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Elliptic flow, v2, and triangular flow, v3, are to a good approximation linearly proportional to the corresponding
spatial anisotropies of the initial density profile, ε2 and ε3. Using event-by-event hydrodynamic simulations,
we point out when deviations from this linear scaling are to be expected. When these deviations are negligible,
relative vn fluctuations are equal to relative εn fluctuations, and one can directly probe models of initial conditions
using ratios of cumulants, for instance vn{4}/vn{2}. We argue that existing models of initial conditions tend to
overestimate flow fluctuations in central Pb + Pb collisions, and to underestimate them in peripheral collisions.
We make predictions for v3{6} in noncentral Pb + Pb collisions, and for v3{4} and v3{6} in high-multiplicity
p + Pb collisions.

DOI: 10.1103/PhysRevC.95.054910

I. INTRODUCTION

Anisotropic flow is the key observable providing evidence
for the creation of a collective medium in ultrarelativistic
heavy-ion collisions. In the current paradigm of bulk particle
production [1], anisotropic flow emerges from the hydrody-
namical response of the created medium to the anisotropies
of its initial energy density profile [2]. Hydrodynamic simu-
lations [3–5] show that elliptic flow, v2, and triangular flow,
v3, correlate almost linearly with the initial eccentricity, ε2,
and triangularity, ε3, of the system. Since the initial energy
density profile is shaped out of stochastic nucleon-nucleon
interactions, both initial anisotropies and flow coefficients
fluctuate on a event-by-event basis [6]. To the extent that vn

is proportional to εn, the probability distribution of vn [7]
coincides, up to a global rescaling, with the probability
distribution of εn [8,9]. The latter is provided by models of
initial conditions.

Many models of initial conditions have been proposed
for proton-nucleus and nucleus-nucleus collisions. Some are
based on variations of the Glauber Monte Carlo model [10–14],
others are more directly inspired from high-energy QCD, and
involve, in particular, the idea of gluon saturation [15–20].
The initial anisotropies εn probe the geometrical shape of the
initial density profile, and, thus, provide information which
is independent of the final multiplicity distribution, which is
the typical observable to which models are tuned. Therefore,
observables which can be linked to initial anisotropies allow
one to further constrain initial condition models, and to
eventually obtain new insight into the early dynamics of the
collision.

In this paper, we analyze the relative fluctuations of v2

and v3 in p + Pb and Pb + Pb collisions at CERN Large
Hadron Collider (LHC) energies. The observables we choose
for this analysis are ratios of cumulants of the distribution
of vn, whose definition is recalled in Sec. II. In Sec. III, we
compute the lowest nontrivial ratios of cumulants, v2{4}/v2{2}
and v3{4}/v3{2}, in event-by-event hydrodynamic simulations
of Pb + Pb collisions, and we determine in which centrality
intervals they are compatible with the ratios of cumulants of
the corresponding initial anisotropies, εn. In these centrality

intervals, we compute ratios of cumulants using models of
initial conditions that can in this way be tested directly against
experimental data on vn{4}/vn{2}. To make our analysis as
inclusive as possible, we test a wide variety of initial condition
models, thus covering the spectrum of models typically used
in hydrodynamic calculations. Eventually, we employ these
initial state parametrizations to predict v3{6}/v3{4} in Pb + Pb
collisions. A similar study is carried over to high-multiplicity
p + Pb collisions, in Sec. IV. Specifically, we employ the
state-of-the-art Monte Carlo model of initial conditions for
p + Pb collisions to make predictions for v3{4}/v3{2}, and
v3{6}/v3{4}.

