution, it is convenient to choose a

reference frame in which order is along one of the axes:

Re (f1,0) = ±
√
µ0

ξ
, Im (f1,0) = 0 . (45)

This solution is aligned along x, if f1,0 is positive, or along y if negative. For simplicity

we will concentrate further on the case f1,0 ≥ 0, i.e., on the nematic solution aligned

along the x axis. The real part δf
(R)
1 of the nematic field perturbation describes changes

in the modulus |f1,0|, and the imaginary part δf
(I)
1 describes perturbations perpendicular
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to the nematic orientation. The ansatz (41), (42) then yields the three coupled linear

equations

s δρq = − q2

2
δρq −

1

2
(q2
x − q2

y)δf
(R)
1,q − qxqy δf

(I)
1,q , (46)

s δf
(R)
1,q =

[
µ′f1,0 −

1

4
(q2
x − q2

y)

]
δρq −

[
2µ0 +

q2

2

]
δf

(R)
1,q ,

s δf
(I)
1,q = − 1

2
qxqy δρq −

q2

2
δf

(I)
1,q .

We performed a full numerical stability analysis of these equations. The results are

presented in Fig. 1. The transition to the homogeneous solution is given by the line σt.

This solution is unstable to finite wavelength transversal perturbations of angle |θ| > π
4

between the lines σt and σs (dotted purple line in Fig. 1), but is stable deeper in the

ordered phase.

Two remarks are in order. First, the angle of the most unstable mode is here

always perfectly π
2
. It is thus possible to obtain the “restabilization” line σs analytically

as shown below. Second, there is no spurious instability at low noise and/or high

density (although we have found that such an instability appears if the truncation of

the equations is made to the fourth order).

To obtain the analytic expression of the line σs, we write the wavevector in terms

of its modulus q and its angle θq, so that q2
x − q2

y = q2 cos 2θq and 2qxqy = q2 sin 2θq.

We can then analyze Eqs. (46) in the longitudinal and perpendicular wavedirections

θq = 0 ,±π
2
, where the imaginary perturbation δf

(I)
1,q decouples from the other two.

The latter is stable towards long wavelength perturbations, since the corresponding

eigenvalue s = −q2/2 is negative. The stability towards density and real perturbations

depends on a 2× 2 matrix which yields the quadratic eigenvalue equation

s2 +
[
2µ0 + q2

]
s+

[(
±µ′f1,0

2
+ µ0

)
q2 +

q4

8

]
= 0 (47)

whose solutions are

s =
1

2

[
−2µ0 − q2 ±

√
4µ2

0 ∓ 2µ′f1,0q2 +
q4

2

]
. (48)

The sign ± in front of the µ′f1,0 term in Eq. (47) corresponds to the case θq = 0 (positive

sign) and θq = π
2

(negative sign) respectively. Note that µ′ is strictly positive, as typical

for all active matter system with metric interactions, where the interaction rate grows

with local density. Also µ0 is positive and of order ε2 (see Eq. (45)). It it thus easy to

see that in the case of large q, <[s] ≤ 0. For small values of q, we perform an expansion

to order q2 of the largest growth rate s+, obtained by taking the positive sign in front

of the square root in Eq. (48), leading to

s+ =
q2

2

[
∓ µ′

2µ0

f1,0 − 1

]
. (49)
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Figure 1. (a) Basic stability diagram. The line σt (solid, black) marks the linear

instability of the disordered homogeneous solution. The ordered homogeneous solution

is linearly unstable to large wavelengths between the σt and σs (dotted, purple) lines,

and linearly stable below the σs line. The σmin and σmax lines mark the domain of

existence of the band solution (62). (b) Density and order profile of the band solution

for ρ0 = 1, σ = 0.265, L = 1000; note that the lower and upper levels (ρgas and ρband)

are respectively lower than ρt and higher than ρs, i.e. such that the corresponding

homogeneous solution are lineally stable. (c): properties of the band solutions for

ρ0 = 1: left: values of ρgas (long dash, dark blue line) and ρband (dashed, red line) as

σ varies between σmin and σmax; right: corresponding variation of the surface fraction

ω.

