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Electronic structure theory to decipher the chemical bonding in
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Abstract

The chemical bonding in actinide compounds is usually analysed by inspecting the shape
and the occupation of the orbitals or by calculating bond orders which are based on orbital
overlap and occupation numbers. However, this may not give a de nite answer because
the choice of the partitioning method may strongly in uence the result possibly leading to
gualitatively di erent answers. In this review, we summarized the state-of-the-art of methods
dedicated to the theoretical characterisation of bonding including charge, orbital, quantum
chemical topology and energy decomposition analyses. This review is not exhaustive but
aims to highlight some of the ways opened up by recent methodological developments.
Various examples have been chosen to illustrate this progress.
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1. Introduction

Historically, there is an industrial motivation for a better understanding of bonding in
f-element complexes [1] due to the aim to separate trivalent actinides from trivalent lan-
thanides in advanced nuclear fuel cycles (see J. Veliscek-Carolan [2] for the experimental
methods currently used to extract radioactive actinide elements from solutions of spent nu-
clear fuel). The areas of study have expanded in recent years with applications in the elds
of nuclear toxicology [3{6], cancer therapy (e.g., the radioisotop&°Ac of actinium is an
alpha emitter useful for targeted radiotherapy [7]), analytical chemistry [8], and in basic
research in structural chemistry and reaction mechanisms [9]. All these applications have in
common the need to develop pre-organised chelating agents. The problem is complicated by
our relatively limited understanding (in comparison to transition metals) of the coordination
behaviour of the actinides. In this context, theoretical chemistry is useful to bring additional
information to experiments and even by providing in certain cases experimentally inaccessi-
ble data. There has been an ongoing debate regarding the nature of the interaction between
an actinide element and an organic molecule (ligand) and more speci cally on the extent of
covalency in actinide-ligand bonds. Most specialists in the eld agree that covalency con-
tributes to early actinide-ligand bonding in compounds where the formal oxidation state of
the metal is +3 or higher. There is also general consensus that actinide-ligand interactions
are predominantly ionic for late actinide compounds in which the formal oxidation state of
the metal is +3 [1].

Understanding bonding and interaction in actinide compounds is not straightforward
because of their complex electronic structure, the signi cant electron correlation e ects,
and the large relativistic e ect contributions. The f-block elements are probably the most
challenging group within the periodic table for electronic structure theory [10]. Due to
this complexity, all the methods used to analyse the nature of chemical bond in organic,
inorganic or organometallic compounds are rarely applied to actinides. Common approaches
to studying bonding in actinide compounds are based on the shape and the occupation of
the orbitals or by calculating bond orders which are based on orbital overlap and occupation
numbers. However, this may not give a de nite answer because the choice of the partitioning
method may strongly in uence the result possibly leading to qualitatively di erent answers.
An accurate description of bonding and interactions in actinides compounds cannot be
obtained with only a single method. Various complementary tools are mandatory, namely
molecular orbital, population, electron density and energy analyses.

In the following sections, the discussion is focused on the tools that theoretical chemists
have in hands to investigate the nature of chemical bond and reviews several applications
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in actinide chemistry. Some of these methods have already been described in the reference
[11] and will only be summarized. A number of promising computational approaches are
currently under development and have been already successfully applied to non-f-element
systems. However, these methods can deepen our understanding of the chemical bond. They
will be brie y noted while evaluating their limitations in the context of an application to
actinide species. Relativistic e ects strongly in uence the chemical and physical properties of
heavy elements and their compounds. Here, this aspect is outlined in section 5. This review
is not exhaustive but aims to highlight some of the ways opened up by recent methodological
developments. The examples are voluntarily few in number, but they have been chosen to
illustrate this progress.

2. Population analysis

Partial atomic charges and bond order analyses have been used since the early years of
computational chemistry for analysing chemical bonding. They can be used to understand
charge transfer and charge ow during chemical processes. Available population analysis or
partitioning schemes are based on (a) the basis functions, (b) the electrostatic potential, (c)
the wave function or electron density [12].

2.1. Basis functions

To this set belong the Mulliken and the Lewdin population analyses [13{18], Lewdin
partitioning [19, 20] and natural population analysis (NPA) [21, 22]. In the Mulliken pop-
ulation analysis, the electrons are distributed into the atomic basis functions. The partial
charges assigned to atoms vary signi cantly for a given system when basis sets of di erent
sizes are used. Consequently, results of computations using di erent basis sets cannot be
directly compared. The Mulliken scheme does not require orthogonal basis functions. As a
consequence, orbital populations may have negative values, which is physically meaningless
[23], or values greater than two in violation of the Pauli exclusion principle. The Lewdin
method tries to overcome the limitations of the Mulliken scheme by correcting the instability
with increasing the basis set size using orthogonal basis functions. Some examples proposed
by Jensen [24] clearly evidence that the Mulliken and Lewdin methods do not converge as
the size of the basis set is increased and the values in general behave unpredictable or leads
to absurd behaviours especially if di use functions are used. Despite these well-known lim-
itations, Mulliken and Lewdin methods were widely successfully used for organic molecules
with minimal or small basis sets. For transition metal, lanthanide or actinide complexes,
larger basis sets are needed and these analyses lead frequently to quantities that are not
chemically meaningful [25].

The LoProp (local properties of quantum chemical systems) approach [12] is designed
to avoid this basis set sensitivity and to provide localised quantities like charges, multipole
moments, and polarisabilities. The method requires a subdivision of the atomic orbitals
into occupied and virtual basis functions for each atom in the molecular system. Several
examples can be found on organic molecules [12], metal complexes [26] or bonds containing
metals [27]. This method is quite promising for actinide compounds especially since it can
be used at the CASSCF level of theory [28].
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2.2. Electrostatic potential

To this set belong partial atomic charges derived from the electrostatic potential that de-
X
pends directly on the electron density and therefore on the wave function(f¢) = i i(Nj?
i=1
whereN is the number of electrons). They are extensively used for force eld based classical
molecular dynamics and Monte Carlo simulations. There are many possible methods that
could be used to determine reasonable atomic charges. It is critical to model the electro-
static interactions at an acceptable level of accuracy since the resulting charges on interior
atoms of a molecular system can be unstable and may have unphysical values [29{31]. This
approach will not be discussed here. Informations can be found in reference publications,
reviews and references therein [32{36].

2.3. Wave function or electron density

Beyond these relatively simple approximations reported above, much more stable strate-
gies which are more relevant to the study of actinide compounds have been proposed in
recent years based on the electron density. They are fully consistent with the philosophy of
DFT. They provide a clear partitioning of the electron density and they are less basis set
dependent.