II. CUMULANTS AND RELATIVE FLUCTUATIONS

Anisotropic flow is the observation of a full spectrum
of nonzero Fourier coefficients characterizing the azimuthal
distribution of final-state particles in heavy-ion collisions.
Denoting the final-state azimuthal distribution by P (φ), its
Fourier decomposition reads

P (φ) = 1

2π

+∞∑
n=−∞

Vne
−inφ, (1)

and the quantity vn ≡ |Vn| is the coefficient of anisotropic flow
in the nth harmonic. In experiments, the number of final-state
particles is not large enough to allow the computation of the
Fourier series of Eq. (1) in every event. Flow coefficients are
computed from azimuthal multiparticle correlations, which
are averaged over many events. Since P (φ) is different in each
collision, anisotropic flow coefficients fluctuate on an event-
by-event basis. Detailed information about the probability
distribution of vn can be obtained by measuring its cumulants.
A cumulant of order m involves m-particle correlations, as
well as lower order correlations [21–23]: It is constructed by
an order-by-order subtraction of trivial contributions coming
from lower-order correlations. Cumulants are considered
the best signature of the collective origin of anisotropic
flow in heavy-ion collisions. Nonzero values of higher-order
cumulants have been measured in a wide range of collision
systems, from Pb + Pb to p + p collisions [24–26].
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The cumulants of the distribution of vn are combinations of
moments. Explicit expressions up to order 8 are [27]

vn{2}2 = 〈
v2

n

〉
,

vn{4}4 = 2
〈
v2

n

〉2 − 〈
v4

n

〉
,

vn{6}6 = 1
4

[〈
v6

n

〉 − 9
〈
v2

n

〉〈
v4

n

〉 + 12
〈
v2

n

〉3]
, (2)

vn{8}8 = 1
33

[
144

〈
v2

n

〉4 − 144
〈
v2

n

〉2〈
v4

n

〉 + 18
〈
v4

n

〉2
+ 16

〈
v2

n

〉〈
v6

n

〉 − 〈
v8

n

〉]
,

where angular brackets denote an average over collision events
in a given centrality class. Cumulants are defined in such a way
that vn{2k} = vn, if vn is the same for all events.

Any quantity which is linearly proportional to vn has the
same cumulants as vn, up to a global factor. If the scaling
between vn and εn were exactly linear, then, for any even
integers μ and ν [28],

vn{μ}
vn{ν} = εn{μ}

εn{ν} . (3)

Ratios of cumulants quantify the relative fluctuations of vn,
which are equal to the relative fluctuations of εn if the
scaling is linear [8,29]. In this work, we mainly focus on
the ratio vn{4}/vn{2} as a measure of the relative fluctuations
of vn. This ratio depends on the event-by-event fluctuations
of vn. In particular, the larger the fluctuations of vn are,
the smaller the ratio vn{4}/vn{2} is. Higher-order ratios of
cumulants, such as vn{6}/vn{4}, probe the non-Gaussianity of
the fluctuations [27,30].

Ratios of cumulants are interesting because they are in-
dependent of the hydrodynamic response (the proportionality
coefficient between εn and vn), which is an important source
of uncertainty when trying to constrain models of initial
conditions from experimental data [31]. Equation (3) allows us
to directly relate experimental data (left-hand side) to models
of initial conditions (right-hand side).1 The approximate
linearity of the relation between vn and εn in event-by-event
hydrodynamics is typically measured using scatter plots [4]
or the Pearson correlation coefficient [3]. Nevertheless, these
approaches do not give any information on ratios of cumulants
and on the accuracy of Eq. (3). More precisely, if one models
the deviation from linear scaling by a Gaussian noise, vn =
κnεn + δ, where δ is a random fluctuation with a Gaussian
distribution, this noise will typically contribute to the rms
value of vn{2}, not to higher-order cumulants. Therefore, it
is not at all trivial that ratios of cumulants are preserved by
the hydrodynamic evolution. In the next section, we analyze
the validity of Eq. (3) more robustly, by testing this equation
directly through hydrodynamic calculations.

