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Abstract. Conventional neoclassical predictions are successfully recovered within a gyrokinetic
framework using a minimal Fokker–Planck collision operator. This operator is shown to accurately
describe some essential features of neoclassical theory, namely the neoclassical transport, the
poloidal rotation and the linear damping of axisymmetric flows while interestingly preserving a
high numerical efficiency. Its form makes it especially adapted to Eulerian or Semi–Lagrangian
schemes.
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INTRODUCTION

Collisionless gyrokinetic theory [3] consensually provides today’s deepest insight on
turbulence-related problems in fusion plasma physics, especially allowing for a very ac-
curate first-principle description of turbulent transport. On the other hand, the neoclassi-
cal theory was earlier coined to describe the effects of binary Coulomb collisions in an
inhomogeneous magnetic field, when trapped particles are present [13]. As compared to
the highly-collisional edge region of a tokamak, core conditions exhibit (i) typical colli-
sion frequencies orders of magnitude smaller than the ones associated with the turblence
and (ii) experimentally-measured transport levels, close to the turbulent transport levels
and orders of magnitude larger than the predicted neoclassical ones. Thus, core plasmas
are widely believed to be ‘collisionless’.

Recent evidences from both the experimental side [4, 2, 6] and from gyrokinetic mod-
elling [18] are contributing to modify this classical idea. The adjunction of neoclassical
theory to gyrokinetic models is therefore of great current interest: the onset and control
of the improved confinement regimes necessary to operate e.g. Iter require the access
to advanced regimes where the turbulence can be locally suppressed. In such regimes,
(i) neoclassical transport becomes dominant. Also, an increasing number of experimen-
tal observations [21] tends to emphasise the fundamental role of plasma rotation for
the onset and the control of these improved regimes, a special focus being held on (ii)
poloidal rotation. This latter quantity, even with turbulence, is widely believed to be
set by neoclassical theory. The generation of axisymmetric (zonal) flows by turbulence,
as recently emphasised, could however drastically modify this picture [19, 7]. These
flows have been shown to survive the linear Landau damping process in the collisionless
regime [22]. As a result, the level of transport can be underestimated when collisions are



not taken into account [18].
The calculation of the collisional processes in a hot plasma is notoriously complex.

The concept alone of collision in such a medium is rather subtle and since collisions
between particles depend on their relative velocities, the overall collisional result is
an integrated effect of non-local interactions between particles of all velocities. As a
consequence, model operators which allow to recover the main neoclassical results
while preserving some interesting simplicity are especially attractive. In this paper,
we report the implementation of a such simplified operator in the global and full– f
gyrokinetic semi–Lagrangian GYSELA code and its successful confrontation against
theoretical neoclassical predictions. The model equations are detailed in the following
section, along with the adopted collision operator. While the accessible physical features
with such a simplified operator are discussed in great detail subsequently, the last
section displays a quantitative confrontation to conventional neoclassical predictions.
We especially accurately recover the predicted neoclassical transport, the collisional
zonal flow damping. We also report for the first time, to our knowledge, the reverse
of the poloidal rotation with the collisionality regime, as predicted analytically.

A MINIMAL COLLISION OPERATOR CONTAINING
CONVENTIONAL NEOCLASSICAL THEORY

The GYSELA code has been upgraded to perform gyrokinetic simulations of neoclassical
transport using a simplified collision operator. A full Coulomb collisional transport has
notoriously considerable implementation difficulties in Eulerian-like numerical schemes
and a simplified version is therefore highly attractive, provided it keeps the important
properties of the complete operator. The precise derivation of this simplified model can
be found in a recent work [10] where it is especially shown that it embeds the exact
neoclassical transport as would be calculated by a full Fokker–Planck operator while
preserving some simplicity. The GYSELA code is based on a semi-Lagrangian scheme
[11], applied to solve the gyrokinetic equation:

∂t f +(vE +vD) ·∇∇∇ f + v‖∇‖ f +dtv‖∂v‖f = C (f) (1)

The left-hand side of Eq.(1) is classically the collisionless gyrokinetic equation as
discussed e.g. in Ref. [12], f represents the full ion distribution function and v‖ the
velocity along the magnetic field lines. Self-consistency is achieved for the electric field
by solving the quasi-neutrality condition:
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In the remainder of the paper, the electronic response is assumed to be adiabatic:
δne/neq = e(φ −φ00)/Te(r), where φ00 ≡

∫∫
dθdϕ/4π2 φ accounts for the flux-surface

average of the electric potential φ which initially is a perturbation. The ion cyclotron pul-
sation is ωc and finit refers to the initial ion distribution function. A simplified Lorentz-
type ion–ion collision operator C conserving the number of particles is implemented in



FIGURE 1. (Color online) Parallel velocity dependance of the diffusive and convective operators D
and V in Eqs.(4) and (5).

the right-hand side of Eq.(1):

C = ∂v‖

{
D∂v‖ f −V f

}
(3)

which, as compared to electron–ion and electron–electron collisions, accounts for the
dominant contribution to neoclassical heat transport. Operators D and V (see Fig. 1)
respectively model a diffusion and a drag:

D = 3
√

π

2
v3

T ε3/2

qR0
ν?

Φ(v)−G(v)
2v

(4)

V = −
v‖
v2

T
D (5)

The first piece accounts for diffusion in parallel velocity D = 〈∆v2
‖〉/2 generated by the

Coulomb binary interactions. It is essentially responsible for the neoclassical diffusive
transport and models the resonant enhancement of collisional effects in the presence
of local trapping. The second piece is often referred to as ‘dynamic friction’ and is
also reminiscent of the Fokker–Planck structure of the collision operator: V = 〈∆v‖〉.
It is an average time rate of change of parallel velocity due to the scattering effects of
collisions and accounts for the poloidal flow damping obtained from neoclassical theory.
Both operators readily depend on the parallel velocity v‖, the radial coordinate r through
the temperature profile T and the energy E = mv2

‖/2 + µB through the total velocity

v2 = E/T . The thermal velocity is vT =
√

T/m , m being the ion mass. The safety factor
is q, R0 is the major radius evaluated on the midplane and ε = r/R. The ion–ion collision



frequency:

νii =
4
√

π

3
ne4 logΛ

(4πε0)2 m2 v3
T

(6)

is here expressed in terms of the dimensionless ion–ion collisionality parameter ν?:

ν? =
qR0

vT

νii

ε3/2 (7)

where ε0 is the permittivity of free space, logΛ ≈ 17 the Coulomb logarithm and n
the ion density. Note that even though the collision operator Eq.(3) does depend on the
energy, the advection is only performed in the parallel direction. We shall illustrate this
idea in the following section , but let us just state at this point that such an operator
is numerically extremely efficient since its parallelisation over velocity space (v‖,µ)
is intrinsic: each processor, or set of processors, has its own value for µ and performs
its own collisions in the parallel direction. The explicit expressions for Eqs.(4) and (5)
involve the error function Φ:

Φ(v) =
2√
π

∫ v

0
e−x2

dx (8)

Φ
′(v) =

2√
π

e−v2
(9)

and the Chandrasekhar function G:

G(v) =
Φ(v)− vΦ′(v)

2v2 (10)

Using Eq.(5), one can trivially see that the solution for the full– f collisional problem
is the local Maxwellian fLM = n/(2πT/m)3/2 exp(−E/T ) for both the bulk equilibrium
and the fluctuations, which allows one to write the particle-conserving collision operator
Eq.(3) in the compact form:

C ( f ) = ∂v‖

{
D fM∂v‖

(
f

fM

)}
(11)

D still being given by Eq.(4). Such an operator pertains to the wider class of so-
called Lorentz operators which have been extensively used in neoclassical theory. The
following section aims at discussing the physics this minimal model can address before
assessing its accuracy for computing the actual transport.