The Voronoi deformation density (VDD) [37] and the Hirshfeld [38] population analyses
determine atomic charges by integration of the wave function over a region of space. They
are quite similar in the sense that charges are obtained from density di erences as seen in
equation (1a):

Z
Qk/lethod — def (r)WXIethod (r) dr (18.)
wy PP =1 for r 2 Voronoi cell A (1b)
=0 for r 2 Voronoi cell A
WZirshfeld (=P A(r) (1c)

B B(r)

The VDD is based on a partitioning of space into non-overlapping atomic volumes (1b),
the Voronoi cell of each atom, de ned as the volume which is closest to the nucleus of that
atom. Guerra et al. [39] showed that an analysis of the deformation density in Voronoi cells
- bonded minus free atoms - provides chemically intuitive partial atomic charges.The VDD
of an atom monitors the ow of charge into or out of the atomic Voronoi cell as a result
of the chemical interactions between atoms. Hirshfeld charges are derived by partitioning
the electron density into the contribution of each atom in proportion to the electron density
of free neutral atoms [38]. The idea behind this approach is that the electron density at
every point is distributed between all atoms based on a weighting function for each atom
(1c). This allows for atomic electron densities to overlap. The Voronoi deformation density
and Hirshfeld atomic charge of an atom A can both be written as the integral over all space
of the deformation density times a weight functionw)'®"°? (Method = VDD, HPA) [40].
Integration of the atomic deformation densities de nes net atomic charges.

4



The VDD and Hirshfeld charges are not free from issues. The major drawback is that
the atomic charges depend upon the (arbitrary) choice of atomic reference densities (the
neutral isolated atom), that may not be suitable for charged systems. Guerra et al. [39]
have pointed out this aspect and have investigated various alternatives to the VDD frame-
work. In the same way, in the original Hirshfeld approach, the weighting functions for each
atom were based on the electron density of the isolated atoms in the gas phase, leading to
atomic electron densities that are dependent on the choice of the isolated atoms electron
con guration [41]. This dependence is mostly removed by the iterative Hirshfeld method
(Hirshfeld-1) introduced by Bultinck et al. [42]. However calculations of gas-phase electron
densities are still required. To solve the issue several approaches were suggested these last
years (see for example references [41, 43]). These methods are relatively insensitive to ba-
sis set. Unfortunately, they are rarely implemented in quantum chemistry programs. For
example, Hirshfeld charges can be obtained by post-processing the wave function with the
program HPAM written by Elking et al. [44] or Multiwfn written by Lu [45].

More recently, Marenich et al. proposed a novel approach to deriving partial atomic
charges from population analysis, called Charge Model 5 (CM5) [46]. CM5 charges are
derived by mapping from the Hirshfeld population analysis (HPA) through the following
equations [46]:

CM5 _

X
q q'"h+  TyBy (2a)
i6]
Bij = exp Fij R,

Ry,

J

(2b)

where the indexes andj run over all atoms in the moleculeZ; and Z; are the corresponding
atomic numbers,R; is the atomic covalent radius based on the data from refs [47{49], and
g is the partial atomic charge from Hirshfeld population analysis. The quantities and
Ty (whereT; = T;) are model parameters to be determined. The quantit3; de ned
by (2b) was called the Pauling bond order in their work by analogy to a similar equation
proposed by Pauling (see eq. 1 in ref [50]).

In the Quantum Theory of Atoms in Molecules (QTAIM), Bader [51] proposed to parti-
tion the space of a molecular system into non-overlapping mononuclear regions, the atomic
basins . They are separated by interatomic surfaceS(r) that satisfy the boundary con-
dition of zero ux of the gradient vector eld of the electron charge density (3):

r (r) n(r)=0forall r belonging to the surfaces(r) (3)

wherer is the position vector andn(r) the unit vector normal to the surface S(r). An
atom in a molecule is de ned as the union of a nucleus and its associated basin [52]. By
integrating the electronic density (4) within the atomic basin A the total charge on an
atom A can be calculated [44] as:

Z

Na = (r)dr (4)



One of the most widely used wave function based approach for the investigation of chemical
bonding (including in f-element chemistry) is Weinholds Natural Bonding Orbital (NBO)
analysis [21, 22]. NBO is part of a more comprehensive framework which comprises a
sequence of transformations from the input basis set (non-orthogonal atomic orbitals (AOs))
to various localized orthonormal basis sets (natural atomic orbitals (NAOSs), hybrid orbitals
(NHOs), bond orbitals (NBOs), and localised molecular orbitals (NLMOSs)) [21, 53{55]:

input basis ! NAOs ! NHOs ! NBOs ! NLMOs

In the open-shell case, the analysis is performed in terms of \di erent NBOs for di erent
spins”, based on distinct density matrices for and spin [55]. Because the localisation is
based on a maximum occupation criterion, the NBO analysis provides a description of the
molecular wave function close to the chemical concept of Lewis structures. As a consequence,
these methods only work well for systems that can be described in this formalism. However,
for simple electron con guration, they usually give a good qualitative picture of the bonding
and are quite robust when increasing the basis set.

The multipole derived charges (MDC) analysis [56] uses the atomic multipoles (obtained
from the tted density), and reconstructs these multipoles exactly by distributing charges
over all atoms. This is achieved by using Lagrange multipliers and a weight function to
keep the multipoles local. The recommended level is to reconstruct up to quadrupole, i.e.,
MDC-q charges [56].

As an illustrative example, we consider the gas-phase organoactinyl complexes possess-
ing discrete An{C bonds (An = U, Np, Pu) recently synthesized by Dau et al. [57] in a
quadrupole ion trap by endothermic decarboxylation of [An@O,C{R) 5]! anion complexes.

A formally AnO,?* actinyl core is coordinated by three carboxylate ligands, with R= Chl
(methyl), CH3CC (1-propynyl), CsHs (phenyl), CsFs (penta uorophenyl). The chemical
properties of these bonds were analysed by QTAIM [57]. Here, we calculate the partial
atomic charges for the decarboxylation products, [(R)An&O,C{R)]{ with R = CH 3 and
An=U. The results are given in Table 1 for several population analysis methods and with
increasing basis set size. The partial charges assigned to atoms using Mulliken population
analysis vary signi cantly for the same system when di erent basis set sizes are used. This
instability with increasing basis set size might be unacceptable to calculate the electronic
structure and properties of actinide compounds. For all other methods, the variation with
basis set size is quite small or negligible. The uranium charge (Table 1) is clearly underesti-
mated by Hirshfeld, VDD, CM5 and NPA population analysis. As comparison, q(U)=2.78
and g(0,;=-0.39 were obtained from multireference calculations and a multipole analysis on
uranyl - water complex by Hagberg et al. [58]. Although the populations analysis schemes
described above are useful for deriving chemical insights, one should remember that neither
calculated atomic charges nor bond orders are observables from a quantum mechanical point
of view.