III. Pb + Pb COLLISIONS

We first test the validity of Eq. (3) for v2{4}/v2{2} and
v3{4}/v3{2}, by computing both sides of the equation in

1A similar analysis was recently carried out at Relativistic Heavy
Ion Collder (RHIC) energies within the AMPT model [28].
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FIG. 1. Comparison between vn{4}/vn{2} computed in hydrody-
namics (full symbols) and εn{4}/εn{2} computed from the corre-
sponding initial energy density profiles (open symbols), for 2.76 TeV
Pb + Pb collisions. Shaded bands: ATLAS data for vn{4}/vn{2} [24].
Symbols are shifted horizontally for readability. (a) Elliptic flow
(n = 2). (b) Triangular flow (n = 3).

event-by-event hydrodynamics. We run hydrodynamic sim-
ulations of Pb + Pb collisions at

√
s = 2.76 TeV. The initial

conditions from which initial anisotropies are computed are
given by a Glauber Monte Carlo model [12,32]. Initial density
profiles are evolved by means of the viscous relativistic
hydrodynamical code V-USPHYDRO [33–35]. We implement
a shear viscosity over entropy ratio of η/s = 0.08 [36], and
we compute flow coefficients at freeze-out [37] for pions in
the transverse momentum range 0.2 < pt < 3 GeV/c. We
compute v2{4}/v2{2} and v3{4}/v3{2} as function of centrality
percentile. Between 1000 and 5000 events are simulated in
each centrality window, each event corresponding to a different
initial geometry. Results are shown in Fig. 1, and are compared
to the measurements of the ATLAS Collaboration [24]. A
first remark is that v3{4}/v3{2} is smaller than v2{4}/v2{2}.
This means that v3 fluctuations are larger than v2 fluctuations,
as expected since v3 is solely due to fluctuations [38]. The
smallness of v3{4} explains the large statistical error on the
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corresponding ratio. We now discuss, in turn, v2{4}/v2{2} and
v3{4}/v3{2}. In the centrality intervals where Eq. (3) holds to
a good approximation, we test initial condition models against
experimental data.

A. Elliptic flow fluctuations

We start with v2 [Fig. 1(a)]. Equation (3) holds ap-
proximately up to 20–30% centrality, and gradually breaks
down as the centrality percentile increases. The difference
between ε2{4}/ε2{2} and v2{4}/v2{2} can be attributed to
a cubic response term, proportional to (ε2)3 [39]. Once
this nonlinear hydrodynamic response is taken into account,
agreement with ATLAS data is excellent all the way up
to 70% centrality. As we shall explain below, a similar
nonlinear hydrodynamic response is also needed for other
models of initial conditions in order to match experimental
data.

Between 0% and 20% centrality, Eq. (3) holds to a good
approximation. Therefore, in this centrality window, the ratio
ε2{4}/ε2{2} provided by initial condition models can be tested
directly against experimental data for v2{4}/v2{2}. We test
the sensitivity of this observable to initial conditions using
TRENTo [42], a flexible parametric Monte Carlo model which
effectively encompasses most of existing initial condition
models [43]. The initial entropy density in TRENTo is ex-
pressed in terms of thickness functions, TA and TB , associated
with each of the colliding nuclei. Each thickness function is
a sum of Gaussians, centered around the participant nucleons.
The weight of each participant nucleon is a random variable,
so that the contribution of a participant to the deposited energy
density may fluctuate. The strength of these fluctuations is
regulated by a parameter, k (see the Appendix for details).
Another parameter is the width of the Gaussians, σ . The initial
density profile is assumed to be a homogeneous function of
degree 1 of the thickness functions TA and TB , and a third
parameter p specifies this dependence. The values p=1, p=0,
and p = −1 correspond respectively to an arithmetic mean,
(TA + TB)/2, a geometric mean,

√
TATB , and a harmonic

mean, TATB/(TA + TB). The case p = 1 corresponds to the
Glauber Monte Carlo model, where the energy density is
proportional to the number of wounded nucleons [10]. The
case p = 0 gives results close to QCD-inspired models such
as IP-Glasma [18,42] and EKRT [20,43], while p = −1 is
closer to the MC-KLN model [15,43].