DISCUSSION: WHICH PHYSICS CAN WE ADDRESS ?

This point is enlightening to be discussed in the framework of the fluid theory since it
proposes a simple, yet considerable insight into plasma behaviour. The momentum flux
conservation reads:

mndtVVV i = en(EEE +VVV i×BBB)−∇∇∇pi−∇∇∇ · ¯̄
ΠΠΠNC−mnνie(VVV i−VVV e) (12)



Here, fluid quantities are written in capital letters, conversely to kinetic quantities. The
electron-related quantities are labelled by subscript ‘e’, ion quantities by subscript ‘i’
and ¯̄

ΠΠΠNC =
∫

d3vvvm(vvvvvv− v2/3¯̄III) f denotes the viscous stress tensor, crucial in toroidal
geometry and which reduces at leading order to the parallel viscous stress. Focussing
on the poloidal angle-independent part of the latter equation, its parallel projection, at
equilibrium, simply reads:

enE‖−mnµ

(
Vθ i−K1

∇T Bϕ

e〈B2〉

)
−mnνie(V‖i−V‖e) = 0 (13)

where 〈·〉 denotes an average over flux surfaces, Bϕ is the toroidal component of the
magnetic field and 〈bbb ·∇∇∇ · ¯̄

ΠΠΠNC〉θ = mnµ
(
Vθ i−K1∇T Bϕ/e〈B2〉

)
. Let us first concentrate

on this term. Here, µ is the neoclassical ion viscous damping frequency, which can
be approximated in the low-collisionality banana and plateau regimes [16] by: µ ≈
0.78
√

ε νii/(1 + 0.44ν?). We adopt the notation used in [17] for the proportionality
quantity K1. Its sign is predicted to depend on the collisionality regime. This result has
a practical relevance when confronting e.g. to L–H transition theories since poloidal
rotation is increasingly thought to play at crucial role in the onset of high confinement
regimes. Moreover, experimental measurements of the ion poloidal velocity have been
performed over the years at and after the transition [4]. Practically, one correctly gets
the poloidal flow damping as soon as the viscous stress tensor is correctly modelled.
Physically, it means that (i) magnetic pumping due to the poloidal inhomogeneity of
the magnetic field and (ii) Coulomb collisional interaction between trapped and passing
particles are correctly being described. Both effects combine to enslave the ion poloidal
velocity on the temperature gradient, or equivalently, on the ion diamagnetic velocity.
This physics is an essential part of neoclassical theory and is intrinsically embedded in
this model since this model operator Eq.(11) allows to exactly recover the neoclassical
viscous stress tensor in the banana and plateau regimes as demonstrated in [10].

Moving to the last term in Eq.(13), attention is drawn to the momentum conservation
properties of the collision operator. This friction term accounts for the inter species
electron–ion transfer of momentum. Since momentum conservation between species
is central in neoclassical theory, the implementation of the conventional neoclassical
equilibrium is delicate while the electron response remains adiabatic. In this case,
this inter species friction needs to be replaced by a like-species friction: mnνiiV‖i,
which tends to drive the distribution function towards a Maxwellian. Provided Galilean
invariance is allowed, i.e. the solution of the collisional problem is a shifted Maxwellian:
fSM(v‖) = fLM(v‖−V‖i), the correct amount of parallel friction forces is accounted for.
In this spirit, a slightly more complicated collision operator as compared to Eq.(11)
is constructed in [10] which satisfies both momentum and energy conservation and,
from a practical point of view, consists in performing the collisions locally, in the rest
frame of the moving ions. It also means that when running a gyrokinetic code, V‖i and
T must be calculated at each time step, and fuelled back in the collision operator.
Differently speaking, operators without momentum conservation create an artificial
friction force and overestimate the momentum loss of circulation ions and electrons
which is especially important in the banana regime. Nonetheless, as clearly shown from
[20], satisfying Galilean invariance is important not to (i) overestimate the particle fluxes