We can then conclude that for longitudinal perturbations (θq = 0, negative sign in front

of µ′), the homogenous solution is stable confirming the results of numerical analysis.

In the case of transversal perturbations (θq = ±π/2), the stability condition is given by

µ0 >
µ′2

4ξ
(50)

meaning that close to the instability threshold of the disordered solution, when µ0 is

positive but small, the state of homogeneous order is unstable with respect to long

wavelength perturbations. This instability was first identified in a kinetic-equation
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analysis by Shi and Ma [23]. Note that condition (50) is valid up to the third order in

ε (or, equivalently, in the order parameter ||w||). It yields the stability line

ρs =
4µ2 − µ′2ξ2

µ′2ξ1 − 4µ′
, (51)

where µ2 = µ(ρ = 0), ξ1 = (1/ξ)′ and ξ2 = (1/ξ(ρ0 = 0)). We do not provide here

the explicit analytical expression for σs because this requires solving a sixth order

polynomial.

We remark that the near-threshold instability discussed above is rather generic and

appears in “dry” active matter systems with metric interactions, as opposed to systems

with metric-free ones, where the interaction rate is density-independent, and µ′ = 0

[31, 24, 32]. In this case (topological active nematics), stability would be enforced by

the positive higher order corrections µ0q
2 which dominates arbitrarily close to threshold.

4. Inhomogeneous solution

We now show how a spatially-inhomogeneous stationary “band” solution to our

hydrodynamic equations can be found. First we remark that our equation for the

nematic field Eq. (31) is formally the same as that derived in [25] for polar particles

with nematic alignment when the polar field is set to zero, as it is imposed here by

the complete nematic symmetry of our system. We thus expect an ordered band

solution made of two fronts connecting a linearly stable homogeneous disordered state

(ρ = ρgas < ρt) and a linearly stable homogeneous ordered state (ρ = ρband > ρs) (see

Fig. 1). Following [25], we rewrite

µ(ρ) = µ′(ρ− ρt) , (52)

with ρt = (1 − P̂1)/µ′, suppose that the nematic field is aligned along one of the axes

and varies only along y. In other words:

Re (f1) = f1(y) , Im (f1) = 0 , ρ = ρ(y) . (53)

Eqs. (35) then becomes

∂2
yρ = ∂2

yf1 (54)

which can be integrated to give

ρ = f1 + Ay + ρgas (55)

where A and ρgas are integration constants. Furthermore, to keep the fields finite for

|y| → ∞, one has A = 0. By substituting Eqs. (54) and (55) into Eq. (31) one gets

∂yyf1 = −4µ′ (ρgas − ρt) f1 − 4µ′f 2
1 + 4ξf 3

1 (56)

We multiply equation (56) by ∂yf1 and integrate it once to obtain

1

2
(∂yf1)2 = −2µ′ (ρgas − ρt) f

2
1 −

4

3
µ′f 3

1 + ξf 4
1 . (57)
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Separating the variables we obtain∫
dy = ±

∫
df1√

−4µ′ (ρgas − ρt) f 2
1 − 8

3
µ′f 3

1 + 2ξf 4
1

(58)

Integration of this equation under the condition limy→±∞f1(y)=0 gives after

simplifications

f1 (y) =
3 (ρt − ρgas)

1 + a cosh
(

2y
√
µ′ (ρt − ρgas)

) (59)

where a =
√

1− 9ξ
2µ′

(ρt − ρgas). We still need to obtain the value of ρgas which is fixed

by the condition
∫
L
ρ (y) dy = ρ0L, where L is the length of the box. In the integral on

the l.h.s we can neglect the exponentially decaying tails and integrate instead on the

infinite domain. Furthermore, in the limit L → ∞ we can neglect the exponentially

weak dependence of ρgas on L everywhere except the a term. We then obtain

ρgas ≈ ρt −
2µ′

9ξ

(
1− 4e−KL

)
, (60)

