Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the Non-Equilibrium-Steady-State - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Journal of Statistical Mechanics: Theory and Experiment Année : 2017

Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the Non-Equilibrium-Steady-State

Résumé

The Lindblad dynamics with dephasing in the bulk and magnetization-driving at the two boundaries is studied for the quantum spin chain with random fields $h_j$ and couplings $J_j$ (that can be either uniform or random). In the regime of strong disorder in the random fields, or in the regime of strong bulk-dephasing, the effective dynamics can be mapped onto a classical Simple Symmetric Exclusion Process with quenched disorder in the diffusion coefficient associated to each bond. The properties of the corresponding Non-Equilibrium-Steady-State in each disordered sample between the two reservoirs are studied in detail by extending the methods that have been previously developed for the same model without disorder. Explicit results are given for the magnetization profile, for the two-point correlations, for the mean current and for the current fluctuations, in terms of the random fields and couplings defining the disordered sample.
Fichier principal
Vignette du fichier
1701.05090.pdf (205.85 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-01472966 , version 1 (21-02-2017)

Identifiants

Citer

Cécile Monthus. Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the Non-Equilibrium-Steady-State. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, pp.043302. ⟨10.1088/1742-5468/aa64f4⟩. ⟨cea-01472966⟩
92 Consultations
139 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More