J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, L'Ens, Math, vol.44, p.173, 1998.

P. P. Martin and H. Saleur, On an algebraic approach to higher dimensional statistical mechanics, Communications in Mathematical Physics, vol.132, issue.1, p.155, 1993.
DOI : 10.1007/BF02097236

URL : http://arxiv.org/abs/hep-th/9208061

P. P. Martin, Potts models and related problems in statistical mechanics, World Scientific, 1991.
DOI : 10.1142/0983

C. Nayak, S. Simon, A. Stern, M. Freedman, and S. Sarma, Non-Abelian anyons and topological quantum computation, Reviews of Modern Physics, vol.80, issue.3, p.1083, 2008.
DOI : 10.1103/RevModPhys.80.1083

URL : http://arxiv.org/abs/0707.1889

M. H. Freedman, M. J. Larsen, and Z. Wang, A Modular Functor Which is Universal??for Quantum Computation, Communications in Mathematical Physics, vol.227, issue.3, p.228, 2002.
DOI : 10.1007/s002200200645

Z. Wang, Quantum computation

R. J. Baxter, Exactly Solved Models in Statistical Mechanics, 1982.
DOI : 10.1142/9789814415255_0002

M. Schottenloher, A mathematical introduction to conformal field theory, 1997.

G. F. Lawler, O. Schramm, and W. Werner, On the scaling limit of planar self-avoiding walk. In Fractal geometry and applications: a jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math, vol.72, pp.339-364, 2004.

S. Smirnov, Towards conformal invariance of 2D lattice models, International Congress of Mathematicians, pp.1421-1451, 2006.
DOI : 10.4171/022-2/68

D. Chelkak, A. Glazman, and S. Smirnov, Discrete stress-energy tensor in the loop O(n) model

C. Hongler, F. Johansson-viklund, and K. Kytola, Lattice representations of the Virasoro algebra I: discrete Gaussian free field

W. M. Koo and H. Saleur, Representations of the Virasoro algebra from lattice models, Nucl, p.459, 1994.

A. M. Gainutdinov and D. , Ridout and I. Runkel Eds, Logarithmic conformal field theory, J. Phys, p.46, 2013.

Y. Huang, J. Lepowsky, and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I-VIII, p.1110, 1931.
DOI : 10.1007/978-3-642-39383-9_5

URL : http://arxiv.org/abs/1012.4193

P. A. Pearce, J. Rasmussen, and J. B. Zuber, Logarithmic minimal models, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.11, p.11017, 2006.
DOI : 10.1088/1742-5468/2006/11/P11017

URL : https://hal.archives-ouvertes.fr/hal-00101696

N. Read and H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, Nuclear Physics B, vol.777, issue.3, p.263, 2007.
DOI : 10.1016/j.nuclphysb.2007.03.007

N. Read and H. Saleur, Associative-algebraic approach to logarithmic conformal field theories, Nuclear Physics B, vol.777, issue.3, p.316, 2007.
DOI : 10.1016/j.nuclphysb.2007.03.033

URL : http://doi.org/10.1016/j.nuclphysb.2007.03.033

A. M. Gainutdinov and R. Vasseur, Lattice fusion rules and logarithmic operator product expansions, Nuclear Physics B, vol.868, issue.1, pp.223-270, 2013.
DOI : 10.1016/j.nuclphysb.2012.11.004

URL : http://doi.org/10.1016/j.nuclphysb.2012.11.004

A. M. Gainutdinov, N. Read, and H. Saleur, Continuum limit and symmetries of the periodic gl(1|1) spin chain, Nucl. Phys, pp.871-245, 2013.

A. M. Gainutdinov, J. L. Jacobsen, H. Saleur, and R. Vasseur, A physical approach to the classification of indecomposable Virasoro representations from the blob algebra, Nuclear Physics B, vol.873, issue.3, p.614, 2013.
DOI : 10.1016/j.nuclphysb.2013.04.017

P. A. Pearce, J. Rasmussen, and S. Villani, Infinitely extended Kac table of solvable critical dense polymers, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.17, pp.46-175202, 2013.
DOI : 10.1088/1751-8113/46/17/175202

A. M. Gainutdinov, H. Saleur, and I. Yu, Tipunin, Lattice W -algebras and logarithmic CFTs, J. Phys. A: Math. Theor, vol.495401, p.47, 2014.
DOI : 10.1088/1751-8113/47/49/495401

URL : http://arxiv.org/abs/1212.1378

A. Morin-duchesne, J. Rasmussen, and D. Ridout, Boundary algebras and Kac modules for logarithmic minimal models, Nuclear Physics B, vol.899
DOI : 10.1016/j.nuclphysb.2015.08.017

URL : http://doi.org/10.1016/j.nuclphysb.2015.08.017

J. Belletete, Fusion rules for the Temperley-Lieb algbera and its dilute generalizations

A. M. Gainutdinov, N. Read, and H. Saleur, Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the $${\mathfrak{gl}(1|1)}$$ gl ( 1 | 1 ) Periodic Spin Chain, Howe Duality and the Interchiral Algebra, Communications in Mathematical Physics, vol.270, issue.1, p.35, 2016.
DOI : 10.1007/s00220-015-2483-9

D. Ridout and Y. St-aubin, Standard modules, induction and the structure of the Temperley-Lieb algebra, Advances in Theoretical and Mathematical Physics, vol.18, issue.5
DOI : 10.4310/ATMP.2014.v18.n5.a1

J. Belletete, D. Ridout, and Y. St-aubin, Restriction and induction of indecomposble modules over the Temperley-Lieb algebra