K =
2
√

2µ′

9
√
ξ

(
1 +

9ξ

2µ′
(ρ0 − ρt)

)
. (61)

Substituting it back into Eq. (59) we get, under the assumption L→∞:

f1 (y) =
fband

1(
1 + 2e−

KL
2 cosh

(
y 2
√

2µ′

3
√
ξ

)) where fband
1 =

2µ′

3ξ
(62)

and we finally obtain the ordered solution density

ρband = fband
1 + ρgas = ρt +

4µ′

9ξ

(
1 + 2e−KL

)
(63)

with, as expected, ρband > ρt > ρgas, which guarantees the stability of both the ordered

and disordered parts of the solution. Note that since fband
1 > 0 the nematic order is

parallel to the x direction (i.e. along the band orientation). This is the opposite of what

happens in the Vicsek model, where bands extend transversally with respect to their

polarization [15].

We can introduce the band fraction Ω which indicates the fraction of the box

occupied by the band. If we suppose that the front width is negligible (once again

justified in the limit L→∞), this band fraction is determined by the equation

Ω (ρband − ρgas) + ρgas = ρ0 (64)

Substituting inside the values of ρgas and ρband, we obtain

Ω =
9ξ (ρ0 − ρt) + 2µ′

6µ′
(65)

The condition 0 < Ω < 1 gives us the lower σmin and upper σmax limits of the existence

of bands. As found for polar particles aligning nematically, these limits of existence

of the band solution extend beyond the region of linear instability of the homogeneous
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ordered solution (given by σ ∈ [σs, σt], see Fig. 1). In Fig. 1, we provide a graphical

illustration of the shape and properties of the band solution.

An important problem left for future work is the linear stability analysis of the band

solution in two space dimensions. This is all the more important as the unpublished

work of Shi and Ma [23] suggests the existence of some instability mechanism.

5. Langevin formulation

Being based on a master equation, the derivation we have discussed in the previous

sections leads to a set of deterministic PDEs. This is a standard approach in equilibrium

statistical physics, where the microscopic fluctuations are integrated out in the coarse

graining process implicit in the definition of a mesoscopic cell size `B. Fluctuations,

when needed, can be eventually introduced as an additive, delta correlated stochastic

term as in Ref. [16]. However, the presence of large density fluctuations [17] suggests

that fluctuations may not be faithfully accounted for by some additive noise term. The

precise nature of noise correlations at the mesoscopic level cannot be safely overlooked

in non-equilibrium systems, as it is known that stochastic terms multiplicative in the

relevant fields can radically alter the universality class of mesoscopic theories [33].

In this section, we perform a direct coarse-graining of the microscopic dynamics in

order to compute the (multiplicative) stochastic terms which emerge at the mesoscopic

level. We however restrict the computation to the stochastic terms emerging from

the collisionless dynamics. For real-space coarse-graining, we make use of a smooth,

isotropic, normalized (to one) filter gs(r) decaying exponentially or faster for r > s, e.g.,

a Gaussian of width s. The fluctuating coarse-grained density and nematic order field

are then defined as

ρ(x, t) ≡
N∑
i=1

gs(x
t
i − x) (66)

and

w(x, t) ≡
N∑
i=1

gs(x
t
i − x)Q̃t

i , (67)

where we have introduced the microscopic traceless tensor

Q̃t
i = n̂tin̂

t
i −

I
2

=
1

2

(
cos 2θti sin 2θti
sin 2θti − cos 2θti

)
≡ Q(θti) . (68)

5.1. Density field fluctuations

The correlations of density field fluctuations can be derived by generalizing an approach

first outlined by Dean [34] for Brownian particles. As mentioned above, we use the
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collisionless dynamics. We are interested in the time evolution of the density field (66),

which is given by

ρ(x, t+ ∆t) =
N∑
i=1

gs(x
t+∆t
i − x) =

N∑
i=1

gs(x
t
i + ∆xti − x) (69)

where ∆xti = xt+∆t
i − xti.