3. Topological analysis of the electron density

The electron density is a physical observable obtained experimentally by high resolution
X-ray diraction and subsequent multipole re nement. The comparison of key topologi-
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cal indices of quantum chemically computed and experimentally determined charge density
distributions has become an important eld. In many cases the qualitative features of ex-
perimentally and theoretically derived densities agree well but the question whether a topo-
logical analysis provides measurable quantities is still open [59]. The theoretical approach
should rather be seen as providing an intelligible link between experiment and theory. Bond
descriptions based on the topological analysis of various molecular elds, such as the elec-
tron density [60, 61], the Laplacian of the electron density [51, 62], the electron localisation
function [63, 64] or a measure of electron localisability [65] were introduced during these
last years. Once again, they have rarely been applied to the study of actinide compounds.
This section contains a summary of the main concepts of recently developed methods. Some
detailed reviews on the analysis of the molecular elds including the description of electron
delocalisation can be found in the literature [51, 66{71] or in this issue with the contribution

of Lepetit and Silvi.

Within QTAIM, the electron density (r) is the central property and provides physical
basis for many chemical concepts. The electron density is a scalar eld and its topological
properties are determined by the analysis of its associated gradient vector eld. The rst
important feature is the location in the space of the critical points (CPs). A CP in the
electron density is a point were the gradient of the density vanish, i.et. = 0. In a 3D
scalar eld such as (r), there are three types of CPs: a maximum, a minimum or a saddle
point [70]. In three dimensions there are two types of saddle points. Critical points can be
characterized by the eigenvalues; (i = 1;2;3) of the Hessian matrixH,y, of , evaluated

at the CPs, i.e.: 0 1
oq & & A ©)
nyz: % 2 5
¢ @@ @,

The critical points are classi ed according to their rank,R, the number of non-zero eigen-
values, and the signatureS, that is the algebraic sum of the sign ggn) of the eigenvalues
[66, 70]:

x3

S= sgn( i)

i=1
For example, one type of saddle point has two strictly negative (i.e. non-zero) eigenvalues
and one strictly positive one. Consequently, its rank is three, and its signature is (-1)+(-
1)+1=-1 [66, 70]. We designate this point as a (3, -1) CP, where the rst index refers
to the rank and the second to the signature. This particular type of CP is called a bond
critical point (BCP) because it indicates the existence of a bond between two nuclei of a
molecule in an equilibrium geometry [70]. A (3, -3) CP is a local maximum, a (3, +1)
is @ minimum in two directions and a maximum in the other direction, and nally, a (3,
+3) is a local minimum. Each type of critical point described above is identi ed with an
element of chemical structure: (3,-3juclear critical point (NCP), (3,+1) ring critical point
(RCP), and (3,+3) cage critical point (CCP). The bond critical points are linked to the
nuclei via the atomic interaction line. This line consists of a pair of gradient paths, each
of which originates at the bond CP and terminates at a nucleus. In a bound system, an
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atomic interaction line is called a bond path [72]. The set of all bond paths occurring in a
molecule (or molecular complex) is called a molecular graph [70, 73]. Figure 1 shows the
molecular graph of the bent U(8-CgHs)-(CN) ! complex [74] discussed in more detail later
in this section. A molecular graph and the characteristics of the density at the bond critical
points provide a concise summary of the bonding within a molecule.

Following Bader [51], there are basically two kinds of bonding interactions: shared-
electron interaction and closed-shell (or more generally unshared-electrons) interaction. Co-
valent and dative interactions are classi ed as shared-interactions whereas ionic, electro-
static, hydrogen and van der Waals bonds are classi ed as closed-shell. Metal-metal bonds
lie in an intermediate situation between typical ionic and typical covalent bonds [52, 75, 76].
For a classi cation of bonds, the sign of the Laplacian of the density ?(r) (the trace of
the Hessian of the density) at the BCP is checked out. A negative value indicates a local
concentration of the electron density, whereas charge depletion is characterized by a positive
Laplacian. This point has been amply reviewed in the literature and can be summarized
in Table 2 [77]. However, for weak or highly polar bonds, the analysis of the density and
its Laplacian (close to zero) does not su ce to characterise the bonding. Additional infor-

mation can be obtained from the eigenvalues (e.g.,= J—11) or the total electronic energy

density H(r) (6) as the sum of the kineticG(r) and the p(s)tential energyV (r) [78]:
H(r) = G(r) + V(r) (6)

AIM also allows to obtain localisation (A) and delocalisation indices (A; B) for atoms and
pairs of atoms in molecules [79] in order to gain quantitative information on the extent to
which electrons are localized to a given atom or shared with others.

The AIM theory recovers the chemical picture of the molecule made of atoms but the
partition does not explicitly reveal a sub-structure corresponding to the cores and the valence
shell of the atoms. The electron localisation function (ELF) approach [63, 64] belongs to the
same type of methodology. It attempts to overcome the conceptual limits of the topological
analysis of the sole electron density [80]. A dierent partition of space is performed using
ELF. As already speci ed, in the AIM theory, the basins are de ned as a region of space
bounded by a zero- ux surface in the gradient vectors of the one-electron density(r), or
by in nity. As ELF is a scalar function, the analysis of its gradient eld can be carried out
to locate its attractors (local maxima) and the corresponding basins [81]. For an N-electron
single determinantal closed-shell wave function built from Hartree-Fock (HF) or Kohn-Sham
(KS) orbitals, j, the ELF function can be written using the following equation (7):

1

ELF = (r) = m (7)
where "
T
D= Jr i 2 ZJ J
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ELF represents a continuous and di erentiable scalar eld (r) as does the electron density

(r). Therefore, topological analysis of (r) is technically similar to the one put forward by
Bader and coworkers for (r). The topological analysis of (r) is performed via its associated
gradient vector eld r (r). This eld is characterized by critical points. They represent
local maxima, minima and saddle points of (r).

