M. L. Neidig, D. L. Clark, and R. L. Martin, Covalency in f-element complexes, Coordination Chemistry Reviews, vol.257, issue.2, pp.394-406, 2013.
DOI : 10.1016/j.ccr.2012.04.029

J. Veliscek-carolan, Separation of actinides from spent nuclear fuel: A review, Journal of Hazardous Materials, vol.318, pp.266-281, 2016.
DOI : 10.1016/j.jhazmat.2016.07.027

A. E. Gorden, J. Xu, K. N. Raymond, and P. Durbin, Rational Design of Sequestering Agents for Plutonium and Other Actinides, Chemical Reviews, vol.103, issue.11, pp.4207-4282, 2003.
DOI : 10.1021/cr990114x

E. Ansoborlo, M. Ménager, and R. J. , 11th International Conference on Health Effects of Incorporated Radionuclides, International Journal of Radiation Biology, vol.90, issue.11, pp.945-947, 2014.
DOI : 10.3109/09553002.2014.943849

M. Menager, E. Ansoborlo, and D. , Environmental issues facing chemical, biological, radiological, and nuclear risks, Environmental Science and Pollution Research, vol.23, issue.9, pp.8161-8162, 2016.
DOI : 10.1007/s11356-015-5894-4

C. Bresson, E. Ansoborlo, and C. Vidaud, Radionuclide speciation: A key point in the field of nuclear toxicology studies, Journal of Analytical Atomic Spectrometry, vol.26, issue.45, pp.593-601, 2011.
DOI : 10.1039/c0ja00223b

O. Kharissova, M. Méndez-rojas, B. Kharisov, U. Méndez, and P. Martínez, Metal Complexes Containing Natural and and Artificial Radioactive Elements and Their Applications, Molecules, vol.19, issue.8, pp.10755-10802, 2014.
DOI : 10.3390/molecules190810755

URL : http://doi.org/10.3390/molecules190810755

M. Dolg, Computational Methods in Lanthanide and Actinide Chemistry, 2015.
DOI : 10.1002/9781118688304

L. Gagliardi, R. Lindh, and G. Karlström, Local properties of quantum chemical systems: The LoProp approach, The Journal of Chemical Physics, vol.121, issue.10, pp.4494-4500, 2004.
DOI : 10.1063/1.1778131

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.23, issue.10, pp.1833-1840, 1955.
DOI : 10.1063/1.1740588

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies, The Journal of Chemical Physics, vol.23, issue.10, pp.1841-1846, 1955.
DOI : 10.1063/1.1740589

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations, The Journal of Chemical Physics, vol.23, issue.12, pp.2338-2342, 1955.
DOI : 10.1063/1.1741876

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence???Bond Theories, The Journal of Chemical Physics, vol.23, issue.12, pp.2343-2346, 1955.
DOI : 10.1063/1.1741877

R. S. Mulliken, Criteria for the Construction of Good Self???Consistent???Field Molecular Orbital Wave Functions, and the Significance of LCAO???MO Population Analysis, The Journal of Chemical Physics, vol.36, issue.12, pp.3428-3439, 1962.
DOI : 10.1063/1.1732476

P. Lowdin, On the Non???Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals, The Journal of Chemical Physics, vol.18, issue.3, pp.365-375, 1950.
DOI : 10.1063/1.1747632

P. Löwdin, On the Nonorthogonality Problem, Advances in Quantum Chemistry, vol.5, pp.185-199, 1970.
DOI : 10.1016/S0065-3276(08)60339-1

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, The Journal of Chemical Physics, vol.83, issue.2, pp.735-746, 1985.
DOI : 10.1063/1.449486

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews, vol.88, issue.6, pp.899-926, 1988.
DOI : 10.1021/cr00088a005

R. S. Mulliken, Chemical Bonding, Annual Review of Physical Chemistry, vol.29, issue.1, pp.1-31, 1978.
DOI : 10.1146/annurev.pc.29.100178.000245

F. Jensen, Introduction to computational chemistry, 2007.

A. E. Clark, J. L. Sonnenberg, P. J. Hay, and R. L. Martin, Density and wave function analysis of actinide complexes: What can fuzzy atom, atoms-in-molecules, Mulliken, Lo??wdin, and natural population analysis tell us?, The Journal of Chemical Physics, vol.121, issue.6, pp.2563-2570, 2004.
DOI : 10.1063/1.1766292

