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In the first part of this paper, we derive the general replica equations that describe infinite-
dimensional hard spheres at any level of replica symmetry breaking (RSB) and in particular in the
fullRSB scheme. We show that these equations are formally very similar to the ones that have been
derived for spin glass models, thus showing that the analogy between spin glasses and structural
glasses conjectured by Kirkpatrick, Thirumalai, and Wolynes is realized in a strong sense in the
mean field limit. We also suggest how the computation could be generalized in an approximate
way to finite dimensional hard spheres. In the second part of the paper, we discuss the solution
of these equations and we derive from it a number of physical predictions. We show that, below
the Gardner transition where the 1RSB solution becomes unstable, a fullRSB phase exists and we
locate the boundary of the fullRSB phase. Most importantly, we show that the fullRSB solution
predicts correctly that jammed packings are isostatic, and allows one to compute analytically the
critical exponents associated with the jamming transition, which are missed by the 1RSB solution.
We show that these predictions compare very well with numerical results.
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I. INTRODUCTION

In the two previous papers of this series [1, 2] (on which the present work relies heavily), we have considered a system
of identical hard spheres in spatial dimension d → ∞, and we have obtained an exact expression of its replicated
partition function. Within the Random First Order Transition (RFOT) general scenario for the glass transition [3–6],
which relies on the conjecture that structural glasses behave in the same way as a certain class of mean field spin glass
models, the replicated partition function describes the amorphous arrested states of the system, i.e. its glasses [7, 8].
Previous work on structural glasses in the RFOT context always focused on the simplest replica scheme, the one-step

replica symmetry breaking (1RSB). The 1RSB scheme indeed already predicts the most important phase transitions
that happen upon approaching the glass phase, namely the dynamical and Kauzmann transitions. An approximate
1RSB treatment of finite-dimensional glasses was developed in [9, 10], and applied to hard spheres in [11]; these works
have shown that the 1RSB approach gives quite accurate predictions of thermodynamic and structural quantities
in three-dimensional glasses. Moreover, within the 1RSB scheme, the exact expression obtained in [1, 2] coincides
with the infinite-dimensional limit of the finite-dimensional approach of [11] while a series of numerical works [12, 13]
in d = 3, · · · , 12 have shown that the main qualitative properties of the system evolve smoothly with dimensions
(although the investigated dimensions are quite far from the asymptotic d → ∞ regime [12]). One could therefore
think that the 1RSB scheme is sufficient to describe the properties of glasses within RFOT theory in all the range of
physical parameters.
However, when one tries to apply the 1RSB scheme to study the properties of hard or soft-sphere glasses at very

high pressures and low temperatures, close to the jamming transition that marks the transition from a mechanically
loose to a mechanically rigid glass state, one finds contradictory results. On the one hand, the behavior of the main
thermodynamic quantities (pressure, energy, ...) is quite well reproduced [11, 14]. On the other hand, the scaling
properties of other observables are not. It is therefore natural to search for the origin of this discrepancy.
A first step in this direction was made through the investigation of nearly jammed sphere packings. It was shown

that hard sphere glasses at high pressures are close to a mechanical instability, the so-called “isostatic” point where
the number of mechanical constraints exactly equals the number of degrees of freedom [15–17]. Due to this proximity,
anomalous low-frequency modes appear in the vibrational spectrum [18–22]. Based on this observation, in a series
of papers Wyart and coworkers [20, 23–25] assumed that hard sphere glasses at high pressure are marginally stable,
and under this assumption they derived a scaling theory of the jamming transition that is able to describe most of its
basic phenomenology. In particular, it was shown both analytically and numerically [20, 23, 26] that marginality is
associated with a particular scaling of the mean square displacement ∆ in the hard sphere glass, which vanishes when
the pressure p → ∞ as ∆ ∼ p−κ with κ ∼ 3/2 (naive free-volume considerations would suggest ∆ ∼ p−2). It was
confirmed in [26] that the exponent κ plays an important role, and in fact controls all the criticality of the jamming
transition.
This analysis suggests that a 1RSB description is incorrect in this regime, because 1RSB states are perfectly stable

and do not show any sign of marginality. In fact, the 1RSB solution further wrongly1 predicts ∆ ∼ p−1 [11], and
furthermore misses other critical exponents associated to the structure and the force distribution [25, 27, 28]. In
the context of spin glasses, it is well known that fullRSB phases are always associated with marginal stability and
anomalous low-frequency modes [29, 30], which affect the low-temperature scaling of physical quantities [30]. It
appears therefore that a fullRSB phase is a natural candidate for explaining the marginal stability of low-temperature
glasses.
Additional insights came from analyzing the out-of-equilibrium dynamical behavior of one of the simplest spin glass

models that are at the basis of the RFOT scenario, the Ising p-spin model [31–34]. It was shown that, although the
1RSB solution correctly describes the approach to the glass phase at equilibrium, when the system is instantaneously
quenched out-of-equilibrium it evolves towards a region of phase space where the 1RSB solution is unstable, the
so-called Gardner phase2 [35, 36], in which a fullRSB solution is present [33]. The behavior of the Ising p-spin model
is not yet fully understood, but this model nonetheless strongly suggests that fullRSB effects may be observable in
low-temperature glasses.
Many other observations hint to the presence of a fullRSB phase in low temperature or high pressure glasses (see

e.g. [37]), which we reviewed in [2]. Based on these observations, in the previous paper of this series [2] we used our
exact expression for the replicated partition function of infinite-dimensional hard spheres to investigate the stability

1 Still, as noted in [26], the 1RSB prediction shows a sign of an anomalous behavior of the mean square displacement with respect to the
naive expectation.

2 The existence of a transition at low temperature from a 1RSB to a fullRSB solution was discovered independently in [35, 36] and its
precise location was found in [35].



4

of the 1RSB phase, a computation that could not be done previously because the finite-dimensional approximations
of [9–11] have been formulated only at the 1RSB level. Our analysis showed that the 1RSB phase is stable around
the dynamical glass transition, but becomes unstable at high pressures close to the jamming transition. This result
gives additional indications in favor of the presence of a different phase that could better describe the properties of
high pressure (or low temperature) glasses.
The aim of this work is to write explicitly the replica equations in the kRSB scheme and send k → ∞ to describe the

fullRSB solution, in order to check if this solution predicts correctly the scaling properties of the jamming transition.
In the first part of this work we derive the set of equations that give the replicated entropy at the level of kRSB.
Interestingly, the equations we obtain are remarkably similar to those describing the Ising p-spin model with, however,
some crucial differences. The proof of this formal similarity between the equations that describe a disordered mean
field spin glass model and a system of interacting particles without any quenched disorder somehow completes the
program initiated by Kirkpatrick, Thirumalai and Wolynes, who constructed the RFOT scenario by assuming that
such a similarity existed and proved some arguments supporting it, see e.g. [7, 38].
In the second part of the paper, we extract physical quantities from the equations. Our main results are that (i) a

fullRSB phase always exists at high pressures, hence the jamming transition always lies in the fullRSB region; (ii) as
in the SK model [39–42], the fullRSB phase is marginally stable, because one of the eigenvalues of the stability matrix
of the replicated entropy is identically vanishing; (iii) jammed packings are predicted to be isostatic at all densities;
(iv) the fullRSB solution predicts a different scaling of the mean square displacement in the glass, namely ∆ ∼ p−κ

with an exponent κ very close to 3/2; (v) the fullRSB solution predicts a power-law divergence of the pair correlation
function of jammed packings at contact, g(r) ∼ (D − r)−α; (vi) the force distribution vanishes at small forces as
P (f) ∼ fθ; (vii) we obtain analytical predictions for the exponents κ, α, θ.
In [25, 28, 43], the exponents θ and α were argued to control the stability of packings and the presence of avalanches,

and a scaling relation between them was derived assuming marginal stability. The value of one exponent was lacking
however to have a complete scaling picture. Our predicted values of κ, α, θ are perfectly compatible with the scaling
relations derived in [25, 28, 43] and with previous numerical investigations [25, 27, 28, 44–46] (except for θ, where the
situation remains somehow unclear). By means of additional numerical simulations, we show that the prediction for
κ is correct in all spatial dimensions.
These results open the way to many different studies. For example, one could now hope to compute the shear

modulus [21, 47–49], the distribution of avalanche sizes [50], the complete scaling on both sides of the jamming
transition [14, 26], and so on. Moreover, the results could be extended to finite dimensional systems within the
effective potential approximation scheme of [11, 14], which would allow one to directly compare the predictions
with numerical simulations and experiments. We discuss briefly these possible developments in the conclusions. An
important open question is how the fullRSB structure affects the off-equilibrium dynamics [31–33].
Because the paper is quite long, we do not present a detailed plan here. At the beginning of each section, we

explain what is the aim of the section and detail the structure of subsections. Reading the technical part of the paper
requires familiarity with the general concepts of spin glass theory (see e.g. [30, 51] for reviews), with its application
to structural glasses [10] and jamming [11], and with the previous papers of this series [1, 2]. A short account of this
work, where the main physical ideas behind it and the main results are presented in a more accessible way for the
reader not interested in technical details, has been presented in [52].
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Part I

General equations

II. GENERIC EXPRESSION OF THE ENTROPY

In the following, we consider a system of N identical spheres of diameter D in a d-dimensional volume V , in the
thermodynamic limit N = ρV and V → ∞. At sufficiently high density, this system exhibits a glass phase, i.e., its
dynamics arrests and an amorphous solid phase forms due to self-induced frustration. A strategy to obtain a thermo-
dynamic description of the glass states has been derived in [4, 8, 38]. The idea behind these works is the following. In
the dense supercooled regime the liquid phase splits in a collection of glass basins that can be defined as amorphous
minima of an appropriate density functional [4]. Hence if one extracts one liquid configuration in equilibrium, this
configuration falls into one of the multiple glass basins. To describe this glass basin thermodynamically, one has to
consider a second configuration that is coupled to the first one. Its partition function gives the properties of the
glass. The coupling to the first configuration acts as an external quenched disorder, and that disorder can be treated
using replicas, in analogy with spin glasses [53]. This construction was made precise through the introduction of
the so-called Franz-Parisi potential [54–56]. In this way one can easily follow the adiabatic evolution with density
and temperature of glassy states that originate from an equilibrium liquid configuration (also known as the “state
following” procedure [57]). Dynamically, this corresponds to preparing glassy states through a slow annealing.
A slightly different (and computationally simpler) strategy was proposed by Monasson [8]. Here m replicas are

coupled to an external random field that selects glassy states. After averaging out the external field one is left with m
coupled replicas. Because one uses here a completely random field, this procedure gives the properties of the “typical”
states that exist at a given temperature or density [8, 11]. In this way one can compute the dynamical glass transition
density, the Kauzmann density (when it exists), and the so-called dynamical line (or threshold line) that delimits
the region of existence of glassy states. Dynamically, it is expected that after a fast quench the system becomes
arrested in the glassy states that lie on this dynamical/threshold line [51, 58]. This strategy is very efficient and
was used in many previous studies, see e.g. [59, 60] for pedagogical introductions and [10, 11] for reviews of previous
results. In this paper, as in the previous papers of this series [1, 2], we follow this simpler approach and consider an
m-times replicated system in order to describe glassy states. We will see that this treatment is sufficient to describe
the marginal stability of jammed packings and to obtain the critical properties around the jamming transition. The
state-following (or Franz-Parisi) computation is also possible, but is left for a future publication. In the second part
of this paper, we will explain more precisely what kind of information on the phase diagram can be obtained from
this procedure.
We consider m identical copies of the original hard sphere system, assuming that the spheres are arranged

in molecules, each molecule containing an atom of each replica. A molecule is thus described by m vectors
x̄ = {x1 · · ·xm}, each xa being d-dimensional. The molecular liquid is translationally invariant, so each atom in
a molecule fluctuates around the center of mass of the molecule X = m−1

∑
a xa. We call the displacement of one

atom ua = xa −X . In the following, m×m matrices in replica spaces are indicated by a hat, e.g. the matrix α̂ has
elements αab, and we denote by α̂a,b the m − 1 ×m − 1 matrix obtained from α̂ by removing line a and column b.
Wide hats are used to denote quantities that have been properly scaled to be finite in the limit d → ∞; for example,
ϕ̂ = 2dϕ/d is the scaled packing fraction, with the usual packing fraction ϕ = ρVd, where Vd is the volume of a sphere
of unit radius [1].
The aim of this section is to write the entropy of the replicated system in a convenient way. With the notations

introduced above, we consider the general form of the replicated entropy that has been derived in paper II of this
series [2]:

s[α̂] = 1− log ρ+ d logm+
d

2
(m− 1) log(2πeD2/d2) +

d

2
log det(α̂m,m)− d

2
ϕ̂F (2α̂) , (1)

where the matrix α̂ with elements αab = d 〈ua · ub〉 /D2 encodes the fluctuations of the replica displacement vectors
ua. The term proportional to ϕ̂ comes from the density-density interaction and we refer to it below as the “interaction
term”. The other terms encode the entropic contributions and we refer to them all as the “entropic term”. It is useful
to define the scaled mean square displacement between two replicas

∆ab =
d

D2

〈
(ua − ub)

2
〉
= αaa + αbb − 2αab . (2)

It has been shown in [1, 2] that the elements of the matrices ∆̂ and α̂ are finite in the limit d → ∞. Because the vector
ua has d components, Eq. (2) implies that the variance of the norm of the vector ua − ub is of order 1/d, while the
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variance of each one of its components is of order 1/d2. In order to find the thermodynamic entropy of the replicated

liquid, the replicated entropy (1) must be optimized3 with respect to the matrices α̂ or ∆̂.
In [2] a generic expression for the interaction term F(2α̂) has been derived, but we now want to write it in a more

convenient form. It reads:

F(2α̂) = lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−

m∑

a=1

αaa
na

n
+

m∑

a,b

αab
nanb

n2


 . (3)

We will now suppose that the diagonal part of the matrix α is constant and αaa = αd for all a, because this is true
for matrices with a general kRSB structure. This implies that

2αab = 2αd −∆ab , (4)

and therefore the function F can be rewritten in terms of the matrix ∆̂ as

F(∆̂) = lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−αd +

1

2

m∑

a,b

(2αd −∆ab)
nanb

n2




= lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−1

2

m∑

a,b

∆ab
nanb

n2


 .

(5)

Note that the diagonal elements of the displacement matrix ∆̂ are all zero. Moreover, we temporarily define a matrix

∆∗
ab = ∆ab + Λδab (6)

and we write the interaction term as

F(∆̂) = lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−1

2

m∑

a,b

∆∗
ab

nanb

n2
+

Λ

2

m∑

a=1

n2
a

n2


 . (7)

We assume that the parameter Λ is positive. Using the identity

e−
1
2

∑m
a,b ∆

∗

ab
nanb
n2 = e

− 1
2

∑m
a,b=1 ∆∗

ab
∂2

∂ha∂hb e−
∑m

a=1 ha
na
n

∣∣∣∣
{ha=0}

, (8)

and introducing Dλa = dλa e
−λ2

a/2/
√
2π as a Gaussian measure with zero mean and unit variance, F(∆̂) can be

rewritten as

F(∆̂) = lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb


 exp

[
Λ

2

m∑

a=1

n2
a

n2
−

m∑

a=1

ha
na

n

]∣∣∣∣∣∣
{ha=0}

= lim
n→0

∑

n1,...,nm:
∑

a na=n

n!

n1! . . . nm!
exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb


×

×
∫ ( m∏

a=1

Dλa

)
exp

[
−
√
Λ

m∑

a=1

na

n
λa −

m∑

a=1

na

n
ha

]∣∣∣∣∣
{ha=0}

= exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb



∫ ( m∏

a=1

Dλa

)
exp

[
−min

a

(√
Λλa + ha

)]
∣∣∣∣∣∣
{ha=0}

.