Another interesting approach was proposed by Kohout [65, 82], i.e., the electron localiz-

ability indicator (ELI). It is a functional that describes the correlation of electronic motion.
In fact ELI designates a family of indicators. Among them, one of the most pertinent for the
study of the bonding in molecular systems is the ELI-D, symbolp (8). ELI-D can be seen
as being proportional to the charge that is needed to form an electron pair. Based on the
pair density, it is not explicitly accessible from a Density Functional Theory (DFT) calcula-
tion [83]. Consequently, the ELI-D is strictly justi ed within wave function-based theories,
e.g., Hartree-Fock (HF) and post-HF methods such as the complete active space (CAS) and
con guration interaction (Cl) methods [84{86]. However, at least formally, the functional
can be derived from the Kohn-Sham orbitals within the framework of DFT yielding reliable
results [87]. A detailed description of the formulation is available in references [82, 87{89].
In brief, p(r) can be expressed as the product of the electron density with the pair-volume
function (8):

B B 12 3
p(r)= (N%()= (1) ﬁ (8)
At HF level for a spin coordinate :
X . .2
g(r) = Ja)r i (r)  p(nri(r)j
i<j I
_ P | )}
= (r) roi(n) ZT

i<j

For closed-shell systems at HF level, the ELI formula for the same-spin electron pairs resem-
bles the kernel of the ELF one of Becke and Edgecombe [63], but without any reference to
the homogeneous electron gas. This is one of the key feature of the ELI functional. The ELI
is a real function with positive values and is not limited to an interval [0,1] as in the case
of the ELF. As a scalar eld, the topology of ELI-D can be analysed in term of attractors,
basins of attractors and properties at critical points as the density Laplacian or the kinetic
energy density.

Localization functions based methods provide a meaningful representation of atomic
shells, lone pairs, and covalent bonds, but usually, they do not reveal non-covalent interac-
tions. Johnson and co-workers [90] introduced a method for studying non-covalent interac-
tions (NCIs) on the basis of the electron density (r), the reduced gradient (RDG) of the
density (s= jr j=(2(3 2 #®)) and the Laplacian of the densityr 2 (r). The approach
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allows one to identify the interactions in real-space, thus enabling a graphical visualisa-
tion of the regions where non-covalent interactions occur. NCI visualises both intra- and
intermolecular weak interactions through RDG isosurfaces at low electron density values,
however, it does not reveal covalent bonds. Combined NCI/ELF [91] or NCI/ELI-D [92]
analysis provide a way to visualize simultaneously non-covalent and covalent interactions
despite a di erent value range. A more elegant way is the Density Overlap Regions Indica-
tor analysis proposed by de Silva and Corminboeuf [93]. It should be seen as a modi cation
of the Single-Exponential Decay Detector, a density-based bonding descriptor [94, 95]. This
is a scalar eld, which reveals both covalent and non-covalent interactions in the same value
range. It is derived from the electron density and its derivatives (9):

2 2

(r)= 5 (9)

(r) becomes in nite in bonding regions. A transformation (10) is applied for mapping to
the [0,1] range:
(r)

M= 1o

(r)is close to 1 in bonding regions and close to 0 at nuclei and far from the molecule. In fact,

does not probe electron localisation but rather geometrical features of the electron density
in terms of deviations from single-exponentiality. The idea is based on the fact that atomic
densities are approximately piecewise exponential [96{98], whereas in the interaction regions
they are not, due to the overlap of two or more atomic densities [93]. can be identi ed as
a detector of strong relative density overlap regions and is named Density Overlap Regions
Indicator (DORI). As DORI identify regions of overlapping densities, it does not quantify
the strength of the interaction and does not distinguish between attraction and repulsion.
In line with the NCI index, this limitation is resolved by combining the analysis of DORI
with that of the electron density Laplacian ¢ 2 (r)). In particular, the second eigenvalue

» < 0 identi es bonding regions, while , > 0 indicates non-bonding interactions. Along
with its sign, the magnitude of the interaction is estimated from the values of the density
itself. de Silva and Corminboeuf [93] usegn( ,) (r) as a complementary scalar eld.
DORI simultaneously uncovers regions of covalent as well as strong and weak non-covalent
interactions. Non-interacting lone pairs are, however, not visible within DORI. We should
note, that the introduced scalar eld depends only on the electron density; thus, it is well-
de ned at any level of theory. In particular, the DORI analysis is easily applicable to
densities obtained from post-Hartree-Fock methods. This is of particular importance for
actinide chemistry.

As an illustrative example, we consider the bent UE-CgHg)>(CN)! complex. Until

the synthesis and X-ray crystal structure of [U(8-CgHg)>(CN)][NEt 4] [99] a generally ac-
cepted idea was that a M(8-CgHg), complex (uranocene for M=U) could not adopt a bent
conformation. Clavaglera and Dognon reported the theoretical investigation of the elec-
tronic structure and bonding in the U( 8-CgHg)>(CN){ complex using DFT with charge,
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orbital and ELF analysis [74]. Despite the broken symmetry (rigorouBg, symmetry for
U( 8-CgHg),), the gain in electrostatic interaction and a signi cant U{CN! orbital inter-
action are su cient to stabilise the bent CN{ complex with respect to the bare uranocene.
As previously found for the U( 8-CgHg), compound [100, 101], 6d, and to a less extend 5f,
uranium orbitals have a signi cant participation in the interaction both with the aromatic
rings and the cyanide ligand. The results support the hypothesis of a non-negligible cova-
lent character in the U CN! interaction. The QTAIM molecular graph (Figure 1) shows
a bond path and a BCP between the U C atoms. At this BCP the Laplacian of the den-
sity is positive and the total energy density is negative indicating a covalent nature of the
U CN{ interaction [72, 102, 103]. The interaction between the4 ion and the CN{ ligand
is also characterized by the formation of a ELF V(U,C) basin with a population of about one
electron. However, the visualisation of the ELF function is not su cient to provide a clear
understanding of the nature of the bonding in the whole system. A more comprehensive
picture can be drawn using regions of density overlap. Figure 2 shows the DORI=0.9 isosur-
face for U( 8-CgHg)-(CN){ complex with color-coded values o$gn( ,) (r). The bonding
domains are coded in red color, the repulsive atom-atom contacts in blue color and the non-
covalent interaction in green color. The covalent interaction between U and GNs clearly
identi ed in Figure 2 as the \red button". This covalent interaction allows the formation of
a stable bent complex between UE-CgHg), and CN!.

These results highlight the interest of the use of several topological analyses for under-
standing bonding in complex systems. However, limitations exist in the case of actinide
compounds. They will be analysed in section 5.