and (ii) underestimate the bootstrap current. Conversely, (iii) it has almost no influence
on the heat transport. Bootstrap current cannot be modelled with adiabatic electrons and
since neoclassical theory is ambipolar, no particle flux is allowed with a single species
collisions, which we accurately verify in GYSELA. So in the perspective of studying at
the same time and with the same code both neoclassical theory and turbulence, this latter
neoclassical friction is not relevant since overwhelmingly dominated by the turbulent
friction. Therefore, we adopt a different approach, appropriate to an adiabatic electron
response. The transverse equilibrium of Eq.(12) –the classical force balance equation:

Er− vϕBθ + vθ Bϕ =
∇p
ne

(14)

connects the radial electric field and the plasma rotation with the thermodynamic forces.
Since in neoclassical theory, collisions tie poloidal rotation to the temperature gradi-
ent, the neoclassical equilibrium prediction is therefore on the sum Er − vϕBθ which
is degenerate without a controlled source of toroidal momentum. At this stage, we do
not wish to investigate the effects of toroidal rotation on neoclassical equilibrium and
seek to relax this degeneracy. The accurate and self-consistent calculation of the elec-
tric field is a known central problem for a full– f electrostatic gyrokinetic code [9] and
therefore the restriction of conventional neoclassical equilibrium to its sub-class associ-
ated with a vanishing mean toroidal velocity allows to unambiguously relate the radial
electric field to the poloidal rotation and the thermodynamic forces while modelling
the exact transport as more general Galilean-invariant Fokker–Planck operators would.
Differently speaking, this operator addresses a sub-class of neoclassical equilibria asso-
ciated with a mean vanishing toroidal rotation, yet modelling the exact poloidal rotation
and heat transport in the banana and plateau regimes. On the other hand, this collision
operator is not suitable for addressing problems such as the toroidal momentum genera-
tion since it impedes the spin-up by overdamping rotation in the toroidal direction.

Another crucial point which makes collisions especially important rests with the idea
that collisions alone can provide a linear damping mechanism on the mean and zonal
parts of the axisymmetric φ00 flows. By this means, ion–ion collisions have been reported
to crucially impact the level of ITG turbulent transport in zonal flow dominated regimes
[18], which also corresponds to the expected operating regime of Iter. Therefore, a
collision operator must accurately model the collisional damping rate of such flows,
as predicted by Hinton and Rosenbluth [14]. As shown in [8], this effect is indeed very
accurately modelled.

At last, the collisional system does intrinsically satisfy an H-theorem since the col-
lision operator Eq.(11) is associated to an entropy extremalisation principle [10]. Due
to this entropy principle, the full distribution function is guaranteed to relax towards a
Maxwellian while most model operators only act on the perturbed distribution function.
As such they are inappropriate when calculating the complete collisional equilibrium,
including both the perturbed and the unperturbed problem. The neat positive entropy
production rate is reminiscent of the dissipation processes occuring in velocity space at
the interface between the trapped and the untrapped regions of phase space. As a diffu-
sive boundary layer, this interface gets increasingly localised as ν? diminishes. Within
it, the dynamics of the collisions is accurately modelled by a friction force between the



trapped and the untrapped particles with a favoured direction along the magnetic field
lines. These aspects are quantitatively discussed in Fig.3.

Briefly summarising this discussion, this operator Eq.(11) should very accurately de-
scribe (i) the collisional damping of the mean and the zonal flows, (ii) the neoclassical
heat transport processes and (iii) the plasma poloidal rotation while remaining numeri-
cally very efficient. Though it is not suited to study toroidal momentum generation, the
expressions of the poloidal velocity and thermal fluxes in the banana and plateau regimes
are correctly reproduced, even in extreme cases where the electron response is adiabatic.