We have checked that both ε2{4}/ε2{2} and ε3{4}/ε3{2},
in Pb + Pb collisions, depend little on the parameters k
and σ . Therefore, we fix these parameters to the values
suggested by the authors of TRENTo [42], which allow for
a good description of the multiplicity distributions [14,42].
On the other hand, ratios of cumulants strongly depend on
the third parameter, p. Results for ε2{4}/ε2{2} are shown in
Fig. 2, where they are compared to available experimental data
on v2{4}/v2{2}. The case p = 1, corresponding to wounded
nucleon scaling, is in poor agreement with data. In particular,
the ratio ε2{4}/ε2{2} is below data. This means that the relative
fluctuations of ε2 are too large, causing ε2{4} to fall too
steeply in central collisions [29]. The other values of p, p = 0,
and p = −1, corresponding to saturation models, are in fair
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FIG. 2. Test of initial condition models using v2{4}/v2{2} mea-
sured in Pb + Pb collisions at 2.76 TeV up to 20% centrality. Stars:
CMS data [40]. Full circles: ALICE data [41]. Shaded band: ATLAS
data [7]. Open symbols: Values of ε2{4}/ε2{2} given by the TRENTo
model with p = −1 (triangles), p = 0 (circles), and p = 1 (squares).
Full diamonds: ε2{4}/ε2{2} from the Monte Carlo rcBK model.

agreement with data.2 Note that, in central collisions, ε2{4}
is essentially equal to the mean eccentricity in the reaction
plane [27]. Saturation-inspired models are known to predict
a larger mean eccentricity in the reaction plane than the
Glauber model [44,45]. The larger mean eccentricity implies
that relative fluctuations of ε2 are smaller. Therefore, the ratio
ε2{4}/ε2{2} is larger.

Figure 2 also displays, for comparison, results obtained
using the Monte Carlo rcBK [16] initial state model. This
QCD-inspired model predicts a mean eccentricity in the
reaction plane comparable to the MC-KLN model [31], which
explains why results are similar to TRENTo with p = −1.

Above 20% centrality (not shown in figure), we find that all
models overpredict v2{4}/v2{2}, much as in Fig. 1(a). There-
fore, for mid-central and peripheral collisions, all parametriza-
tions of initial conditions require a nonlinear hydrodynamic
response, breaking Eq. (3), in order to be compatible with
data.3

B. Triangular flow fluctuations

We now test the validity of Eq. (3) in the case of triangular
flow fluctuations. Hydrodynamic results in Fig. 1(b) show that,
as in the case of elliptic flow, ε3{4}/ε3{2} is systematically
larger than v3{4}/v3{2} above 40% centrality. This can again be
attributed to a nonlinear hydrodynamic response, whose effect

2A comparison of the behaviors of v2{2} and ε2{2} in the 0–5%
centrality range also shows that the MC-KLN model is in better
agreement with data than the Glauber model [41].

3A similar conclusion was drawn from simulations within the IP-
Glasma model [46].
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FIG. 3. Test of initial condition models using v3{4}/v3{2} measured in 2.76 TeV Pb + Pb collisions: (a) up to 20% centrality; (b) between
20% and 80% centrality. Stars: CMS data [47]. Full circles: ALICE data [41]. Shaded band: ATLAS data [24]. ALICE and CMS data are not
shown in panel (b) for the sake of readability, but are compatible with ATLAS data. Remaining symbols correspond to values of ε3{4}/ε3{2}
from several models of initial conditions. Open symbols: TRENTo, with p = −1 (triangles), p = 0 (circles), p = 1 (squares). Full crosses:
IP-Glasma [18]. Full diamonds: Monte Carlo rcBK [16].

is, however, smaller for v3 than for v2. A possible explanation
to this nonlinear effect could be a coupling between v2 and
v1 [5]. In general, one expects any nonlinear effect to be
associated with the large magnitude of v2, which is by far
the largest Fourier harmonic [48]. Therefore, even though the
large error bars in Fig. 1(b) prevent any definite conclusion, we
expect the nonlinear response between ε3 and v3 to be small
in central collisions.