Expanding up to second order in powers of ∆xti according to Itô calculus [27] and by

virtue of Eq. (2) one has

∂tρ(x, t) = T0(x, t) + T1(x, t) , (70)

where

T0(x, t) =
d2

0

2τd

N∑
i=1

[n̂ti]α[n̂ti]β∂α∂βgs(x
t
i − x) (71)

and

T1(x, t) =
d0

τd

N∑
i=1

κti
(
n̂ti · ∇

)
gs(x

t
i − x) . (72)

Note that derivatives are taken w.r.t. the argument of the function gs, and not w.r.t. x.

The second order term T0 yields the deterministic part of the density dynamics. By

Eqs. (66,67) and the definition of the microscopic nematic tensor Q̃ [Eq. (68)] one easily

gets

T0 =
D0

2
(Γ : w) +

D0

2
∇2ρ , (73)

that is, the right hand side of the diffusion Eq. (35). The first-order term T1 gives rise

to the (zero average) stochastic term we are interested in. At this stage, T1 is not a

simple function of the mesoscopic fields; however, following Ref. [34] it is possible to

show that its two point correlation can be recast as a function of ρ and w. Averaging

over the random numbers κti, we have, in the limit s→ 0,

〈T1(x, t)T1(y, t′)〉 = d2
0

δ(t− t′)
τd

N∑
i=1

(
n̂ti · ∇x

) (
n̂ti · ∇y

)
gs(x

t
i − x)gs(x

t
i − y)

' d2
0

δ(t− t′)
τd

N∑
i=1

(
n̂ti · ∇x

) (
n̂ti · ∇y

) (
gs(x−y)gs(x

t
i−x)

)
. (74)

Using Eq. (68), one then finds, approximating the filter gs by a Dirac delta in the limit

s→ 0,

〈T1(x, t)T1(y, t′)〉 = d2
0

δ(t− t′)
τd

∂α∂β

[
δ(x−y)

(
wαβ(x, t) +

1

2
ρ(x, t)δαβ

)]
(75)

We can rewrite the noise term T1 in the stochastically equivalent (i.e., with the same

correlations on the mesoscopic scale) form

T1(x, t) = ∇ · h(x, t) (76)
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where h is a Gaussian, zero-average vectorial noise, delta-correlated in time with

correlations

〈hα(x, t)hβ(y, t′)〉 ' d2
0

τd
δ(t− t′) δ(x− y)

(
wαβ(x, t) +

δαβ
2
ρ(x, t)

)
. (77)

Such a noise term can finally be expressed in the more convenient form

hα(x, t) = Kαβ(x, t)h̃β(x, t) , (78)

where the Gaussian noise h̃ has correlations independent from the hydrodynamic fields

〈h̃α(x, t)h̃β(x′, t′)〉 = 2D0 δαβ δ(t− t′) δ(x− x′) (79)

and the tensor K is implicitly defined from the relation K · K = (ρ/2)I + w (with I

being the identity matrix). In the limit of small w considered here, we can expand K

to first order in w, yielding

K =
1√
2
ρ1/2

(
I +

w

ρ

)
. (80)

The divergence term ∇· appearing in T1 reflects global density conservation, while the

proportionality of noise variance to number density can be interpreted as a consequence

of the central limit theorem. Adding up the two contributions, one finally gets

∂tρ =
D0

2
(Γ : w) +

D0

2
∇2ρ+∇ · (K · h̃) . (81)

5.2. Nematic field fluctuations

We next discuss fluctuations of the nematic tensor. As seen from Eq. (67), w is a

function of the 2N microscopic stochastic variables xti and —through the microscopic

nematic tensor (68)— θti , whose dynamics is given by Eqs. (1)-(2). According to Itô

calculus, one has

∂tw = Ω0 + Ω1 + Ω2 (82)

where Ω0 is the deterministic part of the coarse-grained collisionless dynamics (which

we do not write here explicitly), while Ω1 and Ω2 are two stochastic contributions,