RECOVERING THE NEOCLASSICAL RESULTS

Recovering neoclassical results can reveal subtle. So as not to generate artificial equilib-
rium flows which could prove detrimental for neoclassical equilibrium, it is important
with full– f codes to accurately compute the radial electric field [9], which we do not
externally impose but self-consistently evolve. It is therefore interesting to notice that:

f0 =
N

(2πT0/m)3/2 e−H/T0 (15)

eφ0

T0
= − log

( n0

N

)
+ c1K0 + c2I0 (16)

define the simplest non trivial equilibrium state consistent with vanishing electrostatic
boundary perturbations. Here H = mv2

‖/2 + µB + eφ0 is the hamiltonian, N is a con-
stant, so is T0 the temperature, φ0 is the initial (and equilibrium) electric potential de-
pending on the radial coordinate only, n0 is the density profile, K0 and I0 are the modi-
fied Bessel functions of the first type and c1 and c2 are complex coefficients such that φ0
vanishes at the radial boundaries. This special choice Eq.(15) is obviously (i) a motion
invariant and (ii) satisfies C ( f0) = 0 since φ0 does not depend on the velocity. Neo-
classical theory predicts vθ ∝ ∇T/eB, as we shall discuss in the following paragraphs,
thus in the case of a constant temperature T0, the usual force balance equation Eq.(14)
trivially reduces to: e∇φ/T0 = −∇n/n, the electric field balancing the density gradi-
ent. When initialising GYSELA with Eqs.(15) and (16), the equilibrium electric field is
indeed given by Eq.(16). Also, when either starting from a local Maxwellian or a canon-
ical Maxellian [15, 1, 9], the equilibrium electrostatic potential φ adjusts as expected
on the density gradient. With these elementary checks performed, we now investigate
the general case of a non vanishing temperature gradient. In the remainder of this paper,
GYSELA is now initialised with the canonical equilibrium. The problem is axisymmet-
ric. Typical parameters at mid radius for all the following simulations read: R0/LT = 5
(no unstable modes), R0/Ln = 2 where Lx = x/∇x is the gradient length for quantity x,
ε = r/R = 0.15 and q = 1.4. The typical grid size at ρ? = ρi/a = 1/256 involves over
109 grid points on a half-torus (r,θ ,φ ,v‖,µ) = (256,256,8,128,16) mesh.

The electric potential then adjusts so as to satisfy Eq.(14), as illustrated in Figs.2–(a)
and 2–(b). The poloidal velocity vθ is displayed, calculated by two means: (i) self-
consistently within GYSELA vG

θ
, as an output of the gyrokinetic–Poisson problem and

(ii) by means of the force balance equation: vFB
θ

Bϕ = ∂rφ +∇p/ne+ vϕBθ , each of the



FIGURE 2. (Color online) Test of the accuracy of the force balance equation Eq.(14) in the banana (a)
and the plateau (b) regimes. The poloidal velocity is evaluated by two means: either consistently evolved
within GYSELA: vθ Bϕ or as the sum: ∇p/ne−Er +vϕ Bθ . Excellent agreement is found, regardless of the
precise moment in the simulation.

latter terms is consistently evolved withing GYSELA and constitutes an outcome of the
simulation. All these quantities are here plotted. As expected from the previous section,
toroidal rotation is increasingly low as the ion–ion parallel collisional friction increases
from the banana regime Fig.2–(a) to the plateau regime Fig.2–(b). The response of
the electric potential is therefore different in the two collisionality regimes since the
poloidal velocity itself strongly depends on ν? [17, 8]. In the banana regime, the radial
electric field mainly compensates the density gradient, whereas in the plateau regime,
the poloidal velocity is smaller and the radial electric field increases so as to mainly
compensate the pressure gradient. Hence the different behaviours observed for Er in
Figs.2–(a) and 2–(b), while the global force balance remains satisfied with an excellent
precision.