A. Sadoc, R. Broer, and C. De-graaf, CASSCF study of the relation between the Fe charge and the M??ssbauer isomer shift, Chemical Physics Letters, vol.454, issue.4-6, pp.196-200, 2008.
DOI : 10.1016/j.cplett.2008.02.034

A. Holt, G. Karlström, and B. O. Roos, The charge capacitance of the chemical bond: Application to bonds containing metals, International Journal of Quantum Chemistry, vol.1, issue.3, pp.618-628, 2009.
DOI : 10.1002/qua.21828

B. O. Roos, Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry, pp.177-254, 1992.
DOI : 10.1007/978-3-642-58150-2

J. P. Dognon, S. Durand, G. Granucci, B. Lévy, P. Millié et al., Atomic charges for molecular dynamics calculations, Journal of Molecular Structure: THEOCHEM, vol.507, issue.1-3, pp.17-23, 2000.
DOI : 10.1016/S0166-1280(99)00343-7

M. M. Francl, C. Carey, L. E. Chirlian, and D. M. Gange, Charges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?, Journal of Computational Chemistry, vol.89, issue.3, pp.367-383, 1996.
DOI : 10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H

B. Wang, S. L. Li, and D. G. Truhlar, Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes, Journal of Chemical Theory and Computation, vol.10, issue.12, pp.5640-5650, 2014.
DOI : 10.1021/ct500790p

C. Chipot, B. Maigret, J. L. Rivail, and H. A. Scheraga, Modeling amino acid side chains. 1. Determination of net atomic charges from ab initio self-consistent-field molecular electrostatic properties, The Journal of Physical Chemistry, vol.96, issue.25, pp.10276-10284, 1992.
DOI : 10.1021/j100204a034

L. E. Chirlian and M. M. , Atomic charges derived from electrostatic potentials: A detailed study, Journal of Computational Chemistry, vol.3, issue.6, pp.894-905, 1987.
DOI : 10.1002/jcc.540080616

E. Sigfridsson and U. Ryde, Comparison of methods for deriving atomic charges from the electrostatic potential and moments, Journal of Computational Chemistry, vol.21, issue.4, pp.377-395, 1998.
DOI : 10.1002/(SICI)1096-987X(199803)19:4<377::AID-JCC1>3.0.CO;2-P

U. C. Singh and P. A. Kollman, An approach to computing electrostatic charges for molecules, Journal of Computational Chemistry, vol.77, issue.2, pp.129-145, 1984.
DOI : 10.1002/jcc.540050204

F. M. Bickelhaupt, N. J. Van-eikema-hommes, C. Fonseca-guerra, and E. J. Baerends, = 1, 2, 4), Organometallics, vol.15, issue.13, pp.2923-2931, 1996.
DOI : 10.1021/om950966x

D. Proft, C. Van-alsenoy, A. Peeters, W. Langenaeker, and P. Geerlings, Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density, Journal of Computational Chemistry, vol.259, issue.12, pp.1198-1209, 2002.
DOI : 10.1002/jcc.10067

T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of Computational Chemistry, vol.113, issue.5, pp.580-592, 2012.
DOI : 10.1002/jcc.22885

A. V. Marenich, S. V. Jerome, C. J. Cramer, and D. G. Truhlar, Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases, Journal of Chemical Theory and Computation, vol.8, issue.2, pp.527-541, 2012.
DOI : 10.1021/ct200866d

P. Pyykkö and M. Atsumi, Molecular Single-Bond Covalent Radii for Elements 1-118, Chemistry - A European Journal, vol.155, issue.445, pp.186-197, 2009.
DOI : 10.1002/chem.200800987

L. Pauling, Atomic Radii and Interatomic Distances in Metals, Journal of the American Chemical Society, vol.69, issue.3, pp.542-553, 1947.
DOI : 10.1021/ja01195a024

R. F. Bader, Atoms in Molecules: A Quantum Theory, 1990.

F. Chérif, R. J. Matta, and . Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, 2007.

J. P. Foster and F. Weinhold, Natural hybrid orbitals, Journal of the American Chemical Society, vol.102, issue.24, pp.7211-7218, 1980.
DOI : 10.1021/ja00544a007

A. E. Reed and F. Weinhold, Natural bond orbital analysis of near???Hartree???Fock water dimer, The Journal of Chemical Physics, vol.78, issue.6, pp.4066-4073, 1983.
DOI : 10.1063/1.445134

J. E. Carpenter and F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the ???different hybrids for different spins??? natural bond orbital procedure, Journal of Molecular Structure: THEOCHEM, vol.169, pp.41-62, 1988.
DOI : 10.1016/0166-1280(88)80248-3