(9)

3 For integer m > 1, the optimum is a maximum, but for real m < 1 analytic continuation changes the sign of some eigenvalues and the
optimum becomes a saddle point [30].
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In the above expression, the integration measure of the λa corresponds to independent random variables with a Gaus-

sian probability distribution. Then, the probability distribution of the random variable h = −mina

(√
Λλa + ha

)
=

maxa

(
−
√
Λλa − ha

)
is given by

µmin(h) =
d

dh

m∏

a=1

∫ ∞

−(h+ha)/
√
Λ

Dλa =
d

dh

m∏

a=1

Θ

(
h+ ha√

2Λ

)
, (10)

because the product of integrals is the probability that h ≥ −
√
Λλa − ha, ∀a, hence it is the probability that

h ≥ maxa

(
−
√
Λλa − ha

)
, which is nothing but the cumulative distribution of h. Here we introduced the function

Θ(z) = (1 + erf(z))/2 and
∫∞
−hDλ = Θ(h/

√
2). Therefore

∫ ( m∏

a=1

Dλa

)
exp

[
−min

a

(√
Λλa + ha

)]
=

∫ ∞

−∞
dh eh µmin(h) =

∫ ∞

−∞
dh eh

d

dh

m∏

a=1

Θ

(
h+ ha√

2Λ

)
(11)

and collecting these results we obtain

F(∆̂) = exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb



∫ ∞

−∞
dh eh

d

dh

m∏

a=1

Θ

(
h+ ha√

2Λ

)∣∣∣∣∣∣
{ha=0}

=

∫ ∞

−∞
dh eh

d

dh



exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb




m∏

a=1

Θ

(
ha√
2Λ

)


{ha=h}

.

(12)

By defining the Gaussian kernel γa(z) = e−z2/(2a)/
√
2πa, one obtains the relation

exp

[
a

2

d2

dh2

]
f(h) =

∫ ∞

−∞

dz√
2πa

e−
z2

2a f (h− z) = γa ⋆ f(h) , (13)

where we defined the γa ⋆ f operation as the convolution of the Gaussian kernel with the function f(h). Then

Θ(h/
√
2a) =

∫ ∞

−∞

dz√
2πa

e−
z2

2a θ(h− z) = exp

[
a

2

d2

dh2

]
θ(h) = γa ⋆ θ(h) . (14)

Using this relation we obtain the compact result

F(∆̂) =

∫ ∞

−∞
dh eh

d

dh



exp


−1

2

m∑

a,b=1

∆∗
ab

∂2

∂ha∂hb




m∏

a=1

e
1
2Λ

∂2

∂h2
a θ(ha)





{ha=h}

=

∫ ∞

−∞
dh eh

d

dh



exp


−1

2

m∑

a,b=1

∆ab
∂2

∂ha∂hb




m∏

a=1

θ(ha)





{ha=h}

.

(15)

The replicated entropy is therefore given by Eq. (1), with the function F given in Eq. (15). This expression is quite
general and will be used to study k-step replica symmetry breaking schemes in the following. Note that it has been
derived under the only assumption that the diagonal elements of αab are all equal.

III. THE REPLICATED ENTROPY FOR HIERARCHICAL RSB MATRICES

In spin glasses, it has been shown that a correct description of the system can be achieved by considering a special
class of matrices, known as hierarchical kRSB matrices [30]. Therefore, we want to specialize the general expression
of the replicated entropy given by Eqs. (1) and (15) to these matrices. In Sec. III A, we introduce hierarchical kRSB
matrices and discuss some of their properties. In Sec. III B, we compute the entropic term of the replicated entropy
for a kRSB matrix, and in Sec. III C we compute the interaction term. In Sec. III D, we present the final explicit
expressions for the 1RSB, 2RSB, kRSB and fullRSB case.
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m4 = 1m1 m2 m30 m0 = m

∆(x)

x

∆̂4

∆̂3

∆̂2

∆̂1 ∆(m)

mm mM0 1m

∆(x)

x

∆(1)

FIG. 1: (Left) An example of the parametrization of the matrix ∆ab for a 4RSB case. When needed for notational purposes,

we use the convention ∆̂0 ≡ 0. (Right) The expected form of the function ∆(x) in the fullRSB limit.

A. Parametrization of hierarchical matrices

The structure of hierarchical kRSB matrices is well-known and here we just summarize it briefly. Remember that
with respect to the formalism of [30] we have an important difference, in that the diagonal elements of the matrices
we consider are determined by the condition that

∑
b αab = 0, ∀b. The simplest class is that of 1RSB matrices4, that

has been studied in the first [1] and second [2] paper of this series. It corresponds to αab = −α̂1, ∀a 6= b:

α1RSB
ab = α̂1 (mδab − 1) . (16)

Here we used a slightly different but equivalent notation with respect to previous papers [1, 2, 11], to be consistent
with the general kRSB notation5. A 2RSB matrix is parametrized as follows. Replicas are arranged in m/m1 groups,
and the matrix elements αab = −α̂2 if they belong to the same group, or αab = −α̂1 if they do not. If we say that
b ∼ a when b is in the same subgroup of a, and b ≁ a otherwise, and we define a function I(e) = 1 if the event “e” is
true and I(e) = 0 otherwise, a 2RSB matrix has the form:

α2RSB
ab = δab [(m1 − 1)α̂2 + (m−m1)α̂1]− (1− δab) [α̂2I(b ∼ a) + α̂1I(b ≁ a)] . (17)

At the 3RSB level, the blocks of m1 replicas are each divided in m1/m2 sub-blocks of m2 replicas, and the construction
can be iterated to any desired level of RSB (which we denote kRSB). Note that diagonal elements of hierarchical
matrices are all equal.
For each k, these “hierarchical” matrices form a closed algebra. Moreover, in the interesting case where one performs

an analytic continuation to m < 1, a generic hierarchical matrix Q̂ can be parametrized by its diagonal element qd
and a single function q(x). This is done as follows. If we formally define m0 = m and mk = 1, we can observe that
for integer m > 1, one has mk ≡ 1 < mk−1 < mk−2 < · · · < m1 < m0 ≡ m. When m < 1, these inequalities are
reversed [30] and one has 1 > mk−1 > mk−2 > · · · > m1 > m > 0. Then we can define q(x) to be a piecewise constant
function for x ∈ [0, 1], which in the interval x ∈ [mi−1,mi] takes the value of the elements qi in the corresponding

sub-block (with i = 1 · · · k), and q(x) = 0 for x ∈ [0,m0]. We write this parametrization as Q̂ ↔ {qd, q(x)}.
The matrices α̂ are therefore defined by α̂ ↔ {αd,−α(x)} where α(x) is a piecewise constant function given by the

α̂i in each block, while αd is fixed by the condition
∑

b αab = 0 and is given by

αd = (mk−1 − 1)α̂k + (mk−2 −mk−1)α̂k−1 + . . .+ (m−m1)α̂1 = −
∫ 1

m

dxα(x) . (18)

4 In the standard notation of [30] this would be called a replica-symmetric matrix, but remember that here we are using the Monasson’s
real replica scheme [8] where we consider m coupled replicas and treat m as a parameter to select different metastable states. It is a
standard convention to denote a RS matrix in the Monasson’s scheme as a “1RSB matrix”: the reason is that in models with quenched
disorder the two schemes are indeed equivalent.

5 Note that in previous papers [1, 2, 11] we dropped the subscript, α̂1 = α̂ because we only considered the 1RSB case, and we used

Â = mα̂.
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For a given matrix αab, one has a corresponding matrix ∆ab = 2αaa − 2αab, which is therefore parametrized as
∆̂ ↔ {0,∆(x)} with

∆(x) = 2αd + 2α(x) = −2

∫ 1

m

dy α(y) + 2α(x) . (19)

By integrating this relation we obtain
∫ 1

m
dxα(x) = 1

2m

∫ 1

m
dx∆(x), therefore we can invert the relation to obtain

α(x) =
1

2
∆(x) +

1

2m

∫ 1

m

dy∆(y) . (20)

The seemingly strange conventions that we adopted for the signs of the above parametrization are justified by the
fact that with this choice both α(x) and ∆(x) are positive functions. Clearly this is the case by definition for ∆(x),
and from Eq. (20) we deduce that the same must be true for α(x). Moreover, ∆(x) must be a decreasing function of
x (contrary to the usual overlap function [30]). This is because larger values of x correspond to inner blocks of the
matrix ∆ab, hence to replicas that are “closer” to each other in the usual interpretation, and therefore must have a
smaller value of ∆. An example is given in Fig. 1. Of course, the above construction can be generalized to the case
where the function ∆(x) is allowed to have a continuous part: this can be thought as an appropriate limit of the
kRSB construction when k → ∞ and is therefore called “fullRSB” or “∞RSB”.

B. The algebra of hierarchical matrices and the entropic term

1. General expression of the entropic term

In order to compute the entropic term, we need to compute log det α̂m,m. For this we need to recall some standard
results for the algebra of hierarchical matrices. Let us consider a generic hierarchical matrix qab, parametrized by
the corresponding function q(x) and with diagonal element qd. Although our matrices Q̂m are m×m matrices with

fixed m < 1, we can think to embed them in a n × n dimensional matrix Q̂n with n → 0, and just set to zero the
element of the outermost block. This is consistent with the fact that q(x) is defined in x ∈ [0, 1], and it corresponds
to the special choice that q(x) vanishes for 0 ≤ x < m. We can therefore use standard results for the algebra of n×n
hierarchical matrices, in the limit n → 0, see e.g. [61]. The important result of [61] that we need is that, introducing
the notations

[q](x) = xq(x) −
∫ x

0

dy q(y) , 〈q〉 =
∫ 1

0

dx q(x) , (21)

we have for the determinant [61, Eq.(AII.11)]

lim
n→0

1

n
log det Q̂n = log(qd − 〈q〉) + q(0)

qd − 〈q〉 −
∫ 1

0

dy

y2
log

(
qd − 〈q〉 − [q](y)

qd − 〈q〉

)
, (22)

and the inverse matrix is parametrized by [61, Eq.(AII.7)]

(q−1)d =
1

qd − 〈q〉

(
1−

∫ 1

0

dy

y2
[q](y)

qd − 〈q〉 − [q](y)
− q(0)

qd − 〈q〉

)
,

(q−1)(x) = − 1

qd − 〈q〉

[
q(0)

qd − 〈q〉 +
[q](x)

x(qd − 〈q〉 − [q](x))
+

∫ x

0

dy

y2
[q](y)

qd − 〈q〉 − [q](y)

]
.

(23)

To adapt these results to our case, we note that if the outermost blocks vanish, we have q(0) = 0. Furthermore,

q(x) = [q](x) = 0 for x < m. Finally, det Q̂n = (det Q̂m)n/m, hence log det Q̂m = (m/n) log det Q̂n, and the diagonal
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element of the inverse of Q̂n and Q̂m are identical. We conclude that in the m×m space

log det Q̂m = m log(qd − 〈q〉)−m

∫ 1

m

dy

y2
log

(
qd − 〈q〉 − [q](y)

qd − 〈q〉

)

= log(qd − 〈q〉)−m

∫ 1

m

dy

y2
log (qd − 〈q〉 − [q](y)) ,

(q−1)d =
1

qd − 〈q〉

(
1−

∫ 1

m

dy

y2
[q](y)

qd − 〈q〉 − [q](y)

)
,

(q−1)(x) = − 1

qd − 〈q〉

[
[q](x)

x(qd − 〈q〉 − [q](x))
+

∫ x

m

dy

y2
[q](y)

qd − 〈q〉 − [q](y)

]
,

[q](x) = xq(x) −
∫ x

m

dy q(y) ,

〈q〉 =
∫ 1

m

dx q(x) .

(24)

In order to compute log det α̂m,m, we introduce a matrix β̂ which is “regularized” in such a way that
∑

b βab = ε,

and α̂ = limε→0 β̂. For instance we can choose

β̂ ↔ {βd, β(x)} = {αd,−α(x) + εδ(x− x0)} , (25)

for any x0 ∈ [m, 1]. The matrix β̂ is invertible, hence we can use the relation det β̂m,m = (β̂−1)mm det β̂. Using
Eq. (24) we get

log det α̂m,m = lim
ε→0

{
log det β̂ + log(β̂−1)mm

}
= lim

ε→0

{
log det β̂ + log β−1

d

}

= lim
ε→0

{
−m

∫ 1

m

dy

y2
log (βd − 〈β〉 − [β](y)) + log

(
1−

∫ 1

m

dy

y2
[β](y)

βd − 〈β〉 − [β](y)

)}
.

(26)

Note that for ε → 0 we have 〈β〉 = −
∫ 1

m dxα(x) = αd = βd. However, the singular terms log(βd − 〈β〉) cancel and we
obtain a finite result

log det α̂m,m = −m

∫ 1

m

dy

y2
log ([α](y)) + log

(
1 +

∫ 1

m

dy

y2

)
= − logm−m

∫ 1

m

dy

y2
log ([α](y)) . (27)

Expressed in terms of the function ∆(x) by means of Eq. (20), we have that

−m

∫ 1

m

dy

y2
log ([α](y)) = −(m− 1) log 2−m

∫ 1

m

dy

y2
log

[
y∆(y) +

∫ 1

y

dz∆(z)

]
, (28)

therefore

log det α̂m,m = − logm− (m− 1) log 2−m

∫ 1

m

dy

y2
log

[
y∆(y) +

∫ 1

y

dz∆(z)

]
. (29)

2. 1RSB and 2RSB

When specialized to the 1RSB case Eq. (16), which corresponds to α(x) = α̂1 and ∆(x) = ∆̂1 = 2mα̂1, we get

log det α̂m,m
1RSB = − logm+ (m− 1) log(mα̂1) = − logm+ (m− 1) log(∆̂1/2) , (30)

which reproduces the results of [1, 2]. The 2RSB solution is parametrized by a step function

α(x) =

{
α̂1 m ≤ x < m1

α̂2 m1 ≤ x ≤ 1
[α](x) =

{
mα̂1 m ≤ x < m1

m1α̂2 + (m−m1)α̂1 m1 ≤ x ≤ 1
(31)
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and therefore

log det α̂m,m
2RSB = − logm+

(
m

m1
− 1

)
log(mα̂1) +

(
m− m

m1

)
log (m1α̂2 + (m−m1)α̂1) . (32)

Using the relations

∆̂2 = 2m1α̂2 + 2 (m−m1) α̂1 ,

∆̂1 = ∆̂2 + 2(α̂1 − α̂2) ,
(33)

or directly Eq. (29), we have

log det α̂m,m
2RSB = − logm− (m− 1) log 2 +

(
m

m1
− 1

)
log[m1∆̂1 + (1 −m1)∆̂2] +

(
m− m

m1

)
log ∆̂2 . (34)

3. kRSB

Writing explicitly the kRSB expression requires the introduction of a function

G(x) = x∆(x) +

∫ 1

x

dz∆(z) . (35)

In fact, if ∆(x) is a kRSB piecewise constant function and using the notations of Fig. 1, it is easy to check that G(x)

is also a piecewise constant function parametrized by Ĝi, with

Ĝi = mi∆̂i +

k∑

j=i+1

(mj −mj−1)∆̂j . (36)

Note that dG(x)
dx = xd∆(x)

dx , and G(1) = ∆(1), therefore from G(x) one can reconstruct ∆(x) as

∆(x) = G(1)−
∫ 1

x

dz

z

dG(z)

dz
=

G(x)

x
−
∫ 1

x

dz

z2
G(z) , (37)

or for a kRSB function

∆̂i =
Ĝi

mi
+

k∑

j=i+1

(
1

mj
− 1

mj−1

)
Ĝj . (38)

Then, from Eq. (29), we have

log det α̂m,m
kRSB = − logm−m

∫ 1

m

dy

y2
log [G(y)/2]

= − logm+

k∑

i=1

(
m

mi
− m

mi−1

)
log(Ĝi/2)

(39)

Note that from this result we can recover the 1RSB and 2RSB results obtained above.

C. The interaction term

1. kRSB derivation

We now compute the interaction term of the replicated entropy for a generic hierarchical matrix ∆ab parametrized
by ∆(x). We start from Eq. (15), and we need to compute the function

g(m,h) =



exp


−1

2

m∑

a,b=1

∆ab
∂2

∂ha∂hb




m∏

a=1

θ (ha)





{ha=h}

. (40)
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Because ∆ab is a hierarchical matrix, this computation can be done by taking the derivative with respect to the
external fields in a hierarchical way [62]. Let us define the matrix Imi

ab , which has elements equal to 1 in blocks of size
mi around the diagonal, and zero otherwise. In other words, the matrix Imi

ab is parametrized by a function Imi(x) = 1

for mi ≤ x ≤ 1 and zero otherwise. Then, recalling the notations of Fig. 1, and noting that Imk=1
ab = δab, one can

easily check that

∆ab =

k∑

i=1

∆̂i(I
mi−1

ab − Imi

ab ) =

k−1∑

i=0

(∆̂i+1 − ∆̂i)I
mi

ab − ∆̂kδab . (41)

Inserting this form in Eq. (40), one obtains a sequence of differential operators acting on the product of theta functions,
each of them being the sum of partial derivatives inside a block. This sequence of operations can be written as a
recursion; since the procedure is very well explained in [62], we only report the main results here. When acting with

the term containing ∆̂k we obtain, recalling Eq. (13):

g(1, h) = exp

[
∆̂k

2

d2

dh2

]
θ(h) = γ∆̂k

⋆ θ(h) = Θ


 h√

2∆̂k


 . (42)

Then, the action of each of the terms i = k − 1, · · · , 0 induces a recursion of the form

g(mi, h) = exp

[
∆̂i − ∆̂i+1

2

d2

dh2

]
g(mi+1, h)

mi
mi+1 = γ∆̂i−∆̂i+1

⋆ g(mi+1, h)
mi

mi+1 . (43)

Note that the last of these iterations can be written explicitly as

g(m,h) = γ−∆̂1
⋆ g(m1, h)

m
m1 . (44)

This recursive procedure allows us to compute easily g(m,h) for any k, and, according to Eq. (15), the function F(∆).