J. Cardy, Conformal invariance and surface critical behavior, Nuclear Physics B, vol.240, issue.4, p.240, 1984.
DOI : 10.1016/0550-3213(84)90241-4

URL : http://doi.org/10.1016/0550-3213(84)90241-4

A. M. Gainutdinov, N. Read, and H. Saleur, Bimodule structure in the periodic spin chain, Nuclear Physics B, vol.871, issue.2, pp.289-329, 2013.
DOI : 10.1016/j.nuclphysb.2013.02.017

A. Morin-duchesne, P. Pearce, and J. Rasmussen, Modular invariant partition function of critical dense polymers, Nuclear Physics B, vol.874, issue.1
DOI : 10.1016/j.nuclphysb.2013.05.016

A. Morin-duchesne and Y. St-aubin, Jordan cells of periodic loop models, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.49
DOI : 10.1088/1751-8113/46/49/494013

A. M. Gainutdinov, N. Read, H. Saleur, and R. Vasseur, The periodic sl(2|1) alternating spin chain and its continuum limit as a bulk LCFT at c = 0, JHEP, vol.114, 2015.

B. W. Westbury, The representation theory of the Temperley-Lieb algebras, Mathematische Zeitschrift, vol.77, issue.2, pp.539-565, 1995.
DOI : 10.1007/BF02572380

V. Dlab and C. M. , A construction of quasi-hereditary algebras, Compos. Math, vol.70, pp.155-175, 1989.

P. P. Martin and D. Mcanally, ON COMMUTANTS, DUAL PAIRS AND NON-SEMISIMPLE ALGEBRAS FROM STATISTICAL MECHANICS, International Journal of Modern Physics A, vol.07, issue.supp01b, p.675, 1992.
DOI : 10.1142/S0217751X92003987

P. P. Martin and H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Letters in Mathematical Physics, vol.285, issue.Suppl. 1 A, p.189, 1994.
DOI : 10.1007/BF00805852

URL : http://arxiv.org/abs/hep-th/9302094

V. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, Mathématique, vol.40, p.313, 1994.

R. M. Green, On representations of affine Temperley-Lieb algebras, Algebras and Modules II, CMS Conference Proceedings, pp.245-261, 1998.

J. J. Graham and G. I. Lehrer, The two-step nilpotent representations of the extended Affine Hecke algebra of type A, Compositio Mathematica, vol.173, p.133, 2002.

V. Chari and A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific Journal of Mathematics, vol.174, issue.2, p.295, 1996.
DOI : 10.2140/pjm.1996.174.295

URL : http://arxiv.org/abs/q-alg/9501003

J. J. Graham and G. I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Annales Scientifiques de l?????cole Normale Sup??rieure, vol.36, issue.4, pp.479-524, 2003.
DOI : 10.1016/S0012-9593(03)00020-X

P. P. Martin and D. Woodcock, On the Structure of the Blob Algebra, Journal of Algebra, vol.225, issue.2, pp.957-988, 2000.
DOI : 10.1006/jabr.1999.7948

B. Feigin and D. Fuchs, Representations of the Virasoro algebra, Adv. Stud. Contemp. Math, vol.7, p.465554, 1990.

K. Kytölä and D. Ridout, On staggered indecomposable Virasoro modules, Journal of Mathematical Physics, vol.50, issue.12, p.123503, 2009.
DOI : 10.1063/1.3191682

F. Rohsiepe, On reducible but indecomposable representations of the Virasoro algebra, pp.hep- th, 9611160.

A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Physics B, vol.241, issue.2, p.333, 1984.
DOI : 10.1016/0550-3213(84)90052-X

URL : http://doi.org/10.1016/0550-3213(84)90052-x

I. Frenkel and M. Zhu, Vertex operator algebras associated to modified regular representations of the Virasoro algebra

DOI : 10.1142/9789812775344_0032

H. Eberle and M. Flohr, Virasoro representations and fusion for general augmented minimal models, Journal of Physics A: Mathematical and General, vol.39, issue.49, pp.15245-15286, 2006.
DOI : 10.1088/0305-4470/39/49/012

URL : http://arxiv.org/abs/hep-th/0604097

P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Physics Letters B, vol.657, issue.1-3, 2007.
DOI : 10.1016/j.physletb.2007.10.007

URL : http://doi.org/10.1016/j.physletb.2007.10.007

P. Mathieu, D. Ridout, and M. Logarithmic, Logarithmic minimal models, their logarithmic couplings, and duality, Minimal Models, their Logarithmic Couplings, and Duality, p.268, 2008.
DOI : 10.1016/j.nuclphysb.2008.02.017

URL : http://doi.org/10.1016/j.nuclphysb.2008.02.017

M. R. Gaberdiel, I. Runkel, and S. Wood, = 0 triplet model, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.32, p.32, 2009.
DOI : 10.1088/1751-8113/42/32/325403

W. Nahm, QUASI-RATIONAL FUSION PRODUCTS, International Journal of Modern Physics B, vol.08, issue.25n26, p.3693, 1994.
DOI : 10.1142/S0217979294001597

M. Gaberdiel and H. Kausch, Indecomposable fusion products, Nuclear Physics B, vol.477, issue.1, p.293, 1996.
DOI : 10.1016/0550-3213(96)00364-1

R. Behrend, P. Pearce, V. Petkova, and J. B. Zuber, On the classification of bulk and boundary conformal field theories, Physics Letters B, vol.444, issue.1-2, p.444, 1998.
DOI : 10.1016/S0370-2693(98)01374-4

I. Runkel, M. Gaberdiel, and S. Wood, Logarithmic bulk and boundary conformal field theory and the full centre construction, contribution to the proceedings of 'Conformal field theories and tensor categories, 2011.