Ω1 =
2

τd

N∑
i=1

gs(x
t
i − x) A · Q̃t

i ψ
t
i (83)

Ω2 =
d0

τd

N∑
i=1

κtin̂
t
i · ∇gs(xti − x) Q̃t

i (84)

where ψti and κti are the microscopic noises and

A =

(
0 −1

1 0

)
. (85)
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Note that in Ω1 we have retained only the linear contribution in the microscopic noise

ψti . We first focus on the stochastic terms Ω1. On coarse-graining scales, averaging over

the microscopic noise ψti , correlations of Ω1 are given by

〈[Ω1(x, t)]αβ [Ω1(y, t′)]γδ〉 = 4η2 δ(t− t′)
τd

N∑
i=1

gs(x
t
i − x)gs(x

t
i − y)

[
A · Q̃t

i

]
αβ

[
A · Q̃t

i

]
γδ

≈ 4η2 δ(t− t′)
τd

gs(y−x)
N∑
i=1

gs(x
t
i−x)

[
A · Q̃t

i

]
αβ

[
A · Q̃t

i

]
γδ

(86)

To evaluate this correlator, we determine the average value 〈
∑

i gs (A · Q̃t
i)(A · Q̃t

i)〉, in

the framework of the deterministic dynamics studied in Sect. 2, namely〈
N∑
i=1

gs(x
t
i−x)

[
A · Q̃t

i

]
αβ

[
A · Q̃t

i

]
γδ

〉
=

∫ π
2

−π
2

dθ f(x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γδ (87)

After some rather lengthy calculations, using the closure equations (30), one finds∫ π
2

−π
2

dθ f(x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γδ = ρ Jαβγδ +
2b2

a2

[(wµνwµν)Jαβγδ − 2wαβwγδ]

+
1

4a2

[ΓµνwµνJαβγδ − Γαβwγδ − Γγδwαβ] ,(88)

where we have introduced the tensor

Jαβγδ =
1

2
(δαγδβδ + δαδδβγ − δαβδγδ) (89)

which plays the role of a unit tensor for the double contraction of symmetric traceless

tensors, e.g., wαβ = Jαβµν wµν . In order to characterize the noise Ω1, we introduce the

following change of variables:

[Ω1(x, t)]αβ = Hαβµν(x, t) Ω̃µν(x, t) (90)

where Ω̃ is a tensorial symmetric traceless white noise, such that

〈Ω̃αβ(x, t)Ω̃γδ(y, t
′)〉 = 2Dδ(x− y) δ(t− t′) Jαβγδ, (91)

with D = 2η2/τd. The correlation of Ω1 then reads

〈[Ω1(x, t)]αβ [Ω1(y, t′)]γδ〉 = 2Dδ(x− y) δ(t− t′)Hαβµν(x, t)Hγδµν(x, t)(92)

By identification with Eq. (86), and using Eq. (88), one eventually finds for H

Hαβγδ = ρ1/2 Jαβγδ +
b2

a2 ρ1/2
[wµνwµνJαβγδ − 2wαβwγδ]

+
1

8a2 ρ1/2
[ΓµνwµνJαβγδ − Γαβwγδ − Γγδwαβ] . (93)

Note that, in agreement with the central limit theorem, Ω1 is (at least to first order in

w) proportional to the square root of local density.

The second stochastic term Ω2, finally, can be treated similarly, but it would give

rise to a conserved noise (due to the presence of ∇ terms) akin to the one discussed for

the density equations, thus related to density fluctuations affecting the w = ρQ field.
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We discard such conserved term as irrelevant (in the renormalization group sense) with

respect to the non-conserved multiplicative noise Ω1.

In order to write down the complete Langevin equation, one also needs to evaluate

the contribution of the deterministic part Ω0. However, expressing this contribution in

terms of the fluctuating fields ρ and w turns out to be a very complicated task. One

should also take into account collisions between particles, and not only the collisionless

dynamics described by Ω0. Then some further approximations would be required to

treat the non-linear part of the dynamics.