The last iteration might seem problematic, because the kernel γa has a negative parameter a = −∆̂1 and therefore
cannot be represented as in Eq. (13). Luckily enough, this last iteration can be eliminated. In fact, we have

F(∆) =

∫ ∞

−∞
dh eh

d

dh
g(m,h) =

∫ ∞

−∞
dh ehe−

∆̂1
2

d2

dh2
d

dh
g(m1, h)

m
m1

=

∫ ∞

−∞
dh

[
e−

∆̂1
2

d2

dh2 eh
]

d

dh
g(m1, h)

m
m1 = e−

∆̂1
2

∫ ∞

−∞
dh eh

d

dh
g(m1, h)

m
m1 ,

(45)

where we performed an integration by parts and assumed that all the boundary terms vanish because all the derivatives

of the function d
dhg(m1, h)

m
m1 vanish for h → ∞. This is justified by the fact that g(mi, h) behaves, for large h, similarly

to a Θ(h) function, as it can be seen from the recurrence equations (42) and (43). Assuming, for the same reason,

that 1− g(m1, h)
m
m1 decays at h → −∞ faster than a simple exponential, in order to perform another integration by

parts, we have

F(∆) = e−
∆̂1
2

∫ ∞

−∞
dh eh

d

dh
g(m1, h)

m
m1 = e−

∆̂1
2

∫ ∞

−∞
dh eh

{
1− g(m1, h)

m
m1

}
. (46)

2. 1RSB and 2RSB

Using Eq. (42) we obtain, at the 1RSB level,

F1RSB(∆) = e−
∆̂1
2

∫ ∞

−∞
dh eh

{
1− [γ∆̂1

⋆ θ(h)]m
}

, (47)

at the 2RSB level

g(m1, h)
m
m1 =

[
γ∆̂1−∆̂2

⋆ g(1, h)m1

] m
m1

=
[
γ∆̂1−∆̂2

⋆
(
γ∆̂2

⋆ θ(h)
)m1

] m
m1

,

F2RSB(∆) = e−
∆̂1
2

∫ ∞

−∞
dh eh

{
1−

[
γ∆̂1−∆̂2

⋆
(
γ∆̂2

⋆ θ(h)
)m1

] m
m1

}
,

(48)

and so on. At the 1RSB level, we reproduce the result of [1, 2].
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3. Continuum limit

The above strategy is not very practical when ∆(x) is a continuous function. In this case, to take the continuum

limit it is convenient to follow again [62]. We have mi = x− dx, mi+1 = x, and ∆̂i − ∆̂i+1 = −∆̇(x)dx, where a dot
denotes derivative with respect to x. Hence Eq. (43) becomes in the region where ∆(x) is a continuous function

g(x− dx, h) = exp

[
−dx

∆̇(x)

2

d2

dh2

]
g(x, h)

x−dx
x (49)

and then expanding in powers of dx, at linear order we get the Parisi equation

∂g(x, h)

∂x
=

1

2
∆̇(x)

∂2g(x, h)

∂h2
+

1

x
g(x, h) log g(x, h) (50)

that has to be solved with the initial condition (42). Note that the partial differential equation is well defined because

∆̇(x) ≤ 0. This equation has to be integrated from x = 1 down to x = m1. The resulting g(m1, h) can be inserted in
Eq. (46) to obtain F(∆).
The partial differential equation written above can be also put in a more convenient form by introducing the function

f(x, h) =
1

x
log g(x, h) (51)

which obeys the equation

∂f(x, h)

∂x
=

1

2
∆̇(x)

[
∂2f(x, h)

∂h2
+ x

(
∂f(x, h)

∂h

)2
]

(52)

with initial condition

f(1, h) = logΘ

[
h√

2∆(1)

]
. (53)

Remarkably enough, the equations written above are identical to those of the SK model [30, 62]. The only difference
is in the initial condition for the Parisi equation.

D. 1RSB, 2RSB, kRSB, fullRSB expressions of the replicated entropy

We therefore obtained the expression of the replicated entropy, under the assumption that the matrices α̂ and ∆̂
are hierarchical kRSB matrices, and we now summarize the results that we obtained at different levels of RSB for the
replicated entropy (1). At any level of kRSB, the replicated entropy has the form

s[α̂kRSB] = 1− log ρ+
d

2
m logm+

d

2
(m− 1) log(πeD2/d2) +

d

2
SkRSB ,

SkRSB = (2−m) logm+ (m− 1) log 2 + log det(α̂m,m
kRSB)− ϕ̂F (2α̂kRSB)

(54)

where SkRSB has been defined in such a way that it contains the non-trivial dependence on α̂ and it has a good limit
for m → 0 (as we will discuss later).
At the 1RSB level, using Eqs. (30), (47) and (46), we obtain

S1RSB = (m− 1) log(∆̂1/m)− ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh{1− [γ∆̂1

⋆ θ(h)]m} (55)

which coincides with the previously derived results [1, 2, 11]. At the 2RSB level, we have, using Eqs. (34), (48) and
(46),

S2RSB =

(
m

m1
− 1

)
log[(m1∆̂1 + (1 −m1)∆̂2)/m] +

(
m− m

m1

)
log(∆̂2/m)

− ϕ̂e−
∆̂1
2

∫ ∞

−∞
dh eh

[
1−

[
γ∆̂1−∆̂2

⋆
(
γ∆̂2

⋆ θ(h)
)m1

]m/m1
] (56)
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At the generic kRSB level we obtain from Eq. (39), (46), (42), (43), (44):

SkRSB =
k∑

i=1

(
m

mi
− m

mi−1

)
log(Ĝi/m)− ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh

{
1− g(m1, h)

m
m1

}
,

Ĝi = mi∆̂i +
k∑

j=i+1

(mj −mj−1)∆̂j ,

g(1, h) = γ∆̂k
⋆ θ(h) ,

g(mi, h) = γ∆̂i−∆̂i+1
⋆ g(mi+1, h)

mi
mi+1 , i = 1 · · · k − 1 .

(57)

Finally, the fullRSB expression is, from Eqs. (29), (46), (51), (52), (53):

S∞RSB = −m

∫ 1

m

dy

y2
log

[
y∆(y)

m
+

∫ 1

y

dz
∆(z)

m

]
− ϕ̂ e−∆(m)/2

∫ ∞

−∞
dh eh[1− emf(m,h)] ,

∂f(x, h)

∂x
=

1

2
∆̇(x)

[
∂2f(x, h)

∂h2
+ x

(
∂f(x, h)

∂h

)2
]

,

f(1, h) = logΘ

[
h√

2∆(1)

]
.

(58)

IV. VARIATIONAL EQUATIONS

The replicated entropy depends on the function ∆(x) that parametrizes the hierarchical matrix ∆̂. This function
is determined by optimization of the replicated entropy through a variational principle [30]. In this section we derive
the variational equations for the function ∆(x) that are obtained by optimization of the free energy, i.e. by imposing

the equation ∂s[α̂]
∂∆ab

= 0. It is well known in the context of spin glasses [30] and structural glasses [10, 11] that, for
integer m > 1, this corresponds to the usual maximization of the entropy or minimization of the free energy with
respect to the variational parameters αab, but when the problem is analytically continued to real m < 1, the solution
of these equations does not correspond to a maximum of the entropy, but to a saddle point. This not very important
because to really characterize the stability of the saddle point one has first to compute the matrix of second derivatives

∂2s[α̂]
∂∆ab∂∆cd

, and then perform the analytic continuation of its eigenvalues to m < 1. The continued eigenvalues are
required to be positive.
In this section we derive the variational equations for ∆(x), and we postpone a partial analysis of the stability

matrix to the following sections. In Sec. IVA we derive the equation for ∆̂i in the case of a kRSB structure. In
Sec. IVB we derive the fullRSB equations in two equivalent ways: first by using Lagrange multipliers, and then by
taking the k → ∞ limit of the kRSB equations.

A. Variational equations for the kRSB solution

We consider first the kRSB solution for fixed k. We start from Eq. (57) and we want to impose the condition
∂SkRSB

∂∆̂i
= 0. To do this, we consider Eq. (40) and (46). We have, without taking into account that the matrix ∆ab is

symmetric and for a 6= b:

∂g(m,h)

∂∆ab
=



exp


−1

2

m∑

c,d=1

∆cd
∂2

∂hc∂hd



(
−1

2

∂2

∂ha∂hb

) m∏

f=1

θ (hf)





{ha=h}

= −1

2



exp


−1

2

m∑

c,d=1

∆cd
∂2

∂hc∂hd


 δ(ha)δ(hb)

1,m∏

f 6=a,b

θ(hf )





{ha=h}

(59)
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Note that there are m(mℓ−1 −mℓ) elements in the block ℓ = 1 · · · k and they all give the same contribution, therefore

∂g(m,h)

∂∆̂ℓ

= −m(mℓ−1 −mℓ)

2



exp


−1

2

m∑

c,d=1

∆cd
∂2

∂hc∂hd


 δ(ha)δ(hb)

1,m∏

f 6=a,b

θ(hf )





{ha=h}

. (60)

For a hierarchical matrix, we can use again the strategy of [62]. The difference is that at the beginning of the iteration,
there is a special block that contains the delta instead of the theta function. At some level, the two blocks that contain
the delta are merged. If the two replicas ab are in the ℓ-th block, then we have the following iteration equations:

Nℓ(1, h) = γ∆̂k
⋆ δ(h) =

e−h2/(2∆̂k)

√
2π∆̂k

Nℓ(mi, h) = γ∆̂i−∆̂i+1
⋆ [Nℓ(mi+1, h)g(mi+1, h)

mi/mi+1−1] i = k − 1, · · · , ℓ
Nℓ(mℓ−1, h) = γ∆̂ℓ−1−∆̂ℓ

⋆ [Nℓ(mℓ, h)
2g(mℓ, h)

mℓ−1/mℓ−2]

Nℓ(mi, h) = γ∆̂i−∆̂i+1
⋆ [Nℓ(mi+1, h)g(mi+1, h)

mi/mi+1−1] i = ℓ− 2, · · · , 0
∂g(m,h)

∂∆̂ℓ

= −m(mℓ−1 −mℓ)

2
Nℓ(m,h)

(61)

Note that these equations hold for all ℓ = k, · · · , 1. In the discrete kRSB case, Eq. (51) reads

f(mi, h) =
1

mi
log g(mi, h) , (62)

and we note that for i > ℓ, namely before the two blocks are merged, we can show by recurrence that (denoting with
primes the derivatives with respect to h)

g′(mi, h) = miNℓ(mi, h) ⇔ f ′(mi, h) = Nℓ(mi, h)/g(mi, h) . (63)

This allows for an important simplification because we do not need Nℓ for i ≥ ℓ anymore. We can rewrite Eqs. (61)
equivalently as

Nℓ(mℓ−1, h) = γ∆̂ℓ−1−∆̂ℓ
⋆ [f ′(mℓ, h)

2g(mℓ, h)
mℓ−1/mℓ ]

Nℓ(mi, h) = γ∆̂i−∆̂i+1
⋆ [Nℓ(mi+1, h)g(mi+1, h)

mi/mi+1−1] i = ℓ− 2, · · · , 0
∂g(m,h)

∂∆̂ℓ

= −m(mℓ−1 −mℓ)

2
Nℓ(m,h)

(64)

Now, let us introduce a series of operators Γℓ that are defined by the following equations for an arbitrary test function
t(h):

Γ1 ⋆ t(h) = g(m1, h)
m
m1 t(h) ,

Γi ⋆ t(h) = Γi−1 ⋆

[
1

g(mi−1, h)
γ∆̂i−1−∆̂i

⋆ g(mi, h)
mi−1
mi t(h)

]
i = 2, · · · , k .

(65)

Then we have

Nℓ(m,h) = γ−∆̂1
⋆ Γℓ ⋆ f

′(mℓ, h)
2 . (66)

The next step is to take the derivative with respect to Ĝi of the kRSB free energy, which we write in the form

SkRSB =

k∑

i=1

(
m

mi
− m

mi−1

)
log(Ĝi/m)− ϕ̂

∫ ∞

−∞
dh eh

d

dh
g(m,h) , (67)
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and make use of the relation (38). We get

(
1

mi
− 1

mi−1

)
m

Ĝi

= ϕ̂

∫ ∞

−∞
dh eh

d

dh

k∑

j=1

∂g(m,h)

∂∆̂j

∂∆̂j

∂Ĝi

= ϕ̂

∫ ∞

−∞
dh eh

d

dh





1

mi

∂g(m,h)

∂∆̂i

+
i−1∑

j=1

∂g(m,h)

∂∆̂j

(
1

mi
− 1

mi−1

)


=
mϕ̂

2

∫ ∞

−∞
dh eh

d

dh





1

mi
(mi −mi−1)Ni(m,h) +

i−1∑

j=1

(mj −mj−1)Nj(m,h)

(
1

mi
− 1

mi−1

)
 .

(68)

We observe from Eq. (61) that Ni(m,h) behaves like a Gaussian for h → ±∞, therefore we can safely integrate by
parts, and the last expression can be written as

1

Ĝi

= − ϕ̂

2

∫ ∞

−∞
dh eh

d

dh



mi−1Ni(m,h)−

i−1∑

j=1

(mj −mj−1)Nj(m,h)





= − ϕ̂

2

∫ ∞

−∞
dh ehγ−∆̂1

⋆
d

dh



mi−1Γi ⋆ f

′(mi, h)
2 −

i−1∑

j=1

(mj −mj−1)Γj ⋆ f
′(mj , h)

2





= − ϕ̂

2
e−∆̂1/2

∫ ∞

−∞
dh eh

d

dh



mi−1Γi ⋆ f

′(mi, h)
2 −

i−1∑

j=1

(mj −mj−1)Γj ⋆ f
′(mj , h)

2





=
ϕ̂

2
e−∆̂1/2

∫ ∞

−∞
dh eh



mi−1Γi ⋆ f

′(mi, h)
2 −

i−1∑

j=1

(mj −mj−1)Γj ⋆ f
′(mj , h)

2



 ,

(69)

using the same trick as in Eq. (45). Finally, we can show that
∫ ∞

−∞
dh eh Γi ⋆ f

′(mi, h)
2 =

∫ ∞

−∞
dhP (mi, h)f

′(mi, h)
2 , (70)

provided P (mi, h) satisfies the following recurrence equations:

P (m1, h) = eh g(m1, h)
m
m1 , (71)

P (mi, h) =

∫
dz

P (mi−1, z)

g(mi−1, z)
γ∆̂i−1−∆̂i

(h− z)g(mi, h)
mi−1
mi i = 2, · · · , k . (72)

We obtain therefore the final result

1

Ĝi

=
ϕ̂

2
e−∆̂1/2

∫ ∞

−∞
dh



mi−1P (mi, h)f

′(mi, h)
2 −

i−1∑

j=1

(mj −mj−1)P (mj , h)f
′(mj , h)

2



 . (73)

Eqs. (73), (71)-(72), (42)-(43), (38) constitute a set of closed equations for the Ĝi, or equivalently the ∆̂i. They can

be solved by the following iteration: starting from a guess for ∆̂i, one can solve first the recurrence (42)-(43) and then

the recurrence (71)-(72). From the solutions one can compute the new Ĝi using Eq. (73) and from these the new ∆̂i

using Eq. (38).