4. Energy decomposition analysis

For a more complete view of the chemical bond formation, insights could be provided by
an energy decomposition analysis (EDA) into di erent terms, which can be interpreted in
a physically meaningful way (e.g., electrostatics, exchange-repulsion, polarisation (or induc-
tion), and charge transfer). During the past several decades, several EDA fragment-based
approaches have been developed and used in a wide range of applications in chemistry. All
of them have evolved from the early EDA of Kitaura and Morokuma [104{106]. These
developments have taken place aiming to overcome limitations of the original schemes and
provide more chemical signi cance to the energy components, which are not uniquely de ned.
We can cite, for example, CSOV (Constrained Space Orbital Variations) [107], RVS (Re-
duced Variational Space Self-Consistent-Field) [108], SAPT (Symmetry-Adapted Perturba-
tion Theory) [109], NEDA (Natural Energy Decomposition Analysis) [110{112], LMOEDA
(Localized Molecular Orbital Energy Decomposition Analysis) [113], ALMO-EDA (Abso-
lutely Localized Molecular Orbital [114]), FMO (Fragment Molecular Orbital [115{117])
and a Morokuma-type EDA developed by Ziegler and Rauk [118{120]. Certainly, this list
is not exhaustive, but recalls some popular currently used EDA schemes. A more compre-
hensive description of the various approaches can be found, e.g., in references [121, 122]. As
pointed out by Phipps et al. [122] the application of a scheme to a particular system may be
limited by the level of theory at which the scheme is implemented. Schemes implemented at
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the higher levels of theory often include dispersion and other correlation components which
are not available at the HF level. Due to the complexity of the electronic structure of the
actinide complexes, electron correlation and relativity e ects have to be taken into account.
Therefore, an usable method is not always accessible, each method having well de ned ap-
plication domains. As an illustration, the localised molecular orbital LMOEDA scheme of
Su and Li [113] is implemented for the analysis of both covalent bonds and intermolecular
interactions on the basis of single-determinant HF (restricted closed shell HF, restricted
open shell HF, and unrestricted open shell HF) wave functions and their DFT equivalents.
For HF methods, the total interaction energy is decomposed into electrostatic, exchange,
repulsion, and polarisation terms. Dispersion energy is obtained from second-order M ller-
Plesset perturbation theory and coupled cluster methods up to CCSD(T). Recently, has
been proposed an energy decomposition analysis of open and closed shell f-elements mono
agua complexes with the CSOV scheme using a MCSCF wave function [123]. The procedure
is derived from the Bagus and Bauschlicher one [124] and is currently valid for open shell
high-spin complexes. In the various methods commonly used, a charge transfer (CT) term
may be present or not. When the CT contribution is not separated it is rather included
within the induction term. In this case, one usually groups all of the terms assignable to
the bond (polarisation, charge transfer, etc.) into a single orbital interactions term. The
physical signi cance of the CT term is currently an important subject of controversy re-
lated to the arbitrary de nitions of the interaction energy components. For example, at
short intermolecular distances and especially with large basis sets the separation between
charge transfer and polarisation becomes increasingly ill-de ned. At larger intermolecular
distances, CT becomes more easily separable from polarisation [122]. Novel approaches
are under development in order to provide more meaningful and robust de nitions for the
various components of the intermolecular interaction energy including CT. As an example,
Rezc and de la Lande [125] propose an approach to calculate the energy associated to in-
termolecular charge transfer. This component of the interaction energy is calculated as the
di erence between a standard DFT calculation (with full relaxation of the electron density)
and a calculation in which CT between the molecular fragments is prohibited by means of
constrained DFT (cDFT) methodology [126]. This approach was originally formulated by
Wu et al. [127]. The present implementation supports only GGA and meta-GGA function-
als and will be extended to hybrid functionals. Lao and Herbert [128] proposes a composite
framework with cDFT-based de nition of the CT energy in conjunction with a SAPT-based

de nition of the remaining energy components. SAPT/cDFT when combined with the new
implementation of open-shell SAPT [129], can be applied to supramolecular complexes in-
volving molecules, ions, and/or radicals [128]. With the same aims, in the framework of
orbital-based EDAs, Levine et al. [130] developed an extension of the ALMO-EDA [114]
speci cally for the variational energy decomposition analysis of chemical bonds relative to
radical fragments. The total interaction energy is broken up into four terms: frozen inter-
actions, spin-coupling, polarisation, and charge-transfer. This method includes a new EDA
term, spin-coupling, to describe the covalency of the bond in an energetic way. Currently,
this method is only implemented for single bonds corresponding to the CAS(2,2) wave func-
tion [130]. Of course, these current developments are far from an application to actinide
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complexes but they are very promising for the future interpretations.

5. Relativistic e ects and the chemistry of actinides

5.1. Some aspects of relativistic quantum chemistry

It was P. Pyykke who showed that relativistic e ects can strongly in uence the chemical
properties of the heavy elements and their compounds [131, 132]. The starting point is quite
simple but it has great impact: for the heaviest elements, the inner electrons are approaching
the speed of light leading to a mass increase and a following smaller Bohr radius. These
e ects have three main consequences on the orbitals of many-electron atoms (e.g., see Figure
3)

Contraction and stabilisation of all s and most p-type orbitals (direct e ects)

Expansion ofd- and f -type orbitals (as a consequence of the stronger screening of the
nuclear attraction by the contracteds and p)

Spin-orbit splitting of shells with | > 0

Many examples are discussed in the literature, e.g. in references [133{135]. The RTAM
searchable database [136] also includes an up-to-date list of relativistic calculations for atoms
and molecules. A well-known example is the lanthanide contraction of the Ln{X bond
lengths in LnX3 molecules from Ln = La to Lu. Relativistic e ects account for 9-23% of
the total contraction depending on the system [137]. One can also observe relativity in
everyday life, e.g., the yellow color of gold and the liquidity of mercury [135]. The lead-acid
battery, which is commonly used in cars, strongly relies on the e ects of relativity [138].
As put by Pyykke \relativistic e ects in chemistry are more common than you thought"
[135]. In the past two decades, large progresses have been made in the development of both
relativistic methodology and computer codes [139, 140]. But fundamental questions still
remain open in relativistic electronic structure theory. In 1928, Dirac proposed a relativistic
formulation of the quantum mechanics [141]. In addition, Dirac's theory is the basis for
modern quantum electrodynamics, one of the most accurate quantum theories to date. The
relativistic equation corresponding to the Hartree-Fock equation is the Dirac-Fock equation,
which in its time-independent form can be written as (11):

[c~ p+ ¥P+V]= E (11)

where and are the Dirac 4 x 4 matrices. is written in term of the three Pauli 2 x 2
spin matrices and in term of a 2 x 2 identity matrix I:

0 ~ I 0
~ 0 0 I
The function is an eigenfuntion of thes, operator with an eigenvalue of'=, and the

function similarly has an eigenvalue of !=,. Because the Dirac equation contains op-
erators represented by four dimensional matrices, the solutions must be represented by a
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four-component vector. The simplest approximative wave function is a single determinant
constructed from four-component one-electron functions, called spinors. The contributions
from the rst two components of the wave function tend to be much larger than the con-
tributions from the nal two components for electron-like solutions. For this reason the
upper two-component spinor is known as the large component of the wave function, while
the lower spinor is called the small component. The spinors are the relativistic equivalents
of the spin-orbitals in non-relativistic theory [24]. The usual notation of the wave function

is in the form (12): 0 1
L
- B € (12)
S
S

where | and s are the large and small components of the wave function and and

the spin functions. For electrons, the large component reduces to the solutions of the
Schredinger equation whenc ! 1 (the non-relativistic limit), and the small component
disappears. The small component of the electronic wave function corresponds to a coupling
with the positronic states (negative-energy states) [24]. Moreover, the use of the Dirac
Hamiltonian requires considerably larger computational resources compared to the use of
the Schmdinger Hamiltonian. In chemical applications, one is usually concerned with the
electronic (or positive-energy) states only. Therefore, some reductions of the four-component
wave function have been proposed leading to the two-component methods of relativistic
guantum chemistry [142], e.g., the Douglas-Kroll-Hess (DKH) transformation [143, 144], the
zeroth-order regular approximation (ZORA) [145], the in nite-order two-component theory
(IOTC) [146, 147] and the exact two-component method (X2C). All of them account for
spin-orbit interaction. These developments increased the size of the system that can be
treated computationally.