M. Swart, P. T. Van-duijnen, and J. G. Snijders, A charge analysis derived from an atomic multipole expansion, Journal of Computational Chemistry, vol.78, issue.1, pp.79-88, 2001.
DOI : 10.1002/1096-987X(20010115)22:1<79::AID-JCC8>3.0.CO;2-B

P. D. Dau, D. Rios, Y. Gong, M. C. Michelini, J. Marçalo et al., Synthesis and Hydrolysis of Uranyl, Neptunyl, and Plutonyl Gas-Phase Complexes Exhibiting Discrete Actinide???Carbon Bonds, Organometallics, vol.35, issue.9, pp.1228-1240, 2016.
DOI : 10.1021/acs.organomet.6b00079

D. Hagberg, G. Karlström, B. O. Roos, and L. Gagliardi, The Coordination of Uranyl in Water:?? A Combined Quantum Chemical and Molecular Simulation Study, Journal of the American Chemical Society, vol.127, issue.41, pp.14250-14256, 2005.
DOI : 10.1021/ja0526719

R. F. Bader, Molecular fragments or chemical bonds, Accounts of Chemical Research, vol.8, issue.1, pp.34-40, 1975.
DOI : 10.1021/ar50085a005

K. Collard and G. G. Hall, Orthogonal trajectories of the electron density, International Journal of Quantum Chemistry, vol.94, issue.4, pp.623-637, 1977.
DOI : 10.1002/qua.560120404

R. F. Bader and M. E. Stephens, Spatial localization of the electronic pair and number distributions in molecules, Journal of the American Chemical Society, vol.97, issue.26, pp.7391-7399, 1975.
DOI : 10.1021/ja00859a001

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, The Journal of Chemical Physics, vol.92, issue.9, pp.5397-5403, 1990.
DOI : 10.1063/1.458517

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, issue.6499, pp.683-686, 1994.
DOI : 10.1038/371683a0

M. Kohout, A measure of electron localizability, International Journal of Quantum Chemistry, vol.36, issue.1, pp.651-658, 2004.
DOI : 10.1002/qua.10768

R. F. Bader, Atoms in molecules, Accounts of Chemical Research, vol.18, issue.1, pp.9-15, 1985.
DOI : 10.1021/ar00109a003

R. F. Bader, A quantum theory of molecular structure and its applications, Chemical Reviews, vol.91, issue.5, pp.893-928, 1991.
DOI : 10.1021/cr00005a013

T. S. Koritsanszky and P. Coppens, Chemical Applications of X-ray Charge-Density Analysis, Chemical Reviews, vol.101, issue.6, pp.1583-1628, 2001.
DOI : 10.1021/cr990112c

P. L. Popelier, On the full topology of the Laplacian of the electron density, Coordination Chemistry Reviews, vol.197, issue.1, pp.169-189, 2000.
DOI : 10.1016/S0010-8545(99)00189-7

G. Merino, A. Vela, and T. Heine, Description of Electron Delocalization via the Analysis of Molecular Fields, Chemical Reviews, vol.105, issue.10, pp.3812-3841, 2005.
DOI : 10.1021/cr030086p

R. F. Bader and H. Essén, The characterization of atomic interactions, The Journal of Chemical Physics, vol.80, issue.5, pp.1943-1960, 1984.
DOI : 10.1063/1.446956

P. L. Popelier, Applications of Topological Methods in Molecular Chemistry, pp.23-52

C. Clavaguéra and J. Dognon, Theoretical study of the bent U(??8-C8H8)2(CN)??? complex, Theoretical Chemistry Accounts, vol.26, issue.10, pp.447-452, 2011.
DOI : 10.1007/s00214-010-0879-3

G. Gervasio, R. Bianchi, and D. Marabello, About the topological classification of the metal???metal bond, Chemical Physics Letters, vol.387, issue.4-6, pp.481-484, 2004.
DOI : 10.1016/j.cplett.2004.02.043

B. Silvi and C. Gatti, Direct Space Representation of the Metallic Bond, The Journal of Physical Chemistry A, vol.104, issue.5, pp.947-953, 2000.
DOI : 10.1021/jp992784c

D. Stalke, The Chemical Bond I: 100 Years Old and Getting Stronger, pp.57-88, 2016.

D. Cremer and E. Kraka, Chemical Bonds without Bonding Electron Density ? Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond?, Angewandte Chemie International Edition in English, vol.73, issue.8, pp.627-628, 1984.
DOI : 10.1002/anie.198406271