B. Variational equations for the fullRSB solution

In this section we will derive the saddle point equations for this function ∆(x) in the continuum limit of fullRSB.
We will do this in two different ways. The first derivation starts from Eq. (58), and it imposes the variational
condition dS∞RSB

d∆(x) = 0 making use of Lagrange multipliers to enforce the Parisi equation [63]. The second derivation

simply consists of taking the continuum limit of the variational equations obtained in the previous section. We obtain
equivalent results which confirms that the calculation is correct. Given the complexity of the computation, this is a
very useful check.
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1. Lagrange multipliers

We need to introduce Lagrange multipliers because the entropy is written in terms of the function g(x, h) or,
equivalently, of the function f(x, h), and this function must satisfy the Parisi equation (52). In order to do properly
the optimization, one can introduce two Lagrange multipliers: P (x, h) is the one needed to enforce the partial
differential equation and P (1, h) is the one needed to enforce the initial condition. Let us start from the complete
fullRSB expression of the entropy, Eq. (58) (where terms that are not important to derive the saddle point equations
are omitted), to which we add these Lagrange multipliers. As a reminder, we indicate the derivative with respect to
x with a dot and the derivative with respect to h with a prime. With these notations, and using Eqs. (37), (35) with

∆(m) = G(m)
m −

∫ 1

m
dz
z2 G(z), we have to impose stationarity of the function

S∞RSB = −m

∫ 1

m

dx

x2
log[G(x)/m]− ϕ̂ e−

∆(m)
2

∫ ∞

−∞
dh eh[1− emf(m,h)]

+mϕ̂ e−
∆(m)

2

∫ ∞

−∞
dh

∫ 1

m

dxP (x, h)

{
ḟ(x, h)− 1

2

Ġ(x)

x

[
f ′′(x, h) + xf ′(x, h)2

]
}

−mϕ̂ e−
∆(m)

2

∫ ∞

−∞
dhP (1, h)

{
f(1, h)− logΘ

(
h√
2G(1)

)}
(74)

over ∆(x), f(x, h), P (x, h), f(m,h) and P (1, h). The first two equations can be obtained by taking the variation with
respect to P (x, h) and f(x, h)

ḟ(x, h) =
1

2

Ġ(x)

x

[
f ′′(x, h) + xf ′(x, h)2

]
, (75)

Ṗ (x, h) = −1

2

Ġ(x)

x
[P ′′(x, h)− 2x(P (x, h)f ′(x, h))′] . (76)

Taking the variation over P (1, h) and f(m,h) we obtain

f(1, h) = logΘ

(
h√
2G(1)

)
, (77)

P (m,h) = emf(m,h)+h . (78)

Finally, taking the variation of G(x) (for x 6= 1 and x 6= m) we obtain the following equation

m

G(x)
= −mϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dhP (x, h)f ′′(x, h)− ϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dh eh[1− emf(m,h)]

= −mϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dhP (x, h)f ′′(x, h)− ϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dh ehemf(m,h)mf ′(m,h)

= −mϕ̂

2
e−

∆(m)
2

{∫ ∞

−∞
dhP (x, h)f ′′(x, h) +

∫ ∞

−∞
dhP (m,h)f ′(m,h)

}
,

which is more conveniently rewritten as

1

G(x)
= − ϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dh
[
P (x, h)f ′′(x, h) + P (m,h)f ′(m,h)

]
. (79)

The system of Eqs. (75)-(79) can be in principle solved numerically, with the following procedure:

• one starts with a guess for G(x);

• from this one solves Eq. (75) with boundary condition (77) to get f(x, h);

• then one can solve Eq. (76) with boundary condition (78) to obtain P (x, h);

• from Eq. (79) one obtains the new G(x)
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2. Continuum limit of the kRSB variational equations

We now take the continuum limit of the discrete kRSB equations following the strategy of section III C3. It was
already shown in that section that in this limit the recurrence equations for g(x, h), Eqs. (42) and (43), become the
Parisi equation (75) with boundary condition (77). The boundary condition for P (x, h) in the discrete, Eq. (71), is
clearly equivalent to the one in the continuum, Eq. (78). It is quite simple, following the lines as in section III C 3, to
show that Eq. (72) becomes, in the continuum limit, Eq. (76), so we do not report the derivation.
It remains to derive Eq. (79). We start from Eq. (73) which becomes in the continuum limit

1

G(x)
=

ϕ̂

2
e−

∆(m)
2

∫ ∞

−∞
dh

{
xP (x, h)f ′(x, h)2 −

∫ x

m

dzP (z, h)f ′(z, h)2
}

. (80)

We now show that Eq. (79) and Eq. (80) are equivalent. This amounts to showing that

∫ ∞

−∞
dh
[
P (x, h)f ′′(x, h) + P (m,h)f ′(m,h)

]
= −

∫ ∞

−∞
dh

{
xP (x, h)f ′(x, h)2 −

∫ x

m

dzP (z, h)f ′(z, h)2
}

. (81)

The strategy to prove the equality (81) is the following. We first see that the two sides are the same at x = m and
then we prove that their derivatives with respect to x are the same. In the following, we say that a(x, h) ∼ b(x, h) if∫∞
−∞ dha(x, h) =

∫∞
−∞ dhb(x, h) to simplify the notations. Doing integration by parts, and noting that from the initial

condition (78) it follows that P ′(m,h) = [1 +mf ′(m,h)]P (m,h), we find

P (m,h)f ′′(m,h) + P (m,h)f ′(m,h) ∼ f ′(m,h)[P (m,h)− P ′(m,h)] ∼ −mP (m,h)f ′(m,h)2 (82)

which shows that Eq. (81) holds at x = m. Next, we compute the derivative with respect to x of the arguments of
the integrals that appear in Eq. (81). We have, using Eqs. (75) and (76), that

Ṗ f ′′ + P ḟ ′′ ∼ Ṗ f ′′ + P ′′ḟ ∼ 1

2

Ġ

x

[
(2x(Pf ′)′ − P ′′) f ′′ + P ′′ (f ′′ + xf ′2)] ∼ ĠP (f ′′)2 , (83)

and

xṖ f ′2 + 2xPf ′ḟ ′ ∼ 1

2
Ġ
[
(2x(Pf ′)′ − P ′′) f ′2 + 2Pf ′ (f ′′′ + 2xf ′f ′′)

]
∼ −ĠP (f ′′)2 . (84)

This proves that the derivatives of the two sides of Eq. (81) with respect to x coincide and therefore completes the
proof of Eq. (81), and of the equivalence of Eq. (79) and Eq. (80). We have therefore derived the set of fullRSB
equations Eqs. (75)-(79) in two independent ways.

V. DERIVATION WITHIN THE GAUSSIAN ANSATZ

Although the above results have been derived from an exact evaluation of the replicated entropy following [1, 2], they
could be equivalently obtained from a suitable Gaussian ansatz in replica space [1]. Here we discuss the appropriate
form of this ansatz. This approach is interesting for two reasons: it sheds some light on the physical interpretation
of both the kRSB ansatz and the function P (mi, h) introduced in Sec. IV, and it opens the way to extend the result
(in an approximate way) to finite dimensions, following the approach of [11, 14].
In general, the replicated entropy is a functional of the single molecule density ρ(x̄), where x̄ = {x1, · · · , xm} and

xa are the d-dimensional vectors corresponding to the positions of particles in the molecule. In terms of this object,
the replicated entropy for d → ∞ is given in [1, Eqs.(2)]:

S[ρ(x̄)] =
∫

dx̄ρ(x̄)[1 − log ρ(x̄)] +
1

2

∫
dx̄dȳρ(x̄)ρ(ȳ)f(x̄− ȳ) ,

f(x̄− ȳ) =
m∏

a=1

e−βv(xa−ya) − 1 .
(85)

In Eq. (85), we introduced a generic interparticle potential v(r) at inverse temperature β. In this paper we restrict
ourselves to the hard sphere potential, where

e−βv(x−y) = θ(|x − y| −D) , (86)
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but since the Gaussian derivation allows one to consider a generic potential, it will be useful to write the expressions
for a generic v(r) because this will be surely useful for future applications, e.g. to the soft sphere case following [14].
Note that in finite dimensions, the replicated entropy can be expressed as an infinite sum of diagrams [11], but for
d → ∞, and for potentials that have a hard core or a properly scaled soft core, one can truncate the series at the
lowest order [11, 64], hence obtaining Eq. (85).
The Gaussian ansatz consists in making an appropriate Gaussian assumption on the function ρ(x̄), thus introducing

a set of variational parameters that are related to the matrix α̂ considered above. In Sec. VA we discuss the proper
Gaussian parametrization of the density function, we compute the entropic term and we show that it has the same
form as the one we found before. Finally, in Sec. VB we compute the interaction term, we discuss the connection
with the correlation function, and we show that in the limit d → ∞ we recover the results obtained above.

A. Gaussian parametrization and the entropic term

For the entropic term, we just need to recall some results already discussed in [1, 2], to which we refer for details.
Thanks to translational invariance, we can choose a parametrization of ρ(x̄) in terms of vectors ū = {u1, · · · , um}
such that

∑m
a=1 ua = 0, and in terms of a m×m symmetric matrix Â such that

∑m
a=1 Aab = 0 for all b. Calling Âm,m

the (m− 1)× (m− 1) matrix obtained from Â by removing the last line and column, the most general Gaussian form
of ρ(ū) is

ρ(ū) =
ρm−d

(2π)(m−1)d/2 det(Âm,m)d/2
e−

1
2

∑1,m−1
ab (Âm,m)−1

ab ua·ub (87)

which is normalized according to ρ =
∫
Dūρ(ū) and Dū = mdδ(

∑
a ua)du1 · · · dum. The parameters Aab give the

average of the squared replica displacements

〈ua · ub〉 =
1

ρ

∫
Dūρ(ū)ua · ub = dAab , (88)

for a, b ∈ [1,m− 1], while 〈ua · um〉 = −∑m−1
b=1 〈ua · ub〉 = Aam and 〈um · um〉 =∑1,m−1

ab 〈ua · ub〉 = Amm. Hence, the
relative replica displacements Dab are given by

〈
(ua − ub)

2
〉
= d Dab = d (Aaa +Abb − 2Aab) . (89)

These corresponds to the physical “overlaps”, i.e. the mean square displacements between different states. By
comparison with Eq. (2), we see that ∆ab = d2 Dab /D

2 and αab = d2Aab/D
2.

The entropic term is better computed by using Eq. (87). Using the fact that dx̄ = dXDū with X a vector in the
physical volume V [1], and using Eq. (88) and Eq. (87), the entropy per particle is

1

N

∫
dx̄ρ(x̄)[1 − log ρ(x̄)] =

1

ρ

∫
Dūρ(ū)[1− log ρ(ū)] = 1− 〈log ρ(ū)〉

= 1− log ρ+ d logm+ (m− 1)
d

2
log(2πe) +

d

2
log det Âm,m ,

(90)

which corresponds indeed to the entropic term in Eq. (1), with the rescaling αab = d2Aab/D
2. Apart from this

rescaling, all the derivation of section III B can therefore be repeated within the Gaussian ansatz and we arrive to
exactly the same results for the entropic term, which therefore has the same form both in infinite dimensions and in
finite dimensions within the Gaussian ansatz.

B. kRSB Gaussian parametrization and the interaction term

1. Finite dimensions

To compute the interaction term, we need to find a simpler parametrization of the kRSB form of the Gaussian
single molecule density. Recall first that in the 1RSB case one has Aab = A1(δab−1/m), hence Daa = 0 and for a 6= b,
Dab = D1 = 2A1. In that case Eq. (87) can be written as [9–11]:

ρ(x̄) = ρ

∫
dX1

m∏

a=1

γd
D1 /2(X

1 − xa) , (91)
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D3

D2 − D3

D1 − D2

θ(|x− y| −D) θ(|x− y| −D)
D3

D2 − D3

D1 − D2

FIG. 2: Illustration of the relevant part of the interaction term,
∫
dx̄dȳρ(x̄)ρ(ȳ)

∏m
a=1 e

−βv(xa−ya). Each of the two kRSB
molecule densities is represented by a tree graph made by full lines. The hard sphere interaction between the atoms of the two
molecules is represented by dashed lines.

where the superscript on X1 is here added for the purpose of later generalization, and

γd
A(x) =

e−
x2

2A

(2πA)d/2
(92)

is a d-dimensional centered Gaussian. The simplest proof of the equivalence of Eq. (87) and Eq. (91) for 1RSB
matrices is obtained by computing for a 6= b

〈
(ua − ub)

2
〉
=
〈
(xa − xb)

2
〉
=

1

ρV

∫
dx̄ρ(x̄)(xa − xb)

2

=
1

V

∫
dX1dxadxb(xa − xb)

2γd
D1 /2(X

1 − xa)γ
d
D1 /2(X

1 − xb)

=

∫
duadub(ua − ub)

2γd
D1 /2(ua)γ

d
D1 /2(ub) = d D1 .

(93)

This shows that Eqs. (87) and (91) have the same (vanishing) first and (finite) second moments, and therefore they
coincide because a Gaussian is only specified by its first two moments.
Let us consider next a matrix Aab with a 2RSB structure. In this case we have two physical overlaps, the Edwards-

Anderson D2 and the inter-state D1 > D2. Let us call Bi = {1 + (i − 1)m1, · · · , im1}, with i = 1 · · ·m/m1 the i-th
block of the 2RSB matrix. Then we can write

ρ(x̄) = ρ

∫
dX1

m/m1∏

i=1

[∫
dX2

i γ
d
(D1 −D2)/2

(X1 −X2
i )

(∏

a∈Bi

γd
D2 /2(X

2
i − xa)

)]
(94)

It is easy to check, through a computation very similar to Eq. (93), that
〈
(ua − ub)

2
〉
=
〈
(xa − xb)

2
〉
is equal to D2

if a, b belong to the same block Bi, and D1 otherwise (and of course zero if a = b), hence we conclude that Eq. (94)
is identical to Eq. (87) for a 2RSB matrix.
Generalizing this construction we easily obtain the structure of the kRSB Gaussian parametrization. We do not

write it explicitly because this would require introducing a heavy notation for block indices, however it is clear that
one should couple each group of replicas in the innermost blocks to reference points Xk

i , then group these reference

points in blocks, each block being coupled to a reference Xk−1
i , and so on until the most external reference points are

coupled to a single X1. This tree structure, and how it enters in the computation of the interaction term, is illustrated
in Fig. 2.
We now show how the computation of the interaction term is performed recursively. We note that the term −1

in the Mayer function is obviously independent of the integration variables and we neglect it for the moment. The
procedure is illustrated in the left panel of Fig. 2. Consider the innermost blue dots, which represent the coordinates
of two atoms. They interact through the “bare” interaction e−βv(x−y). When we integrate over x, y, we generate a
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“bare” interaction between the reference points Xk, Y k, also marked by blue dots. This interaction is

G(1, Xk − Y k) =

∫
dxdyγd

Dk /2(X
k − x)γd

Dk /2(Y
k − y)e−βv(x−y) =

∫
dxγd

Dk
(x)e−βv(Xk−Y k−x)

= (γd
Dk

⊗ e−βv)(Xk − Y k) ,

(95)

where we denoted by ⊗ the d-dimensional convolution. Now, each of the k-level reference positions are coupled to
mk−1/mk atoms, therefore the total bare interaction between each pair Xk, Y k is G(1, Xk − Y k)mk−1/mk . Now we
can integrate over these variables to obtain the bare interaction between (k − 1)-level reference positions, and so on.
It is easy to see that at each step of the iteration we have (we now use a similar notations as that of the previous
sections):

G(mi, r) = γd
Di −Di+1

⊗ G(mi+1, r)
mi/mi+1 . (96)

The bare interaction at level i is G(mi, r)
mi−1/mi . Iterating this procedure, we finally obtain the bare interaction of

the most external reference points which is G(m1, r)
m/m1 . Therefore the interaction term per particle is

1

2N

∫
dx̄dȳρ(x̄)ρ(ȳ)

[
m∏

a=1

e−βv(xa−ya) − 1

]
=

ρ2

2N

∫
dX1dY 1

[
G(m1, X

1 − Y 1)m/m1 − 1
]

=
ρ

2

∫
dr
[
G(m1, r)

m/m1 − 1
]
.