By virtue of this conclusion, we compare v3{4}/v3{2} from
experimental data to ε3{4}/ε3{2} from initial state models,
across the full centrality range. We implement the same models
as in Fig. 2, and we also show results obtained using the
IP-Glasma [18] model, for comparison. Results are displayed
in Fig. 3, where the 0–20% centrality range is zoomed in
[panel (a)] for readability. A first remark is that experimental
data do not exhibit any clear dependence on centrality. Relative
ε3 fluctuations, on the other hand, grow from central to
peripheral collisions in all the tested models. This centrality
dependence has a simple explanation: Since the system size
decreases as a function of the centrality percentile, the relative
fluctuations of ε3 become larger [49]. In general, the nonlinear
hydrodynamic response seen in Fig. 1(b) would help in
decreasing v3{4}/v3{2} above 40% centrality and reducing
the centrality dependence, which is seen in models and not
in data. However, all configurations of TRENTo in Fig. 3(b)
are compatible with ATLAS data above 40% centrality, and
some points would fall below data if a nonlinear response were
included.

Figure 3(a) presents results in the 20% most central
collisions, where we use a finer centrality binning for initial-
state models. In this centrality range, we do not foresee any sig-
nificant nonlinear hydrodynamic response, and initial state cal-
culations should match data. Data points (in particular the mea-
surements of the ALICE Collaboration) are, however, above

the predictions of all models. As observed for elliptic flow, the
wounded nucleon prescription (p = 1) gives the worst results.
We conclude that initial state models overestimate the relative
fluctuations of ε3 in central Pb + Pb collisions.

C. Predictions for v3{6}
We now use Eq. (3) to make predictions for v3{6} in Pb +

Pb collisions. The number of events in our hydrodynamic
calculations is not large enough to test directly the validity
of Eq. (3) for v3{6}/v3{4}. However, we have noted that the
nonlinear hydrodynamic response is smaller for v3 than for v2.
In addition, a previous study [27] has shown that, even for v2,
the ratio v2{6}/v2{4} is little affected by the nonlinear response,
so that Eq. (3) applies, to a good approximation, up to very
peripheral collisions. Therefore, we assume that Eq. (3) yields
a reasonable estimate of v3{6}/v3{4}, and we make predictions
on this basis using our TRENTo configurations and the rcBK
model.

It has been argued that the probability distribution of ε3 [51],
which is solely due to fluctuations, is well described by the
power distribution [50], which has a single free parameter
characterizing the rms value of ε3. If the distribution of ε3

follows the power distribution, then, the ratio ε3{6}/ε3{4} is a
simple function of the ratio ε3{4}/ε3{2}, which is displayed as
a dashed line in Fig. 4. By running Monte Carlo simulations
of the initial state, we can test whether the results fall on
this line. To this purpose, we simulate a large number of initial
conditions for Pb + Pb collisions, and we compute ε3{6}/ε3{4}
in the 20–80% centrality range.

Results are shown as symbols in Fig. 4. The centrality
percentile corresponding to each symbol can be inferred
from Fig. 3(b). For a given model, ε3{4}/ε3{2} increases
with the centrality percentile. The rcBK model agrees with
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FIG. 4. Predictions for v3{6}/v3{4} in 2.76 TeV Pb + Pb
collisions, from several models of initial conditions, in the 20–80%
centrality range. Empty symbols: Predictions of TRENTo with p = 1
(squares), p = 0 (circles), and p = −1 (triangles). Full diamonds:
Prediction of Monte Carlo rcBK [16]. The red dashed line is the
prediction of the power distribution [50].

the prediction of the power distribution, while the various
parametrizations of the Trento model give in general values of
ε3{6}/ε3{4} which fall below the expected curve. The fact that
the power distribution can be a poor approximation for large
systems such as Pb + Pb collisions, even if the anisotropy
is solely due to fluctuations, has already been pointed out
in Ref. [52]. Even though precise figures depend on the
particular model used, we predict on the basis of our Monte
Carlo calculations, and of Eq. (3), that v3{6}/v3{4} should lie
between 0.75 and 0.85 in the 30–50% centrality range.