X. Fradera, M. A. Austen, and R. F. Bader, The Lewis Model and Beyond, The Journal of Physical Chemistry A, vol.103, issue.2, pp.304-314, 1999.
DOI : 10.1021/jp983362q

B. Silvi, I. Fourré, and M. E. Alikhani, The Topological Analysis of the Electron Localization Function. A Key for a Position Space Representation of Chemical Bonds, Monatshefte f??r Chemie - Chemical Monthly, vol.136, issue.6, pp.855-879, 2005.
DOI : 10.1007/s00706-005-0297-8

J. Poater, M. Duran, M. Soì-a, and B. Silvi, Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches, Chemical Reviews, vol.105, issue.10, pp.3911-3947, 2005.
DOI : 10.1021/cr030085x

M. Kohout, Bonding indicators from electron pair density functionals, Faraday Discuss., vol.14, pp.43-54, 2007.
DOI : 10.1039/B605951C

URL : http://hdl.handle.net/11858/00-001M-0000-0015-29BB-0

A. I. Baranov, M. Kohout, and J. , Electron localizability for hexagonal element structures, Journal of Computational Chemistry, vol.119, issue.13, pp.2161-2171, 2008.
DOI : 10.1002/jcc.20985

URL : http://hdl.handle.net/11858/00-001M-0000-0015-2736-C

M. Kohout, K. Pernal, F. R. Wagner, and Y. Grin, Electron localizability indicator for correlated wavefunctions. I. Parallel-spin pairs, Theoretical Chemistry Accounts, vol.112, issue.5-6, pp.453-459, 2004.
DOI : 10.1007/s00214-004-0615-y

M. Kohout, K. Pernal, F. R. Wagner, and Y. Grin, Electron localizability indicator for correlated wavefunctions. II Antiparallel-spin pairs, Theoretical Chemistry Accounts, vol.113, issue.5, pp.287-293, 2005.
DOI : 10.1007/s00214-005-0671-y

M. Kohout, F. R. Wagner, and Y. Grin, Electron localizability indicator for correlated wavefunctions. III: singlet and triplet pairs, Theoretical Chemistry Accounts, vol.99, issue.5-6, pp.413-420, 2008.
DOI : 10.1007/s00214-007-0396-1

F. R. Wagner, V. Bezugly, M. Kohout, and Y. Grin, Charge Decomposition Analysis of the Electron Localizability Indicator: A Bridge between the Orbital and Direct Space Representation of the Chemical Bond, Chemistry - A European Journal, vol.107, issue.20, pp.5724-5741, 2007.
DOI : 10.1002/chem.200700013

F. R. Wagner, M. Kohout, and Y. Grin, Direct Space Decomposition of ELI-D: Interplay of Charge Density and Pair-Volume Function for Different Bonding Situations, The Journal of Physical Chemistry A, vol.112, issue.40, pp.9814-9828, 2008.
DOI : 10.1021/jp8022315

D. Fang, R. Chaudret, J. Piquemal, and G. A. Cisneros, Toward a Deeper Understanding of Enzyme Reactions Using the Coupled ELF/NCI Analysis: Application to DNA Repair Enzymes, Journal of Chemical Theory and Computation, vol.9, issue.5, pp.2156-2160, 2013.
DOI : 10.1021/ct400130b

S. Mebs, Complex modes of bonding: NCI/ELI-D vs. DORI surface analyses of hapticities and hydrogen???hydrogen contacts in zincocene related compounds, Chemical Physics Letters, vol.651, pp.172-177, 2016.
DOI : 10.1016/j.cplett.2016.03.046

P. De-silva and C. Corminboeuf, Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap, Journal of Chemical Theory and Computation, vol.10, issue.9, pp.3745-3756, 2014.
DOI : 10.1021/ct500490b

P. De-silva, J. Korchowiec, and T. A. Wesolowski, Revealing the Bonding Pattern from the Molecular Electron Density Using Single Exponential Decay Detector: An Orbital-Free Alternative to the Electron Localization Function, ChemPhysChem, vol.37, issue.15, pp.3462-3465, 2012.
DOI : 10.1002/cphc.201200500

P. De-silva, J. Korchowiec, N. Ram, J. S. , and T. A. Wesolowski, Extracting Information about Chemical Bonding from Molecular Electron Densities via Single Exponential Decay Detector (SEDD), CHIMIA International Journal for Chemistry, vol.67, issue.4, pp.253-256
DOI : 10.2533/chimia.2013.253