(97)

Before we show that these expressions give exactly the same result obtained before in the limit d → ∞, let us
consider the total “dressed” interaction between two i-level reference points. By dressed interaction we mean that we
do not only integrate over the points “down the tree”, that are at level j > i, as we did before; we also integrate over
all the other points. For the outermost reference points X1, Y 1, the dressed interaction is clearly given by

P(m1, X
1 − Y 1) = G(m1, X

1 − Y 1)m/m1 , (98)

as we discussed before. Now, if we consider the points at level 2, we have:

P(m2, r) = G(m2, r)
m1/m2 γd

D1 −D2
⊗ G(m1, r)

m/m1−1 = G(m2, r)
m1/m2 γd

D1 −D2
⊗ P(m1, r)

G(m1, r)
. (99)

The interpretation of this relation should be straightforward by looking at right panel of Fig. 2. In fact, the first term
is the bare interaction that comes from points down the tree, while the second term is the contribution that comes
from points up the tree, in which we divide P by G because we need to remove the contribution of the branch of the
tree under consideration. Iterating, at level i we have

P(mi, r) = G(mi, r)
mi−1/mi γd

Di−1 −Di
⊗ P(mi−1, r)

G(mi−1, r)
. (100)

At level k this procedure gives the dressed interaction between the innermost reference points Xk, Y k. The last step
allows one to obtain the dressed correlations of two atoms x, y with r = x−y. This is the two-body effective potential
φeff(r) of [11, 14] and we obtain

e−φeff (r) = e−βv(r) γd
Dk

⊗ P(mk, r)

G(mk, r)
. (101)

One can easily check that in the 1RSB case this result gives back the effective potential used in [11, 14]. This result is
particularly interesting for two reasons: on the one hand, in the limit d → ∞ (or, in finite d, under the low-temperature
approximation of Ref. [14]), the effective potential coincides with the pair correlation function of the glass, gg(r). On
the other hand, in finite dimension one could plug this effective potential into some liquid theory integral equations
to compute an approximation of the replicated entropy, following the strategy of [11]. We do not discuss this second
issue here, leaving it for future work, and we keep our focus instead on the limit d → ∞.
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2. The limit d → ∞

To take the d → ∞ limit, we assume that the potential has the form e−βv(r) = e−v̂[d(|r|−D)/D], and e−v̂(h) is a
finite function6 when d → ∞. The hard sphere potential, the only one that we consider in this paper, has this form
with e−v̂(h) = θ(h). Note, however, that the interaction potential enters only in the initial condition for the function
G(1, r).
We now show briefly that in the limit d → ∞ the equations we just derived give back Eq. (57). First of all, we

note that all the interaction functions G(mi, r) and P(mi, r) are rotationally invariant and therefore depend only on
|r|. Moreover, all these functions tend to 1 for |r| → ∞ and they decrease fast to zero when |r| ≪ D. Actually, as
we show below, for d → ∞ the growth of these functions from 0 to 1 happens on a scale ∼ 1/d around |r| = D. We
therefore define |r| = D(1 + h/d) and we consider G(mi, h) and P(mi, h) to be functions of h. We will see that with
this convention, h is the same variable that enters in the equations of the previous sections.

Next, to obtain a non-trivial limit we scale the parameters introducing ∆̂i = d2 Di /D
2. Then, following exactly the

strategy of [11, Appendix C.2.d] through the use of bipolar coordinates, one can see that in the limit d → ∞, with
the scaling r = D(1 + h/d) and u = D(1 + z/d), we have

G(1, h) = γd
D2∆̂k/d2 ⊗ e−v̂[d(|r|−D)/D] =

∫ ∞

0

du
(u
r

) d−1
2 e

− (r−u)2

2 Dk√
2πDk

e−
Dk

8d2ru e−v̂[d(u−D)/D]

∼
∫ ∞

−∞
dz e(z−h)/2 e

− (z−h)2

2∆̂k√
2π∆̂k

e−
∆̂k
8 e−v̂(z) =

∫ ∞

−∞
dz

e
− (z−h−∆̂k/2)2

2∆̂k√
2π∆̂k

e−v̂(z)

= (γ∆̂k
⋆ e−v̂)(h+ ∆̂k/2) = g(1, h+ ∆̂k/2) .

(102)

With a similar reasoning, Eq. (96) becomes

G(mi, h) = γd
Di−Di+1

⊗ G(mi+1, h)
mi/mi+1 =

∫ ∞

−∞
dz γ∆̂i−∆̂i+1

[h− z + (∆̂i − ∆̂i+1)/2]G(mi+1, z)
mi/mi+1

=

∫ ∞

−∞
dz γ∆̂i−∆̂i+1

(h+ ∆̂i/2− z)G(mi+1, z − ∆̂i+1/2)
mi/mi+1 .

(103)

This equation coincides with Eq. (43) if one makes for all i the identification

G(mi, h) = g(mi, h+ ∆̂i/2) , (104)

and recalling that for hard spheres e−v̂(h) = θ(h). Hence the interaction term is (using that the solid angle is d Vd

with Vd the volume of a unit sphere)

ρ

2

∫
dr
[
G(m1, r)

m/m1 − 1
]
=

ρd Vd

2

∫ ∞

0

dr rd−1
[
g(m1, h+ ∆̂1/2)

m/m1 − 1
]

=
2dϕ

2

∫ ∞

−∞
dh eh

[
g(m1, h+ ∆̂1/2)

m/m1 − 1
]
=

d ϕ̂

2
e−∆̂1/2

∫ ∞

−∞
dh eh

[
g(m1, h)

m/m1 − 1
]
,

(105)

which provides the exact result of Eq. (57).
Next, we analyze the behavior of P for d → ∞. The initial condition from Eqs. (98) and (71) is

P(m1, h) = g(m1, h+ ∆̂1/2)
m/m1 = e−h−∆̂1/2P (m1, h+ ∆̂1/2) . (106)

With a similar reasoning as before, one can show that identifying

P(mi, h) = e−h−∆̂1/2P (mi, h+ ∆̂i/2) (107)

for all i, Eq. (100) becomes in fact identical to Eq. (72) in the limit d → ∞. We obtain from this identification a
deep physical interpretation of the function P (mi, h), which turns out to be related to the dressed interaction of the
reference positions at level i, P(mi, h), by Eq. (107).

6 Remember that in general we use a wide hat to denote quantities that are properly rescaled to be finite when d → ∞.
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Finally, we can write Eq. (101) for d → ∞. We get

e−φeff (h) = e−v̂(h)

∫ ∞

−∞
dz ez−h γ∆̂k

(h− z)
e−z−∆̂1/2P (mk, z)

g(mk, z)
. (108)

This is a very important result because it allows one to obtain structural information about the pair correlation from
the knowledge of the functions P (mi, h) and g(mi, h).
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Part II

Extraction of the results from the equations

VI. SUMMARY OF THE EQUATIONS, AND A NUMERICALLY CONVENIENT FORMULATION

In the following sections, we will investigate the phase diagram that one obtains from the study of the kRSB
equations, and we derive the scaling properties at large pressure. The way in which one has to extract physical
information from the replicated entropy has been explained in many reviews [8, 10, 11, 30]. Although we will give
additional details along the way, we assume that the reader is familiar with this kind of computations.
Before extracting the physics, let us summarize here the kRSB equations (57) together with the variational equa-

tions (71)-(72) and (73). These are

SkRSB =
k∑

i=1

(
m

mi
− m

mi−1

)
log(Ĝi/m)− ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh

{
1− emf(m1,h)

}
,

∆̂i =
Ĝi

mi
+

k∑

j=i+1

(
1

mj
− 1

mj−1

)
Ĝj ,

f(1, h) = log γ∆̂k
⋆ θ(h) = logΘ


 h√

2∆̂k


 ,

f(mi, h) =
1

mi
log
[
γ∆̂i−∆̂i+1

⋆ emif(mi+1,h)
]
, i = 1 · · · k − 1 ,

P (m1, h) = eh emf(m1,h) ,

P (mi, h) =

∫
dzP (mi−1, z)e

−mi−1f(mi−1,z)γ∆̂i−1−∆̂i
(h− z)emi−1f(mi,h) i = 2, · · · , k ,

1

Ĝi

=
ϕ̂

2
e−∆̂1/2

∫ ∞

−∞
dh



mi−1P (mi, h)f

′(mi, h)
2 −

i−1∑

j=1

(mj −mj−1)P (mj , h)f
′(mj , h)

2



 .

(109)

A. Scaled variables and the jamming limit

Because (as we will see below) we are mostly going to work at small m, and the jamming limit corresponds to
m → 0, it is convenient to write the equations in scaled variables that remain finite when m → 0. These are
yi = mi/m (keeping in mind that y0 = 1 and that yk = 1/m diverges with m and will play the role usually played by

temperature), f̂(yi, h) = mf(mi, h), γ̂i = Ĝi/m, from which it follows that ∆̂k = mγ̂k while all the other ∆̂i remain

finite for m → 0. It will also be convenient for numerical reasons to introduce P̂ (yi, h) = e−∆̂1/2e−hP (mi, h). Note

also that ∆̂i − ∆̂i+1 = (γ̂i − γ̂i+1)/yi. In terms of these variables, and introducing auxiliary variables κ̂i (not to be
confused with the exponent κ discussed above) we have:

SkRSB =

k∑

i=1

(
1

yi
− 1

yi−1

)
log γ̂i − ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh

{
1− ef̂(y1,h)

}
,

∆̂i =
γ̂i
yi

+

k∑

j=i+1

(
1

yj
− 1

yj−1

)
γ̂j ,

f̂(1/m, h) = m logΘ

(
h√
2mγ̂k

)
,

f̂(yi, h) =
1

yi
log
[
γ(γ̂i−γ̂i+1)/yi

⋆ eyif̂(yi+1,h)
]
, i = 1 · · · k − 1 ,

P̂ (y1, h) = e−∆̂1/2ef̂(y1,h) ,
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P̂ (yi, h) =

∫
dz ez−h P̂ (yi−1, z)e

−yi−1f̂(yi−1,z)γ(γ̂i−1−γ̂i)/yi−1
(h− z)eyi−1f̂(yi,h) i = 2, · · · , k ,

κ̂i =
ϕ̂

2

∫ ∞

−∞
dh eh P̂ (yi, h)f̂

′(yi, h)
2 ,

1

γ̂i
= yi−1κ̂i −

i−1∑

j=1

(yj − yj−1)κ̂j .

To solve numerically these equations it is convenient to have some control on the asymptotic behavior of the functions

when h → ±∞. We start by the function f̂(yi, h). From the initial condition we see that f̂(1/m, h → ∞) = 0 and

f̂(1/m, h → −∞) ∼ −h2/(2γ̂k). Inserting these asymptotes in the evolution equation for f̂(yi, h), one can show that

f̂(yi, h → −∞) ∼ −h2/(2γ̂i) ,

f̂(yi, h → ∞) = 0 .
(110)

From this, we obtain that P̂ (y1, h → −∞) = 0 while P̂ (y1, h → ∞) = e−∆̂1/2. As a consequence, from the recurrence

equation for P̂ (yi, h) one can show that

P̂ (yi, h → −∞) = 0 ,

P̂ (yi, h → ∞) = e−∆̂i/2 .
(111)

To obtain a simpler asymptotic behavior it is convenient to make a change of variable:

f̂(yi, h) = −h2θ(−h)

2γ̂i
+ ĵ(yi, h) , (112)

in such a way that the leading asymptotic term of f̂(yi, h) in Eq. (110) is subtracted from ĵ(yi, h). Then we have

SkRSB =
k∑

i=1

(
1

yi
− 1

yi−1

)
log γ̂i − ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh

{
1− e−

h2θ(−h)
2γ̂1

+ĵ(y1,h)

}
,

∆̂i =
γ̂i
yi

+

k∑

j=i+1

(
1

yj
− 1

yj−1

)
γ̂j ,

ĵ(1/m, h) = m logΘ

(
h√
2mγ̂k

)
+

h2θ(−h)

2γ̂k
,

ĵ(yi, h) =
1

yi
log

[∫ ∞

−∞
dz Kγ̂i,γ̂i+1,yi

(h, z) eyiĵ(yi+1,z)

]
, i = 1 · · · k − 1 ,

P̂ (y1, h) = e−∆̂1/2−h2θ(−h)
2γ̂1

+ĵ(y1,h) ,

P̂ (yi, h) =

∫
dz Kγ̂i−1,γ̂i,yi−1

(z, h) P̂ (yi−1, z) e
z−h e−yi−1ĵ(yi−1,z)+yi−1ĵ(yi,h) i = 2, · · · , k ,

κ̂i =
ϕ̂

2

∫ ∞

−∞
dh eh P̂ (yi, h)

(
−hθ(−h)

γ̂i
+ ĵ′(yi, h)

)2

,

1

γ̂i
= yi−1κ̂i −

i−1∑

j=1

(yj − yj−1)κ̂j .

(113)

where

Kγ̂,γ̂′,y(h, z) =
exp

[
− y

2

(
(z−h)2

γ̂−γ̂′
− h2θ(−h)

γ̂ + z2θ(−z)
γ̂′

)]

√
2π(γ̂ − γ̂′)/y

(114)

is not a symmetric function of h and z, nor a function of h − z. However, the advantage of this formulation is that
the kernel K is an almost Gaussian function which is well behaved, and all the other functions that appear in the
integrals are smooth. This allows for a stable numerical evaluation of the integrals.
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Note that Eqs. (113) admit a perfectly smooth m → 0 limit. First of all one has to set 1/yk = m, ∆̂k = 0. Then,

using the large λ development of Θ(−λ/
√
2), one can easily show that

lim
µ→0

Θ

(
z√
µ

)µ

= e−z2θ(−z) , (115)

and therefore ĵ(yk, h) = 0. All the other equations remain identical to the case m > 0.

B. The continuum limit

It will be convenient for later purposes to write explicitly the continuum limit of the equations in terms of scaled
variables. These are

S∞RSB = −
∫ 1/m

1

dy

y2
log [γ(y)]− ϕ̂ e−∆(1)/2

∫ ∞

−∞
dh eh[1− e−

h2θ(−h)
2γ(1)

+ĵ(1,h)] ,

∆(y) =
γ(y)

y
−
∫ 1/m

y

dz

z2
γ(z) , ⇔ γ(y) = y∆(y) +

∫ 1/m

y

dz∆(z) ,

ĵ(1/m, h) = m logΘ

(
h√

2mγ(1/m)

)
+

h2θ(−h)

2γ(1/m)
,

∂ĵ(y, h)

∂y
=

1

2

γ̇(y)

y


−θ(−h)

γ(y)
+

∂2ĵ(y, h)

∂h2
− 2y

hθ(−h)

γ(y)

∂ĵ(y, h)

∂h
+ y

(
∂ĵ(y, h)

∂h

)2

 ,

P̂ (1, h) = e−∆(1)/2−h2θ(−h)
2γ(1)

+ĵ(1,h) ,

∂P̂ (y, h)

∂y
= −1

2

γ̇(y)

y
e−h

{
∂2[ehP̂ (y, h)]

∂h2
− 2y

∂

∂h

[
ehP̂ (y, h)

(
−hθ(−h)

γ(y)
+

∂ĵ(y, h)

∂h

)]}
,

κ(y) =
ϕ̂

2

∫ ∞

−∞
dh eh P̂ (y, h)

(
−hθ(−h)

γ(y)
+ ĵ′(y, h)

)2

,

1

γ(y)
= yκ(y)−

∫ y

1

dzκ(z) .

(116)

Having formulated the kRSB equations in a convenient way, we now proceed to extract the physical results from
them. However, because the numerical solution of these equations is not trivial, we first investigate a certain number
of asymptotic limits in which analytical results can be obtained.