IV. HIGH-MULTIPLICITY p + Pb COLLISIONS

In this Section, we study relative flow fluctuations in
high-multiplicity p + Pb collisions at

√
s = 5.02TeV, and we

make quantitative predictions for higher-order cumulants of
v2 and v3. Nonzero elliptic and triangular flow values have
been measured in p + Pb systems [25,53–55]. In particular,
a positive v2{4}4 has been reported by all collaborations,
suggesting that the measured azimuthal correlations originate
from a collective effect. Hydrodynamic simulations have also
been carried out [56–61], using either IP-Glasma or Glauber
Monte Carlo initial conditions. Satisfactory agreement with
data was found, which supports the hydrodynamic picture as
a valid description of the p + Pb system [62]. Since elliptic
flow is significantly smaller in p + Pb collisions than in Pb +
Pb collisions [63], one does not expect a significant nonlinear
hydrodynamic response, and we assume that Eq. (3) always
holds. Event-by-event hydrodynamic simulations confirm
that v2 and v3 scale linearly with the corresponding initial
anisotropies, ε2 and ε3 [56].

We first select a model of initial conditions by requiring
that it reproduces the first nontrivial ratio of cumulants,

v2{4}/v2{2}, which has been measured by the CMS Collab-
oration [54], as a function of centrality percentile. As in the
previous section, we employ the TRENTo model. However,
the sets of parameters that give a reasonable description of
Pb + Pb data fail to describe p + Pb data. Specifically, the
values p = −1 and p = 0, which provide a good description
of experimental data in Fig. 2, yield a negative ε2{4}4 in p + Pb
collisions (i.e., an undefined ε2{4}), and values of ε2 which are
much smaller than needed in order to explain the magnitude
of the measured v2. This is due to the fact that, with these
parameters, the initial density profile is always included in
the transverse area spanned by the proton, which is circular.
For the same reason, the IP-Glasma model underpredicts
v2 by a large factor, unless one allows the proton to be
“eccentric” [59]. On the other hand, previous hydrodynamic
calculations have shown that the implementation of Glauber
Monte Carlo initial conditions yields results in good agreement
with p + Pb data. We therefore choose the value p = 1,
corresponding to the Glauber model, even though it does give
a bad description of flow fluctuations in Pb + Pb data. We
fix the parameter governing the multiplicity fluctuations to
the value k = 0.9 [56], and we have checked that the initial
entropy distribution folded with a Poisson distribution yields
the final multiplicity distribution observed in experiments [42].
We allow the width σ of the source associated with each
nucleon to vary. Previous calculations implement σ = 0.4 fm.
As we shall see, results depend somewhat on the value of σ .

Figure 5(a) displays the comparison between ε2{4}/ε2{2}
from the TRENTo model and v2{4}/v2{2} measured by the
CMS Collaboration [54]. The centrality percentile in our
TRENTo configuration is defined from the multiplicity of
produced particles, thus mimicking the experimental situation.
For σ = 0.4 fm, the model is compatible with experimental
data in ultracentral collisions, but underestimates the ratio
of cumulants as soon as the centrality percentile increases.
These results are consistent with the hydrodynamic results
by Kozlov et al. [60], who find a v2{2} which matches
data, and a slightly underpredicted v2{4}. Agreement with
experimental data mildly improves if the participant nucleons
widths are lowered to σ = 0.3 fm. Lower values of σ yield
more spiky initial density profiles, and are known to increase
the magnitude of ε2 and ε3 in small systems [14]. In central
p + Pb collisions, we find that the rms ε2 increases by 8%
when σ is lowered from 0.4 fm to 0.3 fm (the rms ε3 increases
by 12%). Larger values of εn are known to yield larger values of
εn{4}/εn{2} [50]. Even when σ = 0.3 fm, our parametrization
of initial conditions tends to underpredict v2{4}/v2{2}. Note,
however, that the experimental measurements of v2{4} and
v2{2} differ in the implementation, and the comparison with
our results may not be consistent: v2{2} is measured with a
large pseudorapidity (η) gap to suppress nonflow effects, but no
η gap is implemented in the measurement of v2{4}. Therefore,
measurements of v2{4} may be affected by nonflow, short-
range (near side) correlations. In addition, the η gap typically
reduces v2{2}, because of pseudorapidity dependent event-
plane fluctuations [64]. Recently, a novel method to measure
multiparticle cumulants in small systems was proposed [65].
It implements pseudorapidity gaps for the measurements of
four-particle correlations. The results reported by the authors
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FIG. 5. v2{4}/v2{2} (a) and v3{4}/v3{2} (b) as functions of
centrality percentile in 5.02 TeV p + Pb collisions. Full circles:
TRENTo parametrization with σ = 0.3 fm. Triangles: TRENTo
parametrization with σ = 0.4 fm. Squares: CMS data [54]. The
centrality binning of CMS data is taken from Table I of Ref. [60].