As compared to early ‘classical’ theories [5] in which the spatial variation of the mag-
netic field has no influence on the transport, neoclassical theory is deeply connected to
the resonance phenomena due to particle trapping arising in an inhomogeneous mag-
netic field and has some crucial features on the level of collisional transport. Colli-
sions indeed contribute to regularise the trapping singularities, broadening the highly
localised region of phase space which delineates the trapped region from the untrapped.
The broadening of this region with increasing collisionality is displayed in Fig.3. Due
to the spatial nonuniformity of the magnetic field, iso-contours of the distribution func-
tion display the typical ‘cat-eye’ shape in phase space which traduces particle trapping.
Starting from the canonical Maxwellian [9], the initial distribution function is a motion
invariant, i.e. an exact solution of the gyrokinetic equation but not a solution of the col-
lisional problem. It is singular at the vicinity of the loss cone, as clearly illustrated by
the transverse plot of the distribution function at θ = 0 (red curve). The dissymmetry
in v‖ comes from the choice of the canonical Maxwellian. Let us concentrate on this
right-hand side of Fig.3. The two simulations at ν? = 10 and ν? = 0.01 are compared
at the same time, i.e. after 10 collision times and 0.1 collision time respectively. As
expected, as the collisionality increases the full distribution function (i) is increasingly



FIGURE 3. (Color online) Collisional regularisation of the full distribution function at the boundary
layer between the trapped and untrapped regions of phase space. This regularisation is essentially occuring
along the magnetic field lines. The island in (θ ,v‖) space represents iso-contours of the full distribution
function.

regularised and (ii) relaxes towards a local Maxwellian. At low collisionalities (here in
the banana regime at ν? = 0.01), the form of the distribution function after a few col-
lisions is inbetween the blue and the black curves, achieving a compromise between a
function of the motion invariants and a local Maxwellian. On the iso-contour plot, as
best seen close to (θ ,v‖) = (0,3), the initial (no collision) highly-localised region delin-
eating the trapped domain from the untrapped broadens as collisionality increases (black
contours at ν? = 10). This regularisation occurs predominantly transversely to the island,
providing a hand-waving argument why physically the correct transport could be recov-
ered while writing the collision operator Eq.(11) with v‖ only. In the banana regime, it
is well-known that this boundary layer gives the dominant contribution to the heat trans-
port coefficient [13]. In the presence of a perturbed hamiltonian –i.e. of particle trapping,
the enhancement of collisional transport, which is at the root of neoclassical transport, is
due to the resonant interaction between the particles and this perturbation [10]; it dom-
inantly occurs in this region. A correct modelisation of this boundary layer is therefore
crucial to recover the correct neoclassical transport as displayed in [8].

CONCLUSION

A minimal ion–ion collision operator has been designed and successfully implemented
in global and full– f gyrokinetic simulations using the semi-Lagrangian GYSELA code.
This operator is minimal in the sense that it reproduces the essential results of neoclas-
sical theory while avoiding much of the parallelisation cost inherent to more general
operators. This approach (i) features a very efficient parallelisation with respect to the



adiabatic variable and (ii) takes advantage of a fixed grid discretisation and as such is
especially attractive in Eulerian or semi-Lagrangian-based numerical schemes.

As a special mandatory feature of full– f codes, without an external forcing, the full
distribution function has to relax towards a Maxwellian. This condition is not fulfilled
in many simplifed operators since they were primarily designed to act on the perturbed
distribution function only. Conversely, this condition is intrinsically fullfilled in the col-
lision operator displayed here. It is especially shown that the correct neoclassical trans-
port, poloidal rotation and mean and zonal flow damping are accurately reproduced.
Building upon the advantages of the present approach, the self-consistent –and possibly
significant– interplay between turbulence and collisions will be investigated in forth-
coming works.
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