VII. PERTURBATIVE 2RSB SOLUTION AROUND THE GARDNER LINE

The Gardner transition [35] separates the region where the 1RSB solution is stable from the one where it is unstable.
In our problem, the 1RSB solution is stable in a certain region of the phase diagram, and it becomes unstable on
a line that has been computed and characterized in the previous paper of this series [2]. The aim of this section,
following the analysis of [33], is to perform a perturbative computation around the Gardner line, in the region where
the 1RSB solution is unstable, and discuss the existence of a 2RSB (or fullRSB) solution. In Sec. VIIA we perform
the perturbative computation and show that a 2RSB solution only exists in a certain region of the Gardner line; in
Sec. VII B we discuss the behavior of the perturbative solution at large densities and pressures.
We start our analysis of the kRSB equations by examining what happens around the Gardner transition line that

has been computed in [2]. We will follow closely the analysis of Refs. [31, 33]. Fig. 3 reports a schematic phase
diagram in the ϕ̂, m plane. The reader should keep in mind that m ∝ 1/p where p is the reduced pressure [2]. Let us
summarize briefly the phase diagram. A 1RSB solution exists above the 1RSB dynamical line, i.e. for ϕ̂ > ϕ̂1RSB

d (m)
or equivalently m > m1RSB

d (ϕ̂). Above the Gardner line, i.e. for m ≥ mG(ϕ̂) or ϕ̂ > ϕ̂G(m), this 1RSB solution is
stable [2] and one can extract the physical results from it [11]. Below this line, the 1RSB solution is unstable and
we look for a kRSB solution with k > 1. Since the instability is due to a vanishing mode [2], we expect that the
1RSB solution will transform continuously in a kRSB solution with k > 1, and we therefore start by looking at the
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m

1

ϕ̂d ϕ̂∗

ϕ̂1RSBth ϕ̂2RSBth
ϕ̂G ϕ̂GCP

ϕ̂

log d

ϕ̂K

mG(ϕ̂)

m1RSB
d (ϕ̂)

m2RSB
d (ϕ̂)

m∗

FIG. 3: Schematic phase diagram in the (m, ϕ̂) plane.

new solution by doing perturbation theory around the 1RSB solution in the vicinity of the Gardner line. Based on
the analogy with spin glass models [33], we expect the new solution to be a fullRSB one, but in perturbation theory
it is enough to consider a 2RSB solution because the breaking is small and the two perturbative computations give
identical results [65].

A. Development around the 1RSB solution

We have found in [2] that the instability of the 1RSB solution is due to the vanishing of the “replicon” eigenvalue
λR(m). It is therefore natural to consider a perturbation of the 1RSB matrix that is proportional to the subspace
associated with the vanishing mode. We need to consider the cubic expansion in this direction and check if the cubic
terms can stabilize the negative quadratic part. Hence we consider a perturbative 2RSB matrix of the form:

αab = α1RSB
ab + δαab ,

δαab = δα̂1(1− δab)

(
m−m1

1−m1
Im1

ab + Imab − Im1

ab

)
≡ δα̂1rab

(117)

(remember that the matrices Imi

ab are defined in Sec. III C). The matrix δα̂ belongs to the replicon subspace [66]. It
has been shown in [66] that the cubic terms of the expansion of the 2RSB entropy around the 1RSB solution are eight,
but if the perturbation matrix δα̂ is in the replicon subspace, only the two terms proportional to the coefficients w1

and w2 that have been analyzed in [2] survive. In practice we have

s[α̂1RSB + δα̂] = s[α̂1RSB] +
1

2
λR(m)

∑

a 6=b

δα2
ab +

1

6


w1(m)Trδα̂3 + w2(m)

∑

a 6=b

δα3
ab




= s[α̂1RSB] +
1

2
λ̂R(m,m1)δα̂

2
1 +

1

6
W [w1(m), w2(m),m,m1]δα̂

3
1 .

(118)

where λR(m) is the replicon eigenvalue that has been computed in [2]. The relation between λR(m) and λ̂R(m,m1)
can be exploited to obtain the replicon eigenvalue from the 2RSB entropy and it gives

λ̂R(m,m1) =
m(1−m)(m−m1)

1−m1
λR(m) =

d2s[α̂1RSB + δα̂]

dδα̂2
1

∣∣∣∣
δα̂1=0

. (119)

It expresses the fact that the replicon eigenvalue can be obtained from the second derivative with respect to δα̂1 of
the replicated entropy computed on a matrix of the form (117). We want now to express W explicitly in terms of w1
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and w2 that we have already computed in [2]. Note that w1(m) and w2(m) depend only on m and not on m1 as a
consequence of the fact that they are computed on a 1RSB matrix that does not depend on m1. To do this one can
use the following relations between matrices Îmi :

(Îmi)2 = miÎ
mi , ÎmÎm1 = Îm1 Îm = m1Î

m , (120)

to obtain that the matrix r̂ defined in (117) satisfies

Tr r̂3 =
m(m1 −m)(m− 1)

(m1 − 1)2
(mm1 +m1 − 2m) ,

∑

a 6=b

r3ab =
m(m1 −m)(m− 1)

(m1 − 1)2
(1 +m− 2m1) , (121)

and therefore

W [w1, w2,m,m1] =
m(m1 −m)(m− 1)

(m1 − 1)2
[w1(m) (mm1 +m1 − 2m) + w2(m)(1 +m− 2m1)] . (122)

To obtain the perturbative 2RSB solution in the (m, ϕ̂) plane we search for a non trivial stationary point solution for
the expression (118). The trivial 1RSB solution δα̂1 = 0 can always be found but it is unstable below the Gardner line
where λR(m) < 0. To find the non-trivial solution we first optimize over δα̂1 and then we optimize over the breaking
point m1. The saddle point equation for δα̂1 gives

δα̂1 = −2λ̂R

W
. (123)

The entropy as a function of m1 is obtained by plugging the above expression in (118) and it gives

s[α̂1RSB + δα̂] = s[α̂1RSB]− 1

3

λ̂3
R(m,m1)

W 2(m,m1)
(124)

Now we should search for the extremum in m1. We obtain that the breaking point is

m1 =
w2(m)

w1(m)
≡ λ(m) , (125)

where λ(m) is the Mode-Coupling theory exponent parameter that has been discussed in [2]. However, as it is usual
in replica computations, the saddle point solution for the breaking point should satisfy m < m1 < 1. This implies
that a 2RSB solution exists only if

m ≤ w2(m)

w1(m)
≡ λ(m) . (126)

Note that, because we are perturbing around the 1RSB solution close to the Gardner line where the replicon mode

vanishes, all the quantities λ̂R(m), w1(m) and w2(m) are computed on the Gardner line.
We now follow the discussion of [33]. We know that at m = 1 the Gardner line corresponds to the dynamical

transition point and at that point λ(m = 1) = λMCT = 0.70698 < 1 = m [2]. Hence, by continuity, close to m = 1 we
have λ(m) < m and there is no non-trivial 2RSB solution. We conclude, following [33], that in this region only the
1RSB solution exists down to the Gardner line, and there is no other solution below the Gardner line. However, the
condition (126) tells us that there might exist a point in the (m, ϕ̂) plane where

m∗ = λ(m∗) , (127)

so that below this point a perturbative 2RSB solution can be found. The point m∗ can be computed using the
expressions for w1(m) and w2(m) that we computed in [2]. The numerical solution of equation (127) gives

m∗ ≃ 0.414 =⇒ ϕ̂∗ ≃ 5.84 . (128)

We therefore obtain the schematic phase diagram represented in Fig. 3, which is strongly similar to the one found
in [33] for the Ising p-spin glass model. For m > m∗ or ϕ̂ < ϕ̂∗, no solution exist below the Gardner line, which
therefore delimits the region where the only non-trivial 1RSB solution exists. Instead, for m < m∗ or ϕ̂ > ϕ̂∗ a
non-trivial kRSB solution with k > 1 exists below the Gardner line. It is reasonable to expect that this solution will
exist in a finite region below the Gardner line. The region of existence of the 2RSB solution should be delimited by
a dynamical line ϕ̂2RSB

d (m) or m2RSB
d (ϕ̂), shifted with respect to the 1RSB dynamical line (see Fig. 3 for a schematic

drawing of this line). We will show in Sec. VIII C how this line can be defined. Note however that the instability of
the replicon mode suggests that the 2RSB solution is also unstable towards 3RSB and so on, until the correct fullRSB
solution is found.
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B. Asymptotic expression for λ(m) at large densities on the Gardner line

In this section we compute the asymptotic behavior of λ(m) for m → 0 or ϕ̂ → ∞ on the Gardner line. The
importance of this computation is twofold. First, we want to check that the condition m < λ(m) holds for all m < m∗

on the Gardner line, which implies that a non-trivial 2RSB solution exists for all ϕ̂ > ϕ̂∗. Second, we have shown that
the breaking point of the 2RSB solution is m1 = λ(m) on the Gardner line. Actually this is true also if we perform a
perturbative fullRSB calculation around the instability line [65]. It follows that the asymptotic computation of λ(m)
tells us what is the behavior of the breaking point at large densities, which will be useful to investigate the general
properties of the kRSB solutions.
In the following we rely heavily on the notations and results of [2, Sec.V and VI]. Let us first recall the expression

for λ(m), which can be written as

λ(m) =
−ŵ

(I)
2 (ÂG(m),m)

2
ϕ̂G(m) − ŵ

(I)
1 (ÂG(m),m)

(129)

where ϕ̂G(m) is the Gardner line, ÂG(m) is the 1RSB cage radius on the Gardner line, and

ŵ
(I)
1 (ÂG(m),m) = −

〈
Θm−1

0 (λ)Γ1(λ,m)
〉
ÂG(m)

ŵ
(I)
2 (ÂG(m),m) =

1

2

〈
Θm−1

0 (λ)Γ2(λ,m)
〉
ÂG(m)

(130)

with

Γ2(λ,m) =

[
2

(
Θ1(λ)

Θ0(λ)

)3

− 3
Θ1(λ)Θ2(λ)

Θ2
0(λ)

+
Θ3(λ)

Θ0(λ)

][
2λ3 + 2(m− 6)

(
Θ1(λ)

Θ0(λ)

)3

+

+3
Θ1(λ)

Θ0(λ)

[
4λ

Θ1(λ)

Θ0(λ)
− (m− 4)

Θ2(λ)

Θ0(λ)

]
− 6λ

(
λ
Θ1(λ)

Θ0(λ)
+

Θ2(λ)

Θ0(λ)

)
+ (m− 2)

Θ3(λ)

Θ0(λ)

]
,

Γ1(λ,m) =

[
1 +

Θ2
1(λ)

Θ2
0(λ)

− Θ2(λ)

Θ0(λ)

]2 [
(m− 3λ2) + (m− 6)

Θ2
1(λ)

Θ2
0(λ)

+ 6λ
Θ1(λ)

Θ0(λ)
− (m− 3)

Θ2(λ)

Θ0(λ)

]
,

(131)

where the functions Θk(λ) =
1√
2π

∫∞
x dy yke−y2/2 have been defined in [2, Eq. (41)-(43)] and

〈O(x)〉A =

∫ ∞

−∞

dx√
2π

O(x)e−
1
2 (x+

√
2A)2 . (132)

Following the analysis and the notations of [2, Sec.V and VI], at the instability line we have ϕ̂G(m) = 1/Fm(ÂG(m)),

where ÂG(m) satisfies the equation 2Fm(ÂG(m)) = −Λm(ÂG(m)) and

Λm(ÂG(m)) = 〈L(λ,m)〉ÂG(m)

L(λ,m) = Θm−1
0 (λ)

[(
Θ1(λ)

Θ0(λ)

)2

− λ
Θ1(λ)

Θ0(λ)

][
2− 2λ2 + (m− 4)

(
Θ1(λ)

Θ0(λ)

)2

+ (6 −m)λ
Θ1(λ)

Θ0(λ)

]
.

(133)

It follows that the expression for λ can be put in the form

λ(m) =
ŵ

(I)
2 (ÂG(m),m)

Λm(ÂG(m)) + ŵ
(I)
1 (ÂG(m),m)

. (134)

In [2, Sec. V D] it was shown that in the limit m → 0,

√
ÂG(m) ≃ 0.8m. This means that we can hope to expand

the numerator and the denominator in powers of
√
AG.

ŵ
(I)
2 (ÂG(m),m) = w

(0)
2 (m) +

√
ÂG(m)w

(1)
2 (m) + ÂG(m)w

(2)
2 (m) + . . .

ŵ
(I)
1 (ÂG(m),m) = w

(0)
1 (m) +

√
ÂG(m)w

(1)
1 (m) + ÂG(m)w

(2)
2 (m) + . . .

Λm(ÂG(m)) = Λ(0)(m) +

√
ÂG(m)Λ(1)(m) + ÂG(m)Λ(2)(m) + . . .

(135)
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Let us study the numerator first. It happens that w
(0)
2 (m) = 0 with very good numerical accuracy, and the equality

can be probably demonstrated by a series of integrations by parts (see [2] for a similar computation). The first order
term (multiplied by 2 for convenience) can be written as

2w
(1)
2 (m) =

∫ ∞

−∞

dλ√
2π

e−λ2/2(−λ
√
2)Θ0(λ)

m−1Γ2(λ,m) . (136)

As it was discussed in [2], the behavior of the integral depends on how the function inside behaves as λ → ∞ for
small m. We have two possibilities: the integral decays as λα with α > 1 and in that case the integral is convergent;
on the other case, we have a divergent contribution that has to be studied looking at the limit m → 0. To see which
of the two behaviors happens we develop asymptotically the integrand

e−λ2/2(−λ
√
2)Θm−1

0 (λ)Γ2(λ,m) ∼ e−mλ2/2(−λ
√
2)(λ

√
2π)1−m

(
2m

λ6
− 12(4m− 1)

λ8
+ . . .

)
(137)

from which it follows that the integral is finite at m = 0 and it is given by

2w
(1)
2 (0) =

∫ ∞

−∞

dλ√
2π

e−λ2/2(−λ
√
2)Θ−1

0 (λ)Γ2(λ, 0) ≃ −0.134 (138)

Let us now study the denominator. Also in this case the zeroth order term is zero with very good accuracy. The first
order term of the denominator is

2Λ(1)(m) + 2w
(1)
1 (m) =

∫ ∞

−∞

dλ√
2π

(−λ
√
2)e−λ2/2Θm−1

0 (λ) [L(λ,m) + Γ1(λ,m)]

∼
∫ ∞

−∞

dλ√
2π

e−mλ2/2(λ
√
2π)1−m(−λ

√
2)

[
m

λ2
+

2− 8m

λ4
+ . . .

]
.

(139)

Also in this case the integral is finite at m → 0 and it is given by

2Λ(1)(0) + 2w
(1)
1 (0) =

∫ ∞

−∞

dλ√
2π

e−λ2/2(−λ
√
2)Θ−1

0 (λ) [L(λ, 0) + Γ1(λ, 0)] ≃ −1.067 . (140)

We therefore obtain the final result

lim
m→0

λ(m) = 0.124 , (141)

which shows that λ(m) has a finite limit on the Gardner line and therefore the condition m < λ(m) holds for all
m < m∗.

VIII. THE JAMMING LIMIT OF THE 2RSB SOLUTION

The opposite limit, with respect to the perturbative computation of Sec. VII, in which the problem simplifies a lot is
the jamming limit m → 0. In this limit, pressure diverges and one approaches the jamming point where particles are
in contact. This has been investigated in full details at the 1RSB level [11, 14]: at the 1RSB level, in the limit m → 0

the parameter γ̂1 = 2α̂1 remains finite, in such a way that the mean square displacement in the glass, ∆̂1 = mγ̂1
vanishes proportionally to m, ∆̂1 ∼ m ∼ 1/p.
In this section we discuss what happens at the 2RSB level. This is interesting because it allows us to determine

the endpoint of the 2RSB dynamical line, which corresponds to the 2RSB threshold ϕ̂2RSB
th , see Fig. 3. In general,

we can expect (based on the experience accumulated on the spin glass models [30]) that the 2RSB computation is an
extremely good quantitative approximation for the fullRSB result as far as thermodynamic quantities are concerned,
therefore the 2RSB threshold should be a very good approximation of the fullRSB one. Moreover, we will encounter
here most of the numerical difficulties that will also be relevant for the study of the fullRSB solution.
In Sec. VIII A we obtain the expression of the 2RSB entropy and the associated variational equations in the limit

m → 0. In Sec. VIII B we show that the variational equations can be solved analytically in a systematic high density
expansion. In Sec. VIII C we discuss the results of a numerical solution of the variational equations; we show that the
numerical results are consistent with the high density expansion, and we discuss how the 2RSB threshold is computed.
Finally, in Sec. VIII D we summarize the phase diagram obtained from the 2RSB solution.
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A. The 2RSB equations at m = 0

In order to discuss the behavior of the 2RSB entropy at small m, it is convenient to make a change of variables as
follows. We eliminate γ̂2 and m1 in favor of

η = 1− γ̂2
γ̂1

,

ν =
m

m1
=

1

y1
.

(142)

In terms of the variables γ̂1, η, ν, and using Eqs. (33) we can reconstruct the other parameters as follows:

m1 = m/ν ,

γ̂2 = γ̂1(1− η) ,

∆̂1 = mγ̂1(1− η) + γ̂1ην ,

∆̂2 = mγ̂1(1− η) .