of this method suggest that, in proton + proton collisions,
the measured four-particle correlations (v2{4} and v3{4}) may
originate entirely from nonflow contributions. We expect
agreement between our model and experimental data to be
improved if v2{2} and v2{4} are measured using the same
sample of detected particles.

We now make predictions for the ratio v3{4}/v3{2}, which
has not yet been measured in p + Pb collisions. v3{4}
in p + Pb collisions has been computed in event-by-event
hydrodynamics [60]. Nevertheless, the ratio v3{4}/v3{2} is a
more robust quantity, in the sense that depends little on model
parameters (such as viscosity, or freeze-out temperature)
and kinematic cuts (pt ).4 Our results, from the TRENTo
configuration with p = 1, are shown in Fig. 5(b). We find

4The fact that the ratios of cumulants are not sensitive to the value
of η/s is clearly inferable from the results of [60]. There, the authors
show explicitly that both v2{2} and v2{4} increase (decrease) by the
same amount when the value of η/s is raised (lowered).
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FIG. 6. Eccentricity-driven predictions for v2{6}/v2{4} and
v2{8}/v2{6} as function of v2{4}/v2{2} in 5.02 TeV p + Pb collisions.
Full symbols: TRENTo parametrization with σ = 0.3 fm (circles)
and σ = 0.4 fm (triangles). Empty symbols: CMS data [25]. The red
dashed line represents the prediction of the power distribution [50].

v3{4}/v3{2} to be slightly smaller than v2{4}/v2{2} in Fig. 5(a).
The sensitivity to the value of σ is somewhat stronger for v3

than for v2.
The CMS Collaboration has also measured v2{6}/v2{4} and

v2{8}/v2{6} [25] in p + Pb collisions. Our TRENTo results for
these ratios are shown in Fig. 6. As in Fig. 4, we plot them as
a function of the lowest-order ratio, v2{4}/v2{2}. We observe
that our Monte Carlo results are in perfect agreement with the
prediction of the power distribution (dashed line in Fig. 6).
This confirms that the power distribution is a good description
of eccentricity fluctuations in small systems, irrespective of the
details of the simulated configurations [52]. Existing CMS data
exhibit as well good agreement with this theoretical prediction.
Future measurements with smaller error bars will provide a
crucial test of the eccentricity-driven nature of v2 in proton +
nucleus collisions.

Eventually, we make a prediction for v3{6}/v3{4} as
function of v3{4}/v3{2} in central p + Pb collisions. Results
are displayed in Fig. 7, for both σ = 0.3 fm and σ = 0.4 fm.
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tion [50].

Our Monte Carlo results are well described by the power
distribution, although with large error bars for σ = 0.4 fm.

