Strong Disorder Renewal Approach to DNA denaturation and wetting : typical and large deviation properties of the free energy

Abstract : For the DNA denaturation transition in the presence of random contact energies, or equivalently the disordered wetting transition, we introduce a Strong Disorder Renewal Approach to construct the optimal contacts in each disordered sample of size $L$. The transition is found to be of infinite order, with a correlation length diverging with the essential singularity $\ln \xi(T) \propto |T-T_c |^{-1}$. In the critical region, we analyze the statistics over samples of the free-energy density $f_L$ and of the contact density, which is the order parameter of the transition. At the critical point, both decay as a power-law of the length $L$ but remain distributed, in agreement with the general phenomenon of lack of self-averaging at random critical points. We also obtain that for any real $q>0$, the moment $\overline{Z_L^q} $ of order $q$ of the partition function at the critical point is dominated by some exponentially rare samples displaying a finite free-energy density, i.e. by the large deviation sector of the probability distribution of the free-energy density.
Type de document :
Article dans une revue
Journal of Statistical Mechanics: Theory and Experiment, IOP Science, 2017, 2017 (1), pp.13301. 〈10.1088/1742-5468/aa53f8〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01473107
Contributeur : Emmanuelle De Laborderie <>
Soumis le : mardi 21 février 2017 - 15:36:19
Dernière modification le : jeudi 15 mars 2018 - 15:05:56
Document(s) archivé(s) le : lundi 22 mai 2017 - 15:43:38

Fichier

1611.00501.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cécile Monthus. Strong Disorder Renewal Approach to DNA denaturation and wetting : typical and large deviation properties of the free energy. Journal of Statistical Mechanics: Theory and Experiment, IOP Science, 2017, 2017 (1), pp.13301. 〈10.1088/1742-5468/aa53f8〉. 〈cea-01473107〉

Partager

Métriques

Consultations de la notice

32

Téléchargements de fichiers

21