Shannon-R\'enyi entropy for Nambu-Goldstone modes in two dimensions

Abstract : We study the scaling of the (basis dependent) Shannon entropy for two-dimensional quantum antiferromagnets with N\'eel long-range order. We use a massless free-field description of the gapless spin wave modes and phase space arguments to treat the fact that the finite-size ground state is rotationally symmetric, while there are degenerate physical ground states which break the symmetry. Our results show that the Shannon entropy (and its R\'enyi generalizations) possesses some universal logarithmic term proportional to the number $N_\text{NG}$ of Nambu-Goldstone modes. In the case of a torus, we show that $S_{n>1} \simeq \mathcal{O}(N)+ \frac{N_\text{NG}}{4}\frac{n}{n-1} \log{N}$ and $S_1 \simeq \mathcal{O}(N) - \frac{N_\text{NG}}{4} \log{N}$, where $N$ is the total number of sites and $n$ the R\'enyi index. The result for $n>1$ is in reasonable agreement with the quantum Monte Carlo results of Luitz et al. [Phys. Rev. Lett. 112, 057203 (2014)], and qualitatively similar to those obtained previously for the entanglement entropy. The Shannon entropy of a line subsystem (embedded in the two-dimensional system) is also considered. Finally, we present some density-matrix renormalization group (DMRG) calculations for a spin$\frac{1}{2}$ XY model on the square lattice in a cylinder geometry. These numerical data confirm our findings for logarithmic terms in the $n=\infty$ R\'enyi entropy (also called $-\log{p_{\rm max}}$). They also reveal some universal dependence on the cylinder aspect ratio, in good agreement with the fact that, in that case, $p_{\rm max}$ is related to a non-compact free-boson partition function in dimension 1+1.
Type de document :
Pré-publication, Document de travail
t16/189 15 pages, 3 figures. 2016
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01474278
Contributeur : Emmanuelle De Laborderie <>
Soumis le : mercredi 22 février 2017 - 16:17:05
Dernière modification le : mercredi 31 janvier 2018 - 12:10:58
Document(s) archivé(s) le : mardi 23 mai 2017 - 14:24:40

Fichier

1607.02465.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : cea-01474278, version 1
  • ARXIV : 1607.02465

Citation

Grégoire Misguich, Vincent Pasquier, Masaki Oshikawa. Shannon-R\'enyi entropy for Nambu-Goldstone modes in two dimensions. t16/189 15 pages, 3 figures. 2016. 〈cea-01474278〉

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

18