(143)

Furthermore, from the condition that ∆̂1 ≥ ∆̂2 ≥ 0 we see that η ∈ [0, 1], while from 1 ≥ m1 ≥ m we have that
ν ∈ [m, 1]. Writing the entropy (56) in terms of these variables, and writing explicitly the convolutions with some
simple changes of variables, we obtain

s2RSB = 1− log ρ+
d

2
m logm+

d

2
(m− 1) log(πeD2/d2)

+
d

2

{
(m− 1) log γ̂1 + (m− ν) log(1− η)− ϕ̂

√
νηγ̂1 e

−γ̂1[m(1−η)+ην]/2

∫ ∞

−∞
dx ex

√
νηγ̂1 [1− (Im2 (x))ν ]

}

Im2 (x) =

∫ ∞

−∞
DzΘm/ν

[√
ν

m

η

1− η

x− z√
2

]
(144)

As we will see later, this expression is also convenient to perform a numerical computation of the optimal values of
the parameters γ̂1, η, ν.
We now want to check that Eq. (144) has a finite limit m → 0 if all the other parameters γ̂1, η, ν are fixed (i.e. they

do not scale with m). Note that in this limit both η, ν ∈ [0, 1] and moreover, according to Eq. (143), ∆̂2 → 0 while

∆̂1 remains finite. The limit m → 0 of Eq. (144) can be taken easily. The only non-trivial part is the function Im2 (x).
Using Eq. (115), we have

I2(x) = lim
m→0

Im2 (x) =

∫ ∞

−∞
Dz exp

[
− η

2(1− η)
(x− z)2 θ (z − x)

]

= Θ

(
x√
2

)
+ e−

η
2 x

2√
1− ηΘ

(
−
√

1− η

2
x

)
,

(145)

and therefore

lim
m→0

s2RSB = 1− log ρ− d

2
log(πeD2/d2)

+
d

2

{
− log γ̂1 − ν log(1− η)− ϕ̂

√
ηνγ̂1e

−γ̂1ην/2

∫
dx ex

√
ηνγ̂1 [1− I2(x)

ν ]

}

I2(x) = Θ

(
x√
2

)
+ e−

η
2 x

2√
1− ηΘ

(
−
√

1− η

2
x

)
.

(146)

We see that we obtain a finite limit that corresponds to the complexity at m = 0 [11], and we also conclude that the
three parameters γ̂1, η, ν have finite values at m = 0. From this, we reach the important physical conclusion that

the mean square displacement inside a glass, ∆̂2, vanishes at jamming, as it should, but at the same time, the mean

square displacement ∆̂1 between different sub-glasses inside a meta-glass remains finite. Hence, sub-glasses inside a
meta-glass are microscopically distinct. Finally, we note that m1 vanishes proportionally to m because ν is finite.
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B. The high density limit of the 2RSB solution at m = 0

The expression (146) is still quite difficult to handle numerically. Therefore, before discussing the numerical opti-
mization it is convenient to obtain some asymptotic results for large density. We first observe that in the 1RSB case
γ̂1 ∼ ϕ̂−2 and we therefore expect the same scaling also in the 2RSB case. Furthermore, on the Gardner transition
line we showed in section VII that m1 = λ(m) → 0.124 and that m ∼ 1.98ϕ̂−2, hence ν = m/m1 ∼ 16.0ϕ̂−2. We
therefore seek for a small γ̂1 and small ν expansion of Eq. (146). Because both γ̂1 and ν are of the same order of
magnitude, we use 1/ϕ̂ as the small expansion parameter. Note that we write γ̂1, ν ∼ O(2) to indicate that these
quantities are of order 2 in 1/ϕ̂, and similarly for other quantities.
According to the definition in Eq. (54), the part of the entropy that has to be optimized is

S2RSB = − log γ̂1 − ν log(1 − η)− ϕ̂I , (147)

and we have to expand the integral

I =
√
γ̂1ην

∫ ∞

−∞
dx ex

√
γ̂1ην−γ̂1ην/2 [1− I2(x)

ν ] . (148)

When ν is small, it is very useful to separate two contributions to this integral as follows:

I = I(a) + I(n)

I(n) =
√
γ̂1ην

∫ ∞

−∞
dx ex

√
γ̂1ην−γ̂1ην/2 [θ(−x)e−

η
2 x

2ν
√
1− η

ν
+ θ(x) − I2(x)

ν ]

=
√
γ̂1ηνe

−γ̂1ην/2

∫ ∞

0

dx
[
ex
√

γ̂1ην(1 − I2(x)
ν ) + e−x

√
γ̂1ην(e−

η
2 x

2ν
√
1− η

ν − I2(−x)ν)
]

I(a) =
√
γ̂1ην

∫ 0

−∞
dx ex

√
γ̂1ην−γ̂1ην/2 [1− e−

η
2 x

2ν
√
1− η

ν
]

=
√
γ̂1η

∫ 0

−∞
dy ey

√
γ̂1η−γ̂1ην/2 [1− e−

η
2 y

2√
1− η

ν
]

= e−γ̂1ην/2[1− eγ̂1/2
√
πγ̂1/2(1 − η)ν/2(1− erf(

√
γ̂1/2))]

(149)

The term I(a) can be easily handled and expanded in a power series of ν and γ̂1. Moreover, the integrand of I(n) is
well behaved at large |x| (it decays as a Gaussian) for all values of ν, therefore we can expand the integrand.
We can expand I(n) as follows

I(n) = e−γ̂1ην/2

∫ ∞

0

dx

∞∑

l=0

xl

l!
(γ̂1ην)

(l+1)/2
∞∑

k=1

νk

k!

{
− log I2(x)

k + (−1)l

[(
1

2
log(1 − η)− η

2
x2

)k

− log I2(−x)k

]}

= e−γ̂1ην/2
∞∑

l=0

∞∑

k=1

1

l!k!
(γ̂1ην)

(l+1)/2νkIl,k(η) ,

Il,k(η) =
∫ ∞

0

dxxl

{
− log I2(x)

k + (−1)l

[(
1

2
log(1− η)− η

2
x2

)k

− log I2(−x)k

]}

(150)

The functions Il,k(η) are defined by well convergent integrals, hence they are well behaved functions of η and they
can be differentiated as many times as one wishes by exchanging the derivative with the integration over x. In this
way, expanding all the variables in powers of 1/ϕ̂ as follows,

γ̂1 =

∞∑

k=2

γ̂1,kϕ̂
−k ,

ν =

∞∑

k=2

νkϕ̂
−k ,

η =

∞∑

k=0

ηkϕ̂
−k ,

(151)
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FIG. 4: Results for γ̂1, ν and η in the high density expansion at m = 0. Full lines are the analytical results at different orders
in the small 1/ϕ̂ expansion. Points are the result of a direct numerical optimization of the 2RSB entropy at m = 0.

one can perform a systematic expansion of the entropy in powers of 1/ϕ̂ and determine the coefficients γ̂1,k, νk, ηk by
optimizing order by order in inverse density. This computation can be very easily performed with the help of some
algebraic manipulation software (we used Mathematica). Below we just give an example of the lowest orders in the
computation.
At the lowest order we have, recalling that O(n) denotes an order n in 1/ϕ̂:

I(n) = ν3/2
√
γ̂1η I0,1(η) +O(6) ,

I0,1(η) =
∫ ∞

0

dx

[
− log I2(x) +

1

2
log(1− η)− η

2
x2 − log I2(−x)

]
.

(152)

and

I(a) = −
√
πγ̂1/2 + γ̂1 −

√
π(γ̂1/2)3 −

1

2

√
πγ̂1
2

ν log(1 − η) +
1

3
γ̂2
1 +

1

2
γ̂1ν(log(1− η)− η) +O(5) . (153)

Collecting all together and rearranging the terms in increasing order in the expansion we have

S2RSB = − log γ̂1 + ϕ̂
√
πγ̂1/2− ϕ̂γ̂1 +

(
−ν log(1− η) + ϕ̂

√
π(γ̂1/2)3 +

1

2
ϕ̂

√
πγ̂1
2

ν log(1− η)

)

− ϕ̂

(
1

3
γ̂2
1 +

1

2
γ̂1ν(log(1− η)− η) + ν3/2

√
γ̂1η I0,1(η)

)
+O(4)

(154)

We have now to optimize Eq. (154) order by order. At the leading order we obtain an equation for γ̂1 which
coincides with the 1RSB one:

− 2

γ̂1
+

1

2
ϕ̂

√
2π

γ̂1
= 0 ⇒ γ̂1 =

8

π
ϕ̂−2 +O(3) ⇒ γ̂1,2 =

8

π
. (155)

We therefore have to look for a solution of the form γ̂1 = 8
π ϕ̂

−2 + γ̂1,3ϕ̂
−3 + O(4). Plugging this in Eq. (154) and

expanding we get

S2RSB = const. +

(
−γ̂1,3 +

π2

256
γ̂2
1,3

)
ϕ̂−2 +O(3) (156)

which allows to determine γ̂1,3 = 128/π2. Finally we look for γ̂1 = 8
π ϕ̂

−2 + (128/π2)ϕ̂−3 + γ̂1,4ϕ̂
−4 + O(5) and

ν = ν2ϕ̂
−2 +O(3), plug this in Eq. (154) and expand to get

S2RSB = const.− 2

3π

(
−6ν2(η + log(1− η)) + 3

√
2πην

3/2
2 h(η)

)
ϕ̂−3 +O(4) (157)

This function must be optimized numerically and we obtain ν2 = 5.4226 and η0 = 0.6752. We therefore obtain the
asymptotic 2RSB solution for m = 0 and ϕ̂ → ∞:

γ̂1 =
8

π
ϕ̂−2 + (128/π2)ϕ̂−3 +O(4) ,

ν = 5.4226ϕ̂−2 +O(3) ,

η = 0.6752 +O(1) ,

(158)
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FIG. 5: The inter-state overlap of the 2RSB solution at m = 0, ∆̂1 = γ̂1ην as a function of ϕ̂. A square-root singularity is
seen, and the singular point can be located to ϕ̂2RSB

th = 6.86984.

and

s[α̂2RSB] = s[α̂1RSB ]−
d

2
1.03416 ϕ̂−3 +O(4) . (159)

This last result shows that at the 2RSB level the value of ϕ̂GCP, which corresponds to the point where the complexity
(equal to the replicated entropy) at m = 0 vanishes, is slightly reduced with respect to the 1RSB level. However, this
happens only at subdominant orders in large d, because the dominant orders are defined by a term log d that comes
from the ideal gas term [11].
Higher orders in the calculation can be easily obtained by iterating the above procedure. This requires adding more

terms in the expansion in Eq. (154) which can be easily automatized with Mathematica. In Fig. 4 we report the
results of the calculation done at order 11 in density, which allows to obtain γ̂1 to order ϕ̂−7, ν to order ϕ̂−6 and η to
order ϕ̂−4. The results are in perfect agreement with a numerical optimization of the 2RSB entropy (146) at m = 0,
that we describe in Sec. VIII C.
We expect that this strategy to construct a high density expansion (which corresponds to the small cage expansion

of [11] in the 1RSB case) could be generalized to m > 0 and to kRSB solutions with k > 2 with a little bit of additional
work. However, having tested the accuracy of our numerical optimization code, we do not pursue this strategy further
and we turn to the discussion of the numerical results.

C. Numerical solution of the 2RSB equations at m = 0: the 2RSB threshold

We report here results from the full numerical optimization of the 2RSB entropy at m = 0, given in Eq. (146). The
code we used makes explicit use of the decomposition (149), in such a way that I(a) is computed easily and I(n) is
a numerically stable integral (some care should be taken to write the error functions in a numerically stable way).
Taking derivatives with respect to η and γ̂1, we obtain recurrence equations for these quantities, that we do not report
because they are the specialization of Eqs. (113) to the case k = 2 and m = 0. For each fixed value of density ϕ̂ and
breaking point ν = 1/y1, these two equations can be solved by iteration to obtain η, γ̂1, and the entropy s2RSB.
We make now a few remarks on the 2RSB equation at m = 0:

• When ν = 1 (corresponding to m1 = m), the 2RSB entropy reduces to the 1RSB one, function of γ̂2 = γ̂1(1−η).

• Similarly, when ν → 0 (corresponding to m1 = 1), the 2RSB entropy reduces to the 1RSB one, function of γ̂1.

• Finally, when η → 0 (corresponding to γ̂1 = γ̂2), one again recovers the 1RSB entropy.

Let us call f(ν, η; ϕ̂) = minγ̂1
s2RSB. This function has to be minimized with respect to {ν, η} ∈ [0, 1]2. Based on

the considerations above, f(ν, η; ϕ̂) is a constant equal to the 1RSB value of the free energy when ν = 0, ν = 1
or η = 0, i.e. on three sides of the box [0, 1]2. Moreover its derivative in η = 0 is always strictly negative (except
for ν = 0 and ν = 1) as a consequence of the instability of the replicon mode (it is easy to see that the replicon is
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FIG. 6: Phase diagram in the (m, ϕ̂) plane (left) and in the (d/p, ϕ̂) plane (right). In both cases the black full line corresponds
to the liquid state, the purple line is the Gardner line, the large purple diamond is the point (m∗, ϕ̂∗) in Eq. (128), the blue line
is the 1RSB dynamical line, and the two blue dots are the 1RSB and 2RSB thresholds. The blue dashed line is just a straight
line joining the point (m∗, ϕ̂∗) with the 2RSB threshold; it is drawn as a guide to the eye and should be a decent approximation
to the 2RSB dynamical line at finite pressure or finite m.

related to the derivative with respect to η of s2RSB. We conclude that a minimum must exist at non trivial values of
ν and η (remember that as usual in replica computations, the entropy should be minimized and not maximized [30]).
However, it is also important to remark that for some values of the parameters {ν, η} the solution for γ̂1 might not
exist formally corresponding to γ̂1 = ∞, which corresponds to losing the non-trivial 2RSB solution to a trivial solution
where all replicas are uncorrelated.
The best way to find the minimum is to optimize over γ̂1 and η at fixed ν and plot the resulting entropy s2RSB as a

function of ν to find the minimum, recalling that based on the above considerations we must have s2RSB = s1RSB at
ν = 0, 1. We performed this procedure at high density (up to ϕ̂ = 40) and compared the results to the high density
expansion of Sec. VIII B, finding excellent agreement and confirming therefore the validity of our numerical code, see
Fig. 4. We note however that solving the equations in the very high density regime is hard and the data are quite
noisy, especially for η.
We then focus on the low density regime. We observe that, upon decreasing ϕ̂, a secondary maximum appears when

the 2RSB entropy is plotted as a function of ν. At a critical density ϕ̂2RSB
th , the physical minimum coalesces with

this secondary maximum and disappears. Below this point, the 2RSB solution does not exist anymore. This does not
contradict the previous statement, that a minimum should exist for {ν, η} ∈ [0, 1]2. In fact, when the maximum and
minimum disappear, we also observe that in a region of values of ν the solution for γ̂1 and η does not exist, which
means that the 2RSB is not defined.
If we follow the values of the parameters γ̂1, ν and η corresponding to the physical 2RSB solution, we see that

they display a square root singularity on approaching ϕ̂2RSB
th from above, which confirms that when the maximum

and minimum coalesce, a longitudinal mode of the 2RSB solution vanishes signaling the singularity that marks the

disappearance of the solution. This is illustrated in Fig. 5 using a physical quantity, the inter-state overlap ∆̂1, but
the same behavior is observed in all the three parameters γ̂1, ν and η. We conclude therefore that ϕ̂2RSB

th = 6.86984
can be taken as a definition of the threshold state within a 2RSB calculation. We stress once again that, however,
we expect that the 2RSB solution is unstable and we expect that one should perform a fullRSB calculation to obtain
the correct value of the threshold, following [33]. The same analysis could be repeated at m > 0 but we do not report
the calculation here.