Nowadays, more extensive savings may be achieved by introducing the use of e ective
core potentials. For rst-row systems, the savings are marginal but for heavier elements
the computational cost may be signi cantly reduced. Compounds involving heavy elements
have a large number of core electrons. These are often considered as unimportant in a
chemical sense, but it is necessary to use a large number of basis functions to expand the
corresponding orbitals, otherwise the valence orbitals will not be properly described (due to
a poor description of the electron-electron repulsion) [24]. These problems and the role of
relativity could be addressed simultaneously by modelling the core electrons using a suitable
function, and treating only the valence electrons explicitly. This function is called an e ective
core potential (ECP). In this framework, the relativistic terms are implicitly incorporated
into the potential considered by parametrization with respect to suitable relativistic all-
electron reference data. A detailed description of the formalism and limitations can be found
in references [148{150]. The vast majority of electronic structure calculations on actinide
species uses this simple one-component ECP method including only scalar relativistic e ects.
For some recent comprehensive guides to the theoretical background and the computational
applications of relativistic quantum chemistry, we quote Schwerdtfeger [139, 140], Hess [151],
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Dyall and Faegri [152], Barysz and Ishikawa [153], Reiher and Wolf [154], or in reviews and
reports from Saue [155], Pyykke [156] or Liu [157].

5.2. Bonding analysis

Regarding the analysis of chemical bonding with the previously described methods in
section 2 to section 4, we must distinguish between scalar-relativistic approaches and the
two- and four component ones.

Everything available in the non-relativistic framework can be used in scalar-relativistic
calculations. Population and energy decomposition analyses are currently available in several
guantum chemistry package. If there are no issue with these methods, it is important to be
very careful when ECPs are used for topological analyses [158{160]. The absence of core
electrons for an atom results in the absence of a corresponding nuclear maximum of the
electron density. Therefore, the qualitative change in the topology of the electron density in
the neighbourhood of the atom, makes meaningful topological analyses di cult or impossible
[160]. Several studies tried to recover this issue (see i.e. references [160{163]). The missing
electron density contribution can be restored using an atomic core density obtained from
an all-electron calculation for the free atom. When a small-core or medium-core ECP is
used, representing the corresponding core electron density using a tightly localized electron
density function may be su cient to obtain a correct electron density topology and perform
QTAIM analyses with qualitative meaningful results [160]. This is not true when large-core
ECPs are used. In general, a quantitative analysis cannot be obtained without using an
all-electron basis set.

As previously seen, scalar-relativistic e ects can be introduced through DKH or ZORA
Hamiltonians for example, and spin-orbit coupling via a two- or four-component approaches.
While the population analysis can be performed from one- to four-component calculations,
EDA and even more topology analyses are either scarce or non-existent for two- or four-
component calculations. It is currently possible to perform topological analyses with a
two-component DKH or ZORA Hamiltonian. To the best of our knowledge, no more than
the electron localisation function, tested only for closed shell systems, has been implemented
in an all-electron four-component approach (DIRAC program [164]).

The question is: can one nd an e ect due to spin-orbit coupling so large, that one would
see a di erence in the topology of the electron density? In which chemical cases? At a rst
glance, the largest e ect due to relativity is expected within the inner shells of the heavy
atoms. The critical points, however, are located in the valence region of the atoms so that
one might expect the deviations due to relativistic e ects to be small at these points. Very
few systematic studies of the e ects of the relativity on the topology of the electron density
exists in the literature for actinides or other heavy elements of the periodic table (e.g. see
[165, 166]). Amaouch et al. [167] propose a QTAIM and ELF topological analyzes of the
bonding in At, and UO,?* in the framework of two-component relativistic DFT comparing
scalar-relativistic and spin-orbit coupling calculations. In U@*", among ELF and QTAIM
descriptors, the most a ected one by spin-orbit e ects is the Laplacian of the density. 2 (r)
is increased by 10% in UgF* with respect to scalar relativistic calculations, showing a more
depleted electron density at the U-O BCPs [166, 168]. Anderson et al. [169] perform DFT
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and QTAIM calculations at both the non-relativistic level and using the scalar relativistic
ZORA for H,0, X(CsHs), (X=Fe, Ru, Os), Au,s and UFg compounds. In the case of U§
the di erence in the electron density and its Laplacian at U-F BPCs is ca 2% and 19%,
respectively between the SR-ZORA and the non-relativistic frameworks.

The main conclusion of the various studies (including non-actinides heavy elements) is
that relativistic e ects are not only restricted to the core electron density of heavy elements
but are also clearly discernible in the outer core and the valence region within adjacent bonds
[165]. In most cases scalar relativistic variants of the Hamiltonian operators as ZORA
and DKH are su cient to obtain a reasonable description of the electron density [166,
168]. These e ects must be taken into account for a meaningful topological analysis of
bonding in actinide compounds. As the Laplacian of the electron density at the bond
critical points is a very sensitive quantity to detect changes in a density distribution, one
nds signi cantl larger relative deviations including spin-orbit coupling. However, two-
component calculations including spin-orbit e ects can provide a detailed insight into the
topology of the electron density for atoms and molecules. Four-component calculations are
most of the time not required.

6. Selected applications in actinide chemistry

In this section, we shall focus on some recent examples that illustrate applications of
analysis techniques presented above. Further examples can be found in reference [170].
From the past two decades, DFT becomes the unchallenged method for describing electronic
structure and bonding in medium- and large-size molecular systems. Examples are reported
in reviews dedicated to inorganic or organometallic compounds [171{174]. DFT is not free
from issues in metal or f-element chemistry. Kepp recently provided a detailed discussion of
speci ¢ systematic e ects often ignored in mainstream DFT modelling [172]. Their review
concerns recent e orts to accurately and consistently describe bonds across the s-, p-, and
d-blocks chemistry. Physical e ects and ingredients in functionals, their systematic errors,
and approaches to deal with them are discussed, in order to identify broadly applicable
methods for inorganic chemistry. There are numerous examples in the literature where the
bonding analysis is achieved using Mulliken or NBO methods despite the fact that they
provide at best a qualitative description and can give somewhat contradictory results in
assessing covalency [175].