In addition, microscopic collisions could provide a further fluctuation source due

to disorder below the coarse-graining scale. While we conjecture them to be irrelevant,

we leave a final settlement of this difficult problem for future work, and use for the

deterministic part of the dynamics the terms the hydrodynamic equation (36), derived

from the Boltzmann approach.

We thus finally obtain the stochastic equation for the nematic field

∂tw = µw − 2ξw (w : w) +
1

2
∆w +

1

8
Γρ+ H : Ω̃ . (94)

A few remarks are in order: first, our expressions of the noise amplitudes K and H

(Eqs.(80) and (93)) suggest that the stochastic terms might be better expressed in

terms of the field Q, rather than w = ρQ; second, Eqs. (81) and (94) are also derived

from an apolar Vicsek-style model in [29].

In spite of the limitations listed above, the present approach already provides us

with useful information on the statistics of the noise terms, which is seen to differ

significantly from the white noise postulated on a phenomenological basis in previous

works. On top of the overal ρ1/2 dependency, our calculation reveals a non-trivial

dependence of the correlation of the noise on the nematic order parameter [see Eqs. (80,

81, 92, 93)].

6. Conclusions

To summarize, using as a starting point the simple active nematics model of [26], we

have demonstrated how one can derive in a systematic manner a continuous mesoscopic

description: We formulated a version of the Boltzmann-Ginzburg-Landau approach put

forward in [24, 25] for this case where (anisotropic) diffusion dominates, deriving a simple

hydrodynamic equation for the nematic ordering field –Eq. (36). We have then used

a direct coarse-graining approach to endow the hydrodynamic equations with proper

noise terms.

The next stage, left for future work, consists in studying the stochastic PDEs

obtained. At the linear level, it is clear that in the long wavelength limit, standard

results on giant density fluctuations [17] are recovered. However, the large amplitude of

density fluctuations calls for a non-linear analysis (which turns out to be very difficult),

where the density dependence of the noise derived in Sect. 5 may play an important

role. Ideally, one should try to tackle this issue by applying methods from field theory
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and renormalization group analysis. In addition, we note that the multiplicative nature

of the noise may also affect finite-wavelength properties, like coarsening behavior. The

analysis of the stochastic PDEs can be done numerically, but some care must be taken

when dealing with the multiplicative, conserved noise terms in (81).

Pending such attempts, some remarks and comments are already in order: like all

previous cases studied before, the hydrodynamic equations found exhibit a domain of

linear instability of the homogeneous ordered solution bordering the basic transition line

σt. This solution does become linearly stable deeper in the ordered phase (for σ below

σs). Moreover, we have found that the long wavelength instability of the homogeneous

ordered solution leads to a nonlinear, inhomogeneous band solution –see Eq. (62)– and

that this band solution exists beyond the [σs, σt] interval. These coexistence regions

suggest, at the fluctuating level, discontinuous transitions.

This seems to be at odds with the reported behavior of the original microscopic

model: (i) the order/disorder transition has been reported to be of the Kosterlitz-

Thouless type [26]; (ii) there is no trace, at the microscopic level, of the existence of a

non-segregated, homogeneous phase; (iii) coming back to giant number fluctuations, we

note that the standard calculation is made in the homogeneous ordered phase whereas

the numerical evidence for them reported in [26] appears now to have been obtained in

the inhomogeneous phase. All this calls for revisiting the simple particle-based model

and, eventually, understanding its behaviour in the context of the stochastic continuum

theory constructed here.

Acknowledgements

Part of this work was performed at the Max Planck Institute for the Physics of Complex

Systems in Dresden, Germany, within the Advanced Study Group 2011/2012 ’Statistical

Physics of Collective Motion’. F.G. acknowledges support by EPSRC First Grant

EP/K018450/1.

[1] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

[2] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier, Eur. Phys. J. Special

Topics 202,1162 (2012)

[3] M.C. Marchetti et al., arXiv:1207.2929, Rev. Mod. Phys., in press.

[4] Animal Groups in Three Dimensions, J. K. Parrish and W. M. Hamner (eds), (Cambridge:

Cambridge University Press, 1997).