M. Kohout, A. Savin, and H. Preuss, Contribution to the electron distribution analysis. I. Shell structure of atoms, The Journal of Chemical Physics, vol.95, issue.3, pp.1928-1942, 1991.
DOI : 10.1063/1.460989

G. Sperber, Analysis of reduced density matrices in the coordinate representation. II. The structure of closed-shell atoms in the restricted Hartree-Fock approximation, International Journal of Quantum Chemistry, vol.47, issue.2, pp.189-214, 1971.
DOI : 10.1002/qua.560050206

W. Wang and R. G. Parr, Statistical atomic models with piecewise exponentially decaying electron densities, Physical Review A, vol.16, issue.3, pp.891-902, 1977.
DOI : 10.1103/PhysRevA.16.891

J. Berthet, P. Thuéry, and M. Ephritikhine, ], Organometallics, vol.27, issue.8, pp.1664-1666, 2008.
DOI : 10.1021/om800006u

P. Pyykkö and L. L. Lohr, Relativistically parameterized extended Hueckel calculations. 3. Structure and bonding for some compounds of uranium and other heavy elements, Inorganic Chemistry, vol.20, issue.7, pp.1950-1959, 1981.
DOI : 10.1021/ic50221a002

A. H. Chang and R. M. Pitzer, Electronic structure and spectra of uranocene, Journal of the American Chemical Society, vol.111, issue.7, pp.2500-2507, 1989.
DOI : 10.1021/ja00189a022

E. Espinosa, I. Alkorta, J. Elguero, and E. Molins, From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X???H???F???Y systems, The Journal of Chemical Physics, vol.117, issue.12, pp.5529-5542, 2002.
DOI : 10.1063/1.1501133

K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, International Journal of Quantum Chemistry, vol.97, issue.2, pp.325-340, 1976.
DOI : 10.1002/qua.560100211

K. Morokuma, Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity, Accounts of Chemical Research, vol.10, issue.8, pp.294-300, 1977.
DOI : 10.1021/ar50116a004

H. Umeyama and K. Morokuma, The origin of hydrogen bonding. An energy decomposition study, Journal of the American Chemical Society, vol.99, issue.5, pp.1316-1332, 1977.
DOI : 10.1021/ja00447a007

W. J. Stevens and W. H. Fink, Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer, Chemical Physics Letters, vol.139, issue.1, pp.15-22, 1987.
DOI : 10.1016/0009-2614(87)80143-4

B. Jeziorski, R. Moszynski, and K. Szalewicz, Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes, Chemical Reviews, vol.94, issue.7, pp.1887-1930, 1994.
DOI : 10.1021/cr00031a008

E. D. Glendening and A. Streitwieser, Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor???acceptor interactions, The Journal of Chemical Physics, vol.100, issue.4, pp.2900-2909, 1994.
DOI : 10.1063/1.466432

E. D. Glendening and J. , Natural Energy Decomposition Analysis:?? Explicit Evaluation of Electrostatic and Polarization Effects with Application to Aqueous Clusters of Alkali Metal Cations and Neutrals, Journal of the American Chemical Society, vol.118, issue.10, pp.2473-2482, 1996.
DOI : 10.1021/ja951834y

G. K. Schenter and E. D. Glendening, Natural Energy Decomposition Analysis:?? The Linear Response Electrical Self Energy, The Journal of Physical Chemistry, vol.100, issue.43, pp.17152-17156, 1996.
DOI : 10.1021/jp9612994

P. Su and H. Li, Energy decomposition analysis of covalent bonds and intermolecular interactions, The Journal of Chemical Physics, vol.131, issue.1, pp.14102-14117, 2009.
DOI : 10.1063/1.3159673

R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-gordon, Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals, The Journal of Physical Chemistry A, vol.111, issue.36, pp.8753-8765, 2007.
DOI : 10.1021/jp073685z

D. Fedorov, The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems, 2009.
DOI : 10.1201/9781420078497

D. G. Fedorov, T. Nagata, and K. Kitaura, Exploring chemistry with the fragment molecular orbital method, Physical Chemistry Chemical Physics, vol.7, issue.21, pp.7562-7577, 2012.
DOI : 10.3233/978-1-60750-530-3-220

T. Ziegler and A. Rauk, A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method, Inorganic Chemistry, vol.18, issue.6, pp.1558-1565, 1979.
DOI : 10.1021/ic50196a034

T. Ziegler and A. Rauk, Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method, Inorganic Chemistry, vol.18, issue.7, pp.1755-1759, 1979.
DOI : 10.1021/ic50197a006