V. DISCUSSION AND OUTLOOK

We have shown that ratios of cumulants are a powerful tool
to test models of initial conditions directly against experimen-
tal data. The Glauber Monte Carlo model, which is by far the
most employed model in both experimental and theoretical
analyses, is excluded by experimental data on elliptic flow
fluctuations in central Pb + Pb collisions. On the other hand,
saturation models (mimicked by the TRENTo parametrizations
with p = 0 or p = −1) provide a good description of the
experimental results. However, even if these models predict
the correct fluctuations of v2, they overpredict the fluctuations
of v3 in central Pb + Pb collisions. A possible explanation
is that they overestimate both the fluctuations and the mean
eccentricity, ε2, in the reaction plane. In this way, the error
cancels in the ratio v2{4}/v2{2}, but not in the corresponding
ratio for v3, which is solely due to fluctuations. It will be of
crucial importance to reduce the error bars on experimental
data on v3{4} in central Pb + Pb collisions, in order to check
whether the ratio v3{4}/v3{2} is independent of centrality, as
suggested by ALICE data. Indeed, this observation does not
seem compatible with existing models of initial conditions.

The parametrizations of the initial state that are suitable for
describing central Pb + Pb collisions cannot be employed in
central p + Pb collisions, and vice versa. Indeed, the Glauber
model, which is excluded by Pb + Pb data, provides the
only reasonable description of p + Pb collisions. We do not
consider this to be a contradiction, because we are merely
trying to identify the parametrization which captures the
initial geometry in a given system, and we do not aim at a

unified description of all systems. We predict that the ratio
v3{4}/v3{2} is very close to v2{4}/v2{2} in high-multiplicity
p + Pb collisions, and both the distributions of v2 and v3 to
follow the power distribution. These results imply that, up
to small corrections, the same non-Gaussianities drive the
fluctuations of ε2 and ε3. Our explicit test of the power behavior
up to higher-order cumulants, in particular, suggests that the
main non-Gaussianity driving the fluctuations is the fact that
the distributions are bounded by unity. However, nonflow
effects differ for v2 and v3 (back-to-back correlations typically
increase v2, and decrease v3) and must be carefully removed
in the analysis.

As a final remark, we stress that the conclusions drawn in
our p + Pb analysis should hold in any small system model
where ε2 and ε3 originate solely from fluctuations. It would
be rather natural, then, to extend this analysis to the case
of high-multiplicity proton + proton collisions, where the
observed azimuthal multiparticle correlations hint at the onset
of collective effects [26,66]. These new data have triggered
novel models of initial conditions [13,67], which can be tested
against experimental data using ratios of cumulants, as done
in this work for p + Pb collisions.
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APPENDIX: THE TRENTo MODEL

TRENTo is a flexible parametric Monte Carlo model for the
initial conditions of heavy-ion collisions, which encompasses
several other models of initial conditions [42]. Consider
the case of a nucleon A colliding with a nucleon B. Each
participant nucleon deposits entropy in the transverse plane
according to a Gaussian distribution of width σ , which reads

SA,B = wA,B
1

2πσ 2
exp

[
(x − xA,B)2 + (y − yA,B)2

2σ 2

]
. (A1)

The normalization, w, is a random number which is assigned
to each participant nucleon. Its probability distribution is a 

distribution, whose mean value is equal to unity, and whose
width is regulated by a parameter, k. The total initial entropy
profile is computed through a generalized average of Gaussian
sources,

S(p; SA,SB) =
(

S
p
A + S

p
B

2

) 1
p

, (A2)

where p is an arbitrary real parameter. The previous formula
can be generalized to the case of a nucleus A colliding with a
nucleus B [42]. Note that, for p = 1, nuclear density profiles
are superimposed (S ∝ SA + SB). If p = 0 or p = −1, instead,
the initial entropy deposition is computed through the product
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of the two nuclear density profiles (S ∝ SASB). Varying the
value of p, it is possible to construct initial entropy profiles
according to different prescriptions [43]: p = 1 is the wounded

nucleon model; lower values of p reproduce QCD-based
models, such as EKRT [68] (p = 0), or Monte Carlo KLN [69]
(p = −0.67).
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