[5] I. D. Couzin, J. Krause, N. Franks, and S. Levin, Nature 433, 513 (2005); J. Buhl, et. al, Science

312, 1402 (2006).

[6] M. Ballerini, et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008).

[7] D. Helbing, I. Farkas and T. Vicsek, Nature 407, 487 (2000); D. Helbing, I. J. Farkas and T.

Vicsek,Phys. Rev. Lett. 84, 1240 (2000).
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Nature 483, 448 (2012).

[10] F. Peruani, J. Starruß, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, and M. Bär, Phys. Rev.

Lett. 108, 098102.

[11] A. Kudrolli, G. Lumay, D. Volfson, and L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008).

[12] V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007).
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Appendix A. Fourier expansion of the master equation

We provide in this Appendix details of the Fourier expansion of the master equation

(10), leading to Eq. (21). Multiplying Eq. (10) by ei2θ and integrating over θ, one gets

∂tf̂k = ∂α∂β

∫ π/2

−π/2
dθ ei2kθn̂α(θ)n̂β(θ)f(x, θ, t)

+

∫ π/2

−π/2
dθ ei2kθIdiff [f ] +

∫ π/2

−π/2
dθ ei2kθIcoll[f, f ] . (A.1)

In the following, we successively compute each term of the r.h.s. of Eq. (A.1).

http://arxiv.org/abs/1011.5408
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Appendix A.1. Diffusion-like term

Let us define Qαβ(θ) as

Qαβ(θ) = n̂α(θ)n̂β(θ)− δαβ
2
. (A.2)

We then have

Q11(θ, t) = −Q22(θ, t) =
1

2
cos 2θ =

ei2θ + e−i2θ

4
,

Q12(θ, t) = Q21(θ, t) =
1

2
sin 2θ =

ei2θ − e−i2θ

4i
. (A.3)

As a result,

∂α∂β

∫ π/2

−π/2
dθ ei2kθn̂α(θ)n̂β(θ)f(θ) = ∂α∂β

∫ π/2

−π/2
dθei2kθ

(
Qαβ(θ) +

δαβ
2

)
f(θ)

=
1

2
∆f̂k +

1

4

(
∇∗2f̂k+1 +∇2f̂k−1

)
(A.4)

Appendix A.2. Self-diffusion term

We have rather straightforwardly∫ π/2

−π/2
dθ ei2kθIdiff [f ] = − f̂k +

∫ π/2

−π/2
dθ′ei2kθ

′
f(θ′)

∫ ∞
−∞

dζei2kζP (ζ)

=
[
P̂k − 1

]
f̂k (A.5)

where

P̂k =

∫ ∞
−∞

dζ ei2kζP (ζ) . (A.6)

is the Fourier transform of P (ζ).

Appendix A.3. Binary collisions term

Let us split the Fourier transformed collision integral into an outgoing (negative) collision

term I
(−)
k and an ingoing (positive) collision term I

(+)
k . A direct integration of the

outgoing collision term yields, using K(θ, θ′) = K̃(θ − θ′),

I
(−)
k ≡ −

∫ π/2

−π/2
dθ ei2kθf(θ)

∫ π/2

−π/2
dθ′f(θ′)K̃(θ−θ′) = − 1

π

∑
q

K̂qf̂qf̂k−q(A.7)

where K̂q is the Fourier coefficient of K̃(θ − θ′) given by, using Eq. (14),

K̂q =

∫ π/2

−π/2
dθei2qθ

[∣∣∣∣sin θ − θ′2

∣∣∣∣+

∣∣∣∣cos
θ − θ′

2

∣∣∣∣] =
4

1− 16q2
. (A.8)

Then, the calculation of the ingoing collision term requires a few steps. After integration

of the (generalized) Dirac delta δπ, we have

I
(+)
k = P̂k

∫ π/2

−π/2
dθ1

∫ π/2

−π/2
dθ2 e

i2kΨ(θ1,θ2)f(θ1)K̃(θ1−θ2)f(θ2) . (A.9)
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By the change of variables φ = θ1 − θ2, one gets