M. J. Phipps, T. Fox, C. S. Tautermann, and C. Skylaris, Energy decomposition analysis approaches and their evaluation on prototypical protein???drug interaction patterns, Chem. Soc. Rev., vol.10, issue.239, pp.3177-3211, 2015.
DOI : 10.1039/C4CS00375F

A. Marjolin, C. Gourlaouen, C. Clavaguéra, J. P. Dognon, and J. P. , Towards energy decomposition analysis for open and closed shell f-elements mono aqua complexes, Chemical Physics Letters, vol.563, pp.25-29, 2013.
DOI : 10.1016/j.cplett.2013.01.066

URL : https://hal.archives-ouvertes.fr/hal-00880177

B. Kaduk, T. Kowalczyk, T. Van, and . Voorhis, Constrained Density Functional Theory, Chemical Reviews, vol.112, issue.1, pp.321-370, 2012.
DOI : 10.1021/cr200148b

Q. Wu, P. W. Ayers, and Y. Zhang, Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies, The Journal of Chemical Physics, vol.131, issue.16, p.164112, 2009.
DOI : 10.1063/1.3253797

K. U. Lao and J. M. Herbert, Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions, Journal of Chemical Theory and Computation, vol.12, issue.6, pp.2569-2582, 2016.
DOI : 10.1021/acs.jctc.6b00155

J. F. Gonthier and C. D. Sherrill, -stacking in benzene dimer cation and ionized DNA base pair steps, The Journal of Chemical Physics, vol.145, issue.13, p.134106, 2016.
DOI : 10.1063/1.4963385

URL : https://hal.archives-ouvertes.fr/halshs-00460642

D. S. Levine, P. R. Horn, Y. Mao, and M. Head-gordon, Variational Energy Decomposition Analysis of Chemical Bonding. 1. Spin-Pure Analysis of Single Bonds, Journal of Chemical Theory and Computation, vol.12, issue.10, pp.4812-4820, 2016.
DOI : 10.1021/acs.jctc.6b00571

P. Pyykko and J. P. Desclaux, Relativity and the periodic system of elements, Accounts of Chemical Research, vol.12, issue.8, pp.276-281, 1979.
DOI : 10.1021/ar50140a002

P. Pyykko, Relativistic effects in structural chemistry, Chemical Reviews, vol.88, issue.3, pp.563-594, 1988.
DOI : 10.1021/cr00085a006

L. R. Morss and N. M. Edelstein, The Chemistry of the Actinide and Transactinide Elements, 2011.

P. Pyykkö, Relativistic Effects in Chemistry: More Common Than You Thought, Annual Review of Physical Chemistry, vol.63, issue.1, pp.45-64, 2012.
DOI : 10.1146/annurev-physchem-032511-143755

P. Pyykkö, The RTAM electronic bibliography, version 17.0, on relativistic theory of atoms and molecules, Journal of Computational Chemistry, vol.76, issue.31, pp.2667-2667, 2013.
DOI : 10.1002/jcc.23454

C. Clavaguéra, J. Dognon, and P. Pyykkö, Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: The contributions from relativity and 4f-shell hybridization, Chemical Physics Letters, vol.429, issue.1-3, pp.8-12, 2006.
DOI : 10.1016/j.cplett.2006.07.094

R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö, and P. Zaleski-ejgierd, Relativity and the Lead-Acid Battery, Physical Review Letters, vol.106, issue.1, p.18301, 2011.
DOI : 10.1103/PhysRevLett.106.018301

URL : http://arxiv.org/abs/1008.4872

P. Schwerdtfeger, Relativistic Electronic Structure Theory Part 1. Fundamental, Theoretical and Computational Chemistry, vol.11, 2002.

P. Schwerdtfeger, Relativistic Electronic Structure Theory Part 2. Applications, Theoretical and Computational Chemistry, vol.14, 2004.

P. A. Dirac, The Quantum Theory of the Electron, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.117, issue.778, pp.610-624, 1928.
DOI : 10.1098/rspa.1928.0023

W. Liu, Ideas of relativistic quantum chemistry, Molecular Physics, vol.31, issue.13, pp.1679-1706, 2010.
DOI : 10.1016/j.chemphys.2008.10.011

M. Douglas and N. M. Kroll, Quantum electrodynamical corrections to the fine structure of helium, Annals of Physics, vol.82, issue.1, pp.89-155, 1974.
DOI : 10.1016/0003-4916(74)90333-9

B. A. Hess, Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations, Physical Review A, vol.32, issue.2, pp.756-763, 1985.
DOI : 10.1103/PhysRevA.32.756