6.1. Beyond the 18-electron rule with a central actinide atom

Molecules may become particularly stable when the electron count at a central atom
reaches a magic number. Two well-known examples are Lewis' octets and Langmuir's 18-
electron principle, corresponding to lling s + p- and s + p + d-like shells. For the history
and actual interpretation of the 18-electron principle, see Pyykke [176]. If, in addition to
singly occupied s + p + d shells, f- or f-like shell at the central atom would be occupied,
one would obtain systems with the magic number 32 [177]. Obviously, the central atom
would have to be an actinide, with a relatively di use and energetically available 5f shell.
We combine charge, orbital, quantum chemical topology and energy decomposition analysis
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to propose An@Pk, [178], An@Si, [179], An@Gg [180] and An@S3h [181] series as 32-
electron systems. For a comprehensive review, see [177]. Let us consider the example of
An@Ph, with An=U, Pu, Am, Cm. The insertion of an actinide atom highly stabilizes the
cage owing to a strong Pb-An interaction K;, symmetry, see Figure 4) which originates in
an attractive electrostatic e ect and in a large orbital interaction (see Table 3). The Pauli
repulsion remains nearly the same from U to Cm. The orbital term contributes 45% to
the total attractive interactions and is determined by the 6d orbital energy for the Pu and
Am clusters and by the 5f orbital energy for the Cm cluster. Further analysis from the
valence molecular orbital (MO) diagram revealed the formation of sixteen MOs between the
cage and the central atom (g 9., hg, t1y and ty,). The Pu 7s, 7p, 6d and 5f orbitals are
involved in the hybridization with the PbZ%, cage orbitals. In the [An@Ply]" clusters, the
ELI-D map exhibits localisation domains between the central atom and the cage (diagram
(a) in Figure 5). They result from the interaction between Pb and Pu for example, and
are a consequence of the formation of the,ag,, hy, t1, and ty, orbitals. e.g., the diagram
(b) in Figure 5 depicts the partial orbital contribution (pELI-D) of the 1 hq orbitals in the
real space. This accounts for the existence of a strong interaction between the central atom
and the cage. The combination of charge, orbital, quantum chemical topology and energy
decomposition analyses provides an unambiguous picture of the bonding in the [An@#b
clusters with notable covalency between the central actinide atom and the surrounding cage.
These results have enabled us to conclude that Pu@Rand [Am@Ph,]" compounds are
the rst examples of centered 32-electron systems.

6.2. Assessing covalency in nitrogen ligand-actinide complexes

Actinide recycling by separation and transmutation is considered worldwide as one of
the most promising strategies to reduce the inventory of radioactive waste [182]. A liquid-
liquid extraction and treatment strategy is currently implemented [183]. One of the most
challenging task is the partitioning of trivalent actinides, Ant* and Cnt* from trivalent
lanthanides. The two series of ions are both hard Lewis acids, with similar charges and
ionic radii. Few years ago, it was discovered that nitrogen ligands are able to exhibit a
selectivity between An and Ln [184]. Therefore, the researches were focused on the chem-
istry of polyazine extractants [185]. The design of extractant ligands for lanthanide/actinide
separation exploits the possibility of a signi cant covalency in the 5f series. But, as stated
by Girnt et al. [186] and by Kaltsoyannis [175], \the level of understanding of BTPs se-
lectivity on a molecular level is insu cient to target the design of new, more e cient, and
selective partitioning reagents or ne-tune partitioning process conditions. Such advances
are presently empirical, on a trial and error basis". Most of the theoretical chemistry works
tried to estimate the covalency in the f-element nitrogen bond and to determine if there are
di erences between the minor actinide and lanthanide compounds that would account for
the observed separation factors [175]. These works are mainly based on DFT calculations
with \standard" functionals and population analysis tools. The results are often contra-
dictory and failed to improve our knowledge of bonding in such compounds. di Pietro and
Kerridge [187] considered four di erent methods for studying the bonding in BTP (Figure
6a) and isoamethyrin (Figure 6b) complexes of uranyl. To avoid the ambiguity which can
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arise from orbital based methods, the author focused solely on properties derived from the
electron density. Their analyses involve the use of QTAIM, ELF, RDG for the regions of
weak interaction and the density di erences upon complexation. They studied the nature
of U{N bonding in these complexes and the consequent e ects on the highly covalent U{O
bond of uranyl. The analyses demonstrated weak, but non-negligible, covalent character
in the U{N bonding region of both complexes. As might be expected, the covalent char-
acter of the bonds increases as the U{N bond length is shortened. Analyses revealed a
strong e ect on the uranyl U{O bonds upon complexation, namely a noticeable reduction
in electron sharing in the U{O bonding region, with charge instead localising on the oxygen
centres. This leads to an increase of ionic character in the U{O bond. This, of course, also
corresponds to a reduction in covalency.

6.3. The actinocenes An(-CgHg)»

As mentioned earlier, the electronic structure of actinides compounds can be highly com-
plex mainly due to the strong electron correlation within the valence orbital manifold and
the e ects of relativity. One of the most typical example is the actinocene series. In the
development of modern organometallic and theoretical chemistry, uranocene t{gHs)»

(or U(COT),) has played a central role in understanding the fundamental bonding, elec-
tronic structure and chemical properties of actinide complexes. The possible existence of
the uranium complex U(COT), was suggested in 1963 by Fischer [188] who noted that there
might be \a possible additional gain in energy due to the participation of the f-orbitals of
heavy central atoms". The synthesis in 1968 of this rst linear sandwich compound of an
f-element, by Streitwieser and Mueller-Westerho [189, 190] who christened uranocene to
highlight its similarity with ferrocene, was a milestone in the history of actinide chemistry
[191{193]. Since the theoretical prediction [188] and subsequent experimental discovery of
uranocene, a series of actinocenes An(CQTJAn=Th, Pa, U, Np, Pu, Am) or their an-