I
(+)
k = P̂k

∫ π/2

−π/2
dθ2

∫ π/2−θ2

−π/2−θ2
dφ ei2kΨ(θ2+φ,θ2)f(θ2 + φ)K̃(φ)f(θ2) . (A.10)

Using the π-periodicity of the integrand with respect to φ, we can change the integration

interval on φ, yielding

I
(+)
k = P̂k

∫ π/2

−π/2
dθ2

∫ π/2

−π/2
dφ ei2kΨ(θ2+φ,θ2)f(θ2 + φ)K̃(φ)f(θ2) (A.11)

On this interval of φ, one has from Eq. (13)

Ψ(θ2 + φ, θ2) = θ2 +
φ

2
. (A.12)

Expanding f in Fourier series [see Eqs. (16,17)], we get

I
(+)
k =

P̂k
π2

∑
q,q′

f̂qf̂q′

∫ π/2

−π/2
dθ2 e

i2(k−q−q′)θ2
∫ π/2

−π/2
dφ ei(k−2q)φK̃(φ) . (A.13)

The integral over θ2 is equal to πδk,q+q′ . Defining

Ĵk,q =

∫ π/2

−π/2
dφ ei(k−2q)φK̃(φ) , (A.14)

we finally obtain

I
(+)
k =

P̂k
π

∑
q

Ĵk,qf̂qf̂k−q . (A.15)

The coefficient Ĵk,q can be computed explicitly, leading to

Ĵk,q = 4
1 + 2

√
2(2q − k)(−1)q sin

(
kπ
2

)
1− 4(2q − k)2

(A.16)

Note finally that Ĵ0,q = K̂q.

Appendix B. Curvature-induced current and equilibrium limit

In this Appendix, we show explicitly that the curvature-induced current, that is the term
1
2
Re
(
∇∗2f̂1

)
appearing in the continuity equation (23), originates from the coupling of

orientation with motility. To this aim, we consider a slightly generalized microscopic

process w.r.t. Eqs. (1, 2), where particles are also allowed to move perpendicular w.r.t

to the nematic tensor. Replace Eq. (2) by

xt+∆t
i = xti + d0 R

(
θti
)

(B.1)

where R(θ) is a stochastic operator defining the coupling between orientation and

particle motion,

R(θ) =


n̂(θ) w.p. p/2

−n̂(θ) w.p. p/2

n̂⊥(θ) w.p. (1− p)/2
−n̂⊥(θ) w.p. (1− p)/2

(B.2)
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where 0 ≤ p ≤ 1, w.p. stands for “with probability” and n̂⊥(θ) = n̂(θ + π/2) is the

perpendicular director. The standard active nematic case is recovered for p = 1, while

p = 1/2 corresponds to an isotropic random walk, a case for which motion is decorrelated

from order. The corresponding collisionless master equation reads

f(x, θ, t+ ∆t) =
p

2
[f(x− n̂(θ)d0, θ, t) + f(x + n̂(θ)d0, θ, t)]

+
(1− p)

2

[
f(x− n̂⊥(θ)d0, θ, t) + f(x + n̂⊥(θ)d0, θ, t)

]
. (B.3)

By making use of Itô calculus, one gets at the mesoscopic timescale τB

∂tf(x, θ, t) = (2p− 1)∂α∂β

[
n̂α(θ)n̂β(θ)− δαβ

2

]
f(x, θ, t) +

1

2
∆f(x, θ, t) (B.4)

where we have used the identity n̂⊥α (θ)n̂⊥β (θ) = δαβ − n̂α(θ)n̂β(θ). By considering the

zeroth-order Fourier term of f (for which collision and angular diffusion terms vanish),

one obtains the continuity equation

∂tρ =
1

2
∆ρ+

2p− 1

2
Re
(
∇∗2f1

)
(B.5)

which shows that the non-equilibrium current vanishes for p = 1
2
.
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