E. V. Lenthe, E. J. Baerends, and J. G. Snijders, Relativistic regular two???component Hamiltonians, The Journal of Chemical Physics, vol.99, issue.6, pp.4597-4610, 1993.
DOI : 10.1063/1.466059

M. Barysz and A. J. Sadlej, Infinite-order two-component theory for relativistic quantum chemistry, The Journal of Chemical Physics, vol.116, issue.7, pp.2696-2704, 2002.
DOI : 10.1063/1.1436462

X. Cao and M. Dolg, Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems, Coordination Chemistry Reviews, vol.250, issue.7-8, pp.900-910, 2006.
DOI : 10.1016/j.ccr.2006.01.003

M. Dolg and X. Cao, Relativistic Pseudopotentials: Their Development and Scope of Applications, Chemical Reviews, vol.112, issue.1, pp.403-480, 2012.
DOI : 10.1021/cr2001383

K. G. Dyall, K. Faegri, and J. , Introduction to Relativistic Quantum Chemistry, 2007.

T. Saue, Relativistic Hamiltonians for Chemistry: A Primer, ChemPhysChem, vol.970, issue.17, pp.3077-3094, 2011.
DOI : 10.1002/cphc.201100682

URL : https://hal.archives-ouvertes.fr/hal-00662643

P. Pyykkö, The Physics behind Chemistry and the Periodic Table, Chemical Reviews, vol.112, issue.1, pp.371-384, 2012.
DOI : 10.1021/cr200042e

W. Liu, Advances in relativistic molecular quantum mechanics, Physics Reports, vol.537, issue.2, pp.59-89, 2014.
DOI : 10.1016/j.physrep.2013.11.006

M. Kohout and A. Savin, Influence of core-valence separation of electron localization function, Journal of Computational Chemistry, vol.106, issue.12, pp.1431-1439, 1997.
DOI : 10.1002/(SICI)1096-987X(199709)18:12<1431::AID-JCC1>3.0.CO;2-K

A. Savin, The electron localization function (ELF) and its relatives: interpretations and difficulties, Journal of Molecular Structure: THEOCHEM, vol.727, issue.1-3, pp.127-131, 2005.
DOI : 10.1016/j.theochem.2005.02.034

T. A. Keith and M. J. Frisch, Subshell Fitting of Relativistic Atomic Core Electron Densities for Use in QTAIM Analyses of ECP-Based Wave Functions, The Journal of Physical Chemistry A, vol.115, issue.45, pp.12879-12894, 2011.
DOI : 10.1021/jp2040086

R. F. Bader, R. J. Gillespie, and F. Martn, Core distortions in metal atoms and the use of effective core potentials, Chemical Physics Letters, vol.290, issue.4-6, pp.488-494, 1998.
DOI : 10.1016/S0009-2614(98)00456-4

J. Cioslowski, P. Piskorz, and P. Rez, Accurate analytical representations of the core-electron densities of the elements 3 through 118, The Journal of Chemical Physics, vol.106, issue.9, pp.3607-3612, 1997.
DOI : 10.1063/1.473440

D. Tiana, E. Francisco, M. A. Blanco, and A. M. Pendás, Using Pseudopotentials within the Interacting Quantum Atoms Approach, The Journal of Physical Chemistry A, vol.113, issue.27, pp.7963-7971, 2009.
DOI : 10.1021/jp901753p

. J. Aa, R. Jensen, T. Bast, L. Saue, V. Visscher et al., Written by H, DIRAC, 2016.

L. Bu?insk´bu?insk´y, D. Jayatilaka, and S. Grabowsky, Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth, The Journal of Physical Chemistry A, vol.120, issue.33, pp.6650-6669, 2016.
DOI : 10.1021/acs.jpca.6b05769

G. Eickerling, R. Mastalerz, V. Herz, W. Scherer, H. Himmel et al., Relativistic Effects on the Topology of the Electron Density, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.2182-2197, 2007.
DOI : 10.1021/ct7001573

S. Fux and M. Reiher, Electron Density and Chemical Bonding II: Theoretical Charge Density Studies, pp.99-142, 2012.

C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Physical Chemistry Chemical Physics, vol.122, issue.205, pp.10757-10816, 2009.
DOI : 10.1021/ct900282m

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.601.2217

K. P. Kepp, Consistent descriptions of metal???ligand bonds and spin-crossover in inorganic chemistry, Coordination Chemistry Reviews, vol.257, issue.1, pp.196-209, 2013.
DOI : 10.1016/j.ccr.2012.04.020