ions have been synthesized and characterized. Historically, the rst theoretical work on
U(COT) ; including relativistic e ects was done by Pyykke and Lohr in 1981 [100] using rel-
ativistically parametrised extended Hackel calculations. Whereas a single-determinant wave
function could describe the ground states of thorocene and uranocene [194, 195], a multicon-
gurational description of the wave function is needed for the later actinides [196, 197]. For
example, Kerridge and Kaltsoyannis [196] performed all-electron spin-orbit coupling com-
plete active space self-consistent eld calculations including dynamic correlation via second
order perturbation theory (SOC-CASPT2) for the ground and low-lying excited states of
M(COT) , (M=Th, U, Pu, Cm). The multicon gurational character was associated to the
occupation of the 5 and ,, orbitals [198]. In all the above mentioned calculations, the
complexes were assumed to be planar and D§, point group symmetry. The electronic
structure was mainly described in term of molecular orbital energy diagrams and Mulliken
population analysis. Nevertheless, the analyses methods employed did not provide a fully
clear picture of bonding. The orbital based measures of covalency still remain ambiguous.
Recently, Kerridge has used a topological analysis based on QTAIM and a CASSCF wave
function in the actinocenes series (An=Th-Cm) [198]. Combining analyses ofand its
Laplacian at the An{C bond critical points (see the molecular graph in Figure 7), of the
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localisation and delocalisation indices(An) and (An; C) and the electron poulation at the
BCPs, the author provides an unambiguous method for assessing and characterising cova-
lency in these compounds. Increasing at the beginning of the series, the covalency reached
a maximum for the elements Pa-Pu before decreasing for the later actinidesat the BCP

can be considered as an indicator of covalent interaction, in line with an accumulation of
electronic charge density in the bonding region. While 5f contributions to covalency in these
complexes are smaller in magnitude than 6d contributions, the variation in covalency is
almost entirely accounted for by the variation in the 5f contribution [198].

7. Concluding remarks

In this review, we summarized the current state-of-the-art of methods dedicated to the
theoretical characterisation of bonding. They are well established for organic, inorganic or
organometallic compounds. However, some of them cannot be applied to characterise bond-
ing in actinide compounds, but, the recent methodological developments suggest that there
will be signi cant advances in the near future. The f-block still remains a challenge for the
theoretical chemist. The very nature of the interaction is far from completely understood.
Multiple analysis methods (charge, orbital, quantum chemical topology and energy decom-
position analyses) are required to obtain a complete description of bonding. While several
simple approaches have been mentioned already, the complexity of the electronic structure
of f-element systems makes that the validity of the theoretical models employed must be
checked before drawing conclusions. Understanding covalent mixing in actinide metal-ligand
bonds is of particular interest in nuclear sciences and more generally for studies associated
with environmental releases of radionuclides and, e.g., to ultimately allow for the design of
more selective extractants.
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Table 1: Partial atomic charges for [(R)UO, (0.C{R) ]! with R=CH 3 within several population analyses
and with increasing basis set size (ZORA-DFT/PBEDO, all-electron relativistic double to quadruple zeta basis
sets, ADF2016 [200] program).

Mulliken Hirshfeld VDD CM5 MDC-q NPA Bader

DZ  qU) @ 2.29 083 059 206 266 179 2.86
qC)  -0.33 032 -027 -052 -057 -111 -0.39
q(0,) -0.70 -0.37 -0.36 -0.80 -0.73 -0.61 -0.90
q©O)  -0.76 028 -026 -039 -0.66 -0.72 -1.14
TZP  qU)  2.22 081 058 204 268 186 2.94
q(C)  0.09 0.32 -027 -052 -0.68 -1.04 -0.42
q(Oy) -0.68 0.37 -0.37 -080 -0.73 -0.63 -0.93
q©O)  -0.69 028 -0.26 -0.38 -0.68 -0.66 -1.18
TZ2P qU) 231 082 059 205 269 186 2.99
qC)  0.16 032 -027 -052 -0.68 -1.04 -0.38
qOy) -0.71 -0.37 -0.37 -080 -0.74 -0.63 -0.95
q©O)  -0.71 028 -0.26 -039 -0.68 -0.66 -1.22
Qz4P q(U)  2.37 081 0.60 205 268 193 299
qC)  -0.78 033 -0.28 -053 -0.62 -1.07 -0.38
qO,) -0.71 037 -037 -080 -0.73 -0.64 -0.94
q©O)  -0.54 028 -0.26 -0.38 -0.68 -0.66 -1.23
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Table 2: Some QTAIM properties at the bond critical point to characterise the nature of a bond (table was
reproduced from ref. [77], with permission of the copyright holders.

Properties at the BCP Covalent Closed shell
Electron density (r) High Low
Laplacianr 2 (r) Negative Positive
=14 Bigger than unity Smaller than unity
Positive

3
Total energy densityH (r) Negative

Table 3: HOMO-LUMO gap, binding energy (BE) analysis with respect to the [Pb1,]> and M* fragments (in
eV). From scalar relativistic DFT/PBE (see ref. [178] for details). The BE is the sum of Pauli, electrostatic

and orbital contributions. Negative values are binding.

Pb2, [U@Ph,> Pu@Ph, [Am@Phy]* [Cm@Ph**

Symmetry Ih Dsh Ih Ih Ih
HOMO-LUMO 3.08 1.26 1.93 2.45 0.85
BE -17.59 -22.17 -39.18 -69.33
Pauli repulsion 15.52 16.39 1591 15.27
Electrostatic -12.11 -21.54 -21.11 -33.25
Orbital -20.93 -17.02 -27.98 -51.36
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Figure 1: QTAIM calculated molecular graph of the U( 8-CgHg)»(CN) {. Red points, green points and gray
lines represent bond CPs, ring CPs and bond paths, respectively.

Figure 2: DORI isosurface for U( 8-CgHg)»(CN) ! . Isosurface is color-coded withsgn( ») (r) in the range
from -0.05 a.u. (red) to 0.05 a.u. (blue) (DFT/PBEO-D3(BJ), all-electron triple zeta basis set, DORI
modi ed version of DGrid [199] code [93]).
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Figure 3: Non-relativistic (NR) and relativistic (R) energies of outer orbitals of Pu** from numerical rela-
tivistic multicon guration Dirac-Fock calculations (MCDFGME software [201]) including the contribution
of the Breit interaction.

Figure 4: Pu@Ph, (1) DFT/B3LYP optimized geometry [178].
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() (b)
Figure 5: ELI-D isosurfaces of the Pu@Pk, (I): magenta domains (a) visualize the interaction between

the Pb cage and the Pu atom. Blue domains (b) are pELI-D isosurfaces (0.25) of summation over 5 MOs
(1hg) visualizing the 6p(Pb)-6d(Pu) orbital mixing. From scalar relativistic all-electron DFT/PBE ( gure

was reproduced from ref. [177] with permission of the copyright holders).

() (b)

Figure 6: Molecular structure of BTP (a) and the isoamethyrin dianion (b). Symmetry-distinct coordinating
nitrogens are labelled ( gure was reproduced from ref. [187] with permission of the copyright holders).
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Figure 7: QTAIM calculated molecular graph of the Dg;, symmetry thorocene complex, Th(COT),. Bond
critical points (BCPs) are shown in red, ring critical points (RCPs) in yellow. ( gure was reproduced from
ref. [198] with permission of the copyright holders).
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