A. C. Tsipis, DFT flavor of coordination chemistry, Coordination Chemistry Reviews, vol.272, pp.1-29, 2014.
DOI : 10.1016/j.ccr.2014.02.023

N. Kaltsoyannis, Does Covalency Increase or Decrease across the Actinide Series? Implications for Minor Actinide Partitioning, Inorganic Chemistry, vol.52, issue.7, pp.3407-3413, 2013.
DOI : 10.1021/ic3006025

P. Pyykkö, Understanding the eighteen-electron rule, Journal of Organometallic Chemistry, vol.691, issue.21, pp.4336-4340, 2006.
DOI : 10.1016/j.jorganchem.2006.01.064

J. Dognon, C. Clavaguéra, and P. Pyykkö, Towards a 32-Electron Principle: Pu@Pb12 and Related Systems, Angewandte Chemie International Edition, vol.8, issue.9, pp.1427-1430, 2007.
DOI : 10.1002/anie.200604198

URL : https://hal.archives-ouvertes.fr/hal-00931784

J. Dognon, C. Clavaguéra, and P. Pyykkö, Chemical properties of the predicted 32-electron systems Pu@Sn12 and Pu@Pb12, Comptes Rendus Chimie, vol.13, issue.6-7, pp.884-888, 2010.
DOI : 10.1016/j.crci.2010.05.012

URL : https://hal.archives-ouvertes.fr/hal-00904593

J. Dognon, C. Clavaguéra, and P. Pyykkö, ), Journal of the American Chemical Society, vol.131, issue.1, pp.238-243, 2009.
DOI : 10.1021/ja806811p

J. Dognon, C. Clavaguéra, and P. Pyykkö, A new, centered 32-electron system: the predicted [U@Si20]6???-like isoelectronic series, Chemical Science, vol.102, issue.9, pp.2843-2848, 2012.
DOI : 10.1039/c2sc20448g

URL : https://hal.archives-ouvertes.fr/hal-00880181

P. D. Wilson, The Nuclear Fuel Cycle: From Ore to Waste, 1996.

C. Musikas, G. L. Marois, R. Fitoussi, and C. Cuillerdier, Properties and Uses of Nitrogen and Sulfur Donors Ligands in Actinide Separations, Actinide Separations, pp.131-145, 1980.
DOI : 10.1021/bk-1980-0117.ch010

Z. Kolarik, Complexation and Separation of Lanthanides(III) and Actinides(III) by Heterocyclic N-Donors in Solutions, Chemical Reviews, vol.108, issue.10, pp.4208-4252, 2008.
DOI : 10.1021/cr078003i

R. D. Fischer, Zur metall-ring-bindung in sandwich-komplexen, Theoretica Chimica Acta, vol.36, issue.196, pp.418-431, 1963.
DOI : 10.1007/BF00527092

A. Streitwieser and U. Mueller-westerhoff, Bis(cyclooctatetraenyl)uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals, Journal of the American Chemical Society, vol.90, issue.26, pp.7364-7364, 1968.
DOI : 10.1021/ja01028a044

T. J. Marks and A. Streitwieser, The Chemistry of the Actinide Elements, pp.1547-1571, 1986.

C. J. Burns and M. Eisen, The Chemistry of the Actinide and Transactinide Elements, pp.2799-2910, 2006.

D. Seyferth, Uranocene. The First Member of a New Class of Organometallic Derivatives of the f Elements, Organometallics, vol.23, issue.15, pp.3562-3583, 2004.
DOI : 10.1021/om0400705

M. Dolg, P. Fulde, H. Stoll, H. Preuss, A. Chang et al., Formally tetravalent cerium and thorium compounds: a configuration interaction study of cerocene Ce(C8H8)2 and thorocene Th(C8H8)2 using energy-adjusted quasirelativistic ab initio pseudopotentials, Chemical Physics, vol.195, issue.1-3, pp.71-82, 1995.
DOI : 10.1016/0301-0104(94)00363-F

W. Liu, M. Dolg, and P. Fulde, Low-lying electronic states of lanthanocenes and actinocenes M(C8H8)2 (M=Nd, Tb, Yb, U), The Journal of Chemical Physics, vol.107, issue.9, pp.3584-3591, 1997.
DOI : 10.1063/1.474698

A. Kerridge and N. Kaltsoyannis, (An = Th, U, Pu, Cm), The Journal of Physical Chemistry A, vol.113, issue.30, pp.8737-8745, 2009.
DOI : 10.1021/jp903912q