D. The 2RSB phase diagram

1. Phase diagram in the (m, ϕ̂) plane

In Fig. 6 we summarize the phase diagram that we can infer from the previous discussions. A schematic version
of this phase diagram was already presented in Ref. [2, Fig. 1], and here we substantiate this proposal with actual
computations. At the 1RSB level, the dynamical line ends at ϕ̂1RSB

th = 6.25967, as computed in Ref. [11]. However,
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we find here that this 1RSB dynamical line falls into the unstable region and therefore has no physical meaning. The
2RSB calculation indeed gives a higher value for the threshold point, ϕ̂2RSB

th = 6.86984. We expect that a dynamical
line ϕ̂2RSB

d (m) connects the 2RSB threshold to the point (m∗, ϕ̂∗) defined in Sec. VIIA, as illustrated in the schematic
Fig. 3. We did not compute this line, but its location can be reasonably approximated by joining the two points by
a straight line, as we did in Fig. 6. By analogy with spin-glass systems, we expect that further RSB will not strongly
affect the location of the dynamical line, so the 2RSB computation should give a good approximation of the exact
result. This dynamical line and the Gardner line, that join at the point (m∗, ϕ̂∗), delimit the region of existence of
the fullRSB solution.
The 1RSB solution remains correct around the liquid phase (corresponding to m = 1) so that when glassy states

form, they have a 1RSB structure (as described in [11]). They only undergo the Gardner transition at higher densities.
In the region where the 1RSB solution is stable, all the results of Ref. [11] remain valid. In particular, note that
the Kauzmann point [11], depicted schematically in Fig. 3, shifts to infinite density on the scale of Fig. 6 and for
that reason it is not depicted in the figure. This point nonetheless falls within the region where the 1RSB solution
is stable and therefore none of its properties is changed with respect to the discussion of Ref. [11]. The glass close
packing (GCP) point introduced in [11], corresponding to the densest amorphous packing that can be obtained by
compressing liquid configurations, is also located at infinite density (ϕ̂ ∝ log d) on the m = 0 (infinite pressure) line
of Fig. 6. Because the Gardner transition occurs at infinite pressure when ϕ̂ → ∞, the equilibrium ideal glass only
undergoes the Gardner transition exactly at infinite pressure, when GCP is reached. The GCP point somehow lies
exactly on the Gardner line, which may explain why previous results obtained in [11] for GCP (like the fact that
the GCP point is isostatic) were quite accurate despite neglecting the Gardner transition. We would like to stress,
however, that experiments and numerical simulations are typically conducted in the vicinity of the dynamical line,
and therefore never approach the Kauzmann nor the GCP points.

2. Phase diagram in the (1/p, ϕ̂) plane: isocomplexity assumption

It would be nice to convert the (m, ϕ̂) phase diagram into a physical (1/p, ϕ̂) phase diagram where p is the reduced
pressure of the glassy states visited at a given m and ϕ̂. Doing this exactly requires a so-called “state following”
calculation where we adiabatically follow the evolution of a given state in density to compute the pressure. Although
this is certainly possible, we do not report this computation here and we resort to a much simpler “isocomplexity”
assumption [11, 31] where we assume that states can be followed by fixing the value of the complexity. If this is the
case, we can reason as follows, see [11] for a more detailed discussion. First we recall that s2RSB = ms∗ + Σ(s∗),
where s∗ is the internal entropy of the state and Σ(s∗) the associated complexity. Then, we note that the value of m
corresponding to a given level of compexity Σg is given by the point where

1

m
[s2RSB − Σg] = s∗ +

1

m
[Σ(s∗)− Σg] (160)

is maximum with respect to m. In fact the maximum condition

−m2 d

dm
{s∗ + 1

m
[Σ(s∗)− Σj ]} = Σ(s∗)− Σg = 0 (161)

is equivalent to the isocomplexity condition. Let us call the solution mg(ϕ̂). We also note that the corresponding
internal entropy of the state is

sg =
1

m
[s2RSB − Σg]

∣∣∣∣
m=mg(ϕ̂)

. (162)

It follows that the pressure of the glass is

pg = −ϕ̂
dsg
dϕ̂

= − ϕ̂

mg(ϕ̂)

∂s2RSB

∂ϕ̂

∣∣∣∣
m=mg(ϕ̂)

=
1

mg

[
1 +

d

2
ϕ̂F(2α̂∗)

]
, (163)

where F(2α̂∗) is the interaction part of the entropy computed in the matrix α̂∗ corresponding to the 2RSB solution at
mg. This formula generalizes the one in [2, Eq. (17)], it reduces to that one for the equilibrium glass which corresponds
to the choice Σg = 0, and it allows us to convert the (m, ϕ̂) phase diagram into a pressure-density one under the
isocomplexity approximation. Note that we must scale pressure by dimension plotting d/p to obtain a finite result
for d → ∞ as it is evident from Eq. (163). The result is shown in Fig. 6 and is qualitatively similar to the (m, ϕ̂) one.
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IX. CRITICAL SCALING OF THE FULLRSB SOLUTION AT JAMMING (m = 0)

In the previous section we have delimited approximately the region where a non-trivial kRSB solution with k > 1
is found. We now assume that this phase is a fullRSB phase, which we confirm below through a numerical solution of
Eq. (113), and that the 2RSB calculation provides a quite good approximation to the fullRSB one, which is usually
correct in spin glasses. Then the fullRSB region is, in Fig. 6, the one below the Gardner line, at densities above the
2RSB dynamical line that connects the 2RSB threshold at m = 0 (or infinite pressure) and the point (m∗, ϕ̂∗). We
are now in the position to explore the scaling of the fullRSB solution in the jamming limit m → 0. This limit is
formally very similar to the zero-temperature limit in the Sherrington-Kirkpatrick model which has been thoroughly
investigated in the past [30, 63, 67–69], and we follow here a very similar strategy.
Our results can be considered as a generalization of the arguments of Pankov [68] to the more complex case under

investigation, as it will be clear below. Our starting point are Eq. (113) and its continuum version Eq. (116), and we
begin the discussion by making some conjectures on the behavior of these equations for m = 0 and large y. These
conjectures are partly based on the results of the numerical solution of the equations, that we discuss later, and partly
on physical intuition. The aim of this section will be to show that they are indeed correct.
In Sec. IXA and IXB we will show that in the limit m → 0 (in which the variable y extends from 1 to ∞) a scaling

regime of Eq. (113) and Eq. (116) appears, and is characterized by non-trivial scaling exponents. In Sec. IXC, we
consider a simplified set of equations (a toy model) for which the scaling regime can be fully characterized, that is
instructive to discuss the scaling regime of the complete equations. In Sec. IXD, we extend the results of the toy
model to the complete fullRSB equations. Finally, in Sec. IXE we determine analytically all the critical exponents
that characterize the scaling regime.

A. Scaling of ∆(y), and asymptotic scaling of P̂ (y, h) for h → −∞

We look for an asymptotic solution at large y characterized by ∆(y) ∼ ∆∞y−κ. From the relation between ∆(y)
and γ(y) in Eq. (116) it follows that γ(y) ∼ γ∞y−c with c = κ − 1 and γ∞ = κ

κ−1∆∞. We will later show that the

exponent c is close to 1/2.

Before studying the full scaling of P̂ (y, h), let us look to its asymptotic behavior at h → −∞, which provides some

very useful insight. First, we note that P̂ (yi, h) ∼ Aie
Bih−h2Di when h → −∞. In fact, this is true for y1, and the

iteration (113) for P̂ (yi, h) preserves this asymptotic behavior. From the analysis of Eq. (113) in the limit h → −∞,
we obtain the discrete recurrence equations

Di =
Di−1yi−1γ

2
i−1

γi[2Di−1γi−1(γi−1 − γi) + yi−1γi]
,

Bi =
yi−1γi−1 +Bi−1yi−1γi−1

2Di−1γi−1(γi−1 − γi) + yi−1γi
− 1 ,

Ai = Ai−1

√
Di/Di−1 exp

[
(1 +Bi−1)

2γi−1(γi−1 − γi)

2[2Di−1γi−1(γi−1 − γi) + yi−1γi]

]
,

(164)

which in the continuum limit become

Ḋ =
2Dγ̇

y
(D − y/γ) ,

Ḃ =
(−yγ̇ + 2Dγγ̇)

yγ
(1 +B) ,

Ȧ = A

(
− (1 +B)2γ̇

2y
+

Dγ̇

y
− γ̇

γ

)
.

(165)

Note in fact that Eqs. (165) can also be obtained directly from the continuum equation for P̂ (y, h). Under the
assumption that γ(y) ∼ γ∞y−c with 0 < c < 1, Eqs. (165) admit a solution with D(y) ∼ D∞y2c, B ∼ B∞yc and
A(y) ∼ A∞yc for y → ∞. Hence we conclude that for h → −∞ and large y we have

P̂ (yi, h) ∼ A∞yceB∞hyc−D∞h2y2c

= ycp0(hy
c) (166)

with p0(z → −∞) = A∞ exp(B∞z −D∞z2).
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FIG. 7: Scaling of P̂ (y, h) and Q(y, z).

B. Complete scaling of P̂ (y, h)

Let us conjecture that the scaling of Eq. (166) holds for all h < 0. This means that for h < 0 and large y,

P̂ (y, h) ∼ yc diverges, while we know from Eq. (111) that for large h > 0, P̂ (y, h) ∼ exp(−∆(y)/2), therefore it

remains finite for large y. Combining this information we expect that, on increasing h from −∞, P̂ (y, h) increases
up to a value ≈ yc on a scale |h| ≈ y−c, it reaches a peak and then it decreases fast around h ≈ 0 to approach its
asymptotic limit exp(−∆(y)/2) ≈ 1 at h → ∞.
It is natural therefore to conjecture that the decrease from the peak down to values of order 1 happens around

h ∼ 0 on another scale |h| ≈ y−b with b > c, which matches between the behavior at h < 0 and h > 0. We pose that

in this regime P̂ (y, h ∼ 0) ∼ ya with a < c. In summary, we have

P̂ (y, h) ∼





ycp0(hy
c) for h ∼ −y−c

yap1(hy
b) for |h| ∼ y−b

p2(h) for h ≫ y−b

(167)

with the condition a < c < b, and this scaling is illustrated in Fig. 7.
Assuming this scaling, we can match the different regimes. Note first that obviously the scaling (167) requires

that p0(z = 0) = 0. We can assume that p0(z) ∼ |z|θ for small z. Then, to match with p1(z), we must assume that
p1(z → −∞) ∼ |z|θ too. Matching requires that yc|hyc|θ ∼ ya|hyb|θ, therefore c(1+θ) = a+bθ, which implies θ = c−a

b−c .

Similarly, in order to match with the regime of positive h, we must have p1(z → ∞) ∼ z−α, and ya(hyb)−α ∼ O(1),
from which we obtain that a − bα = 0, hence α = a/b, and p2(h) ∼ h−α for h → 0. In summary, we obtain the
following scaling relations between exponents7:

α =
a

b
θ =

c− a

b− c
κ = c+ 1 . (168)

We will see later that the exponents α, θ, κ are directly related to the scaling of physical observables (the cage radius
and the pair correlation function).
Eq. (167) suggests to define the scaled variable z = hyc and the functions

H(yi, z) = yiĵ(yi, zy
−c
i ) , ⇔ ĵ(yi, h) =

1

yi
H(yi, hy

c
i ) ,

Q(yi, z) = y−c
i P̂ (yi, zy

−c
i ) , ⇔ P̂ (yi, h) = yciQ(yi, hy

c
i ) .

(169)

7 The reader should not confuse the exponent α introduced here with the previously used matrix α̂.
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In terms of Q(y, z), the scaling (167) becomes

Q(y, z) ∼





p0(z) for z < 0 ,

ya−cp1(zy
b−c) for |z| ∼ y−b+c ,

0 for z > 0 .

(170)

A plot of Q(y, z) is a scaled plot of y−cP̂ (y, h) versus z = hyc; this plot approaches a master function p0(z) at negative
z, while around z = 0 there is a region where |z| ≈ y−b+c, in which Q(y, z) ≈ ya−c is small, which matches the scaling

function p0(z) for negative z with the behavior Q ∼ y−cP̂ (y, h) → 0 at positive z.
With this change of variable, the leading terms at large y in the continuum equation for Q(y, z) are

Q̇(y, z) = − γ̇(y)

2
y2c−1Q′′(y, z)−

(
c

y
+

γ̇(y)

γ(y)
θ(−z)

)
[zQ(y, z)]′ + γ̇(y)y2c−1 [Q(y, z)H ′(y, z)]

′
. (171)

C. A toy model

Before analyzing the complete fullRSB equations, we discuss here a toy model that gives a lot of insight about how
the scaling of Q(y, z) can be studied analytically. The toy model is obtained as a strong simplification of Eq. (171),
obtained by setting γ(y) = y−c for all y ∈ [1,∞), and H = 0. We have γ̇(y) = −cy−1−c and γ̇(y)/γ(y) = −c/y,
therefore we obtain

Q̇(y, z) =
c

2y2−c
Q′′(y, z)− c

y
θ(z)[zQ(y, z)]′ , (172)

and we keep a generic initial condition Q(1, z) = Qi(z). Eq. (172) is a Fokker-Planck equation with diffusion and
drift, and it corresponds to the Langevin equation

dz

dy
=

cz

y
θ(z) +

√
c

y(2−c)/2
η(y) (173)

where η(y) is a white noise with 〈η(y)η(y′)〉 = δ(y − y′). The Langevin equation shows that on the z > 0 side, the
random walkers drift towards z = ∞, and for this reason Q(y, z) → 0 for large y. Instead, for z < 0 the equation
corresponds to a simple random walk with a diffusion coefficient that is reduced when y grows.

1. Scaling in the matching region

The numerical study of Eq. (172) is straightforward and shows that Q(y, z) satisfies the scaling (170). To obtain
analytical insight on the scaling, we plug the ansatz Q(y, z) = ya−cp1(zy

b−c) in Eq. (172); then we see that a non-
trivial equation is obtained only if b = (1 + c)/2, otherwise the diffusion term has a different scaling from the other
terms. Calling t = zyb−c = hyb, with b = (1+ c)/2, one obtains a simple differential equation for the master function
p1(t):

c

2
p′′1(t) = (a− cθ(−t)) p1(t) +

(
1 + c

2
− cθ(−t)

)
tp′1(t) . (174)

This equation admits solutions with the correct asymptotic behavior of p1(t). In fact, one can show that for t → ∞
there is a solution p1(t) ∼ t−α with α = a/b, and for t → −∞ there is a solution p1(t) ∼ |t|θ, with θ = (c−a)/(b−c) =
2(c− a)/(1 − c). However, a solution that has both correct asymptotic behaviors does not exist for generic values of
a. Imposing the existence of a solution with the correct asymptotes therefore defines the value of a as a function of
c, which can be easily determined with very high precision by solving Eq. (174) numerically and using a bisection
method to find the correct a. As an example, we obtain a(c = 0.5) = 0.38923 . . . and a(c = 0.4) = 0.29110 . . .. A
decent fit to have an idea of the trend is a(c) ≈ 0.53c+ 0.49c2, but of course one needs a much higher precision on a
to have the correct behavior of p1(t). Note that a is not a simple rational function of c, because the condition that
determines it is quite involved. The solution for p1(t) corresponding to this value of a gives the scaling function in
the matching regime.
In Fig. 8 we compare the results of this scaling analysis with direct numerical resolution of Eq. (172) for c = 1/2.

We chose initial condition Qi(z) = 1 and solved numerically Eq. (172). For large y, we observe the appearance of a
scaling regime around z = 0. Note that other initial conditions can be considered and the choice does not affect the
scaling around z = 0. In the scaling regime, we find excellent agreement with the predictions of the scaling analysis
presented above, as discussed in the caption of Fig. 8.
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2. Computation of p0(z)

We know that Q(y → ∞, z) = p0(z) for z < 0, while Q(y → ∞, z) vanishes for z > 0. To compute the function
p0(z) it is convenient to change variables to τ = 1− yc−1, and write Eq. (172) for z < 0 as

∂Q(τ, z)

∂τ
=

c

2(1− c)
Q′′(τ, z) =

D

2
Q′′(τ, z) , (175)

which is the standard diffusion equation. The corresponding Green’s function is

G(τ, z − z′) =
1√

2πDτ
e−

(z−z′)2

2Dτ , (176)

with G(τ = 0, z − z′) = δ(z − z′). We look for a solution of Eq. (175) in the region z < 0. We start by constructing a
solution that satisfies the boundary condition Q(τ = 0, z) = Qi(z) and Q(τ, z = 0) = 0. It has the form

Qreg(τ, z) =

∫ 0

−∞
dz′ [G(τ, z − z′)−G(τ, z + z′)]Qi(z

′) . (177)

The regions z < 0 and z > 0 admit different solutions, and we know that Q(y, z = 0) ∼ ya−c hence Q(τ, z = 0) ∼
(1−τ)(c−a)/(1−c) = (1−τ)θ/2 using the relations b = (1+c)/2 and θ = (c−a)/(b−c) = 2(c−a)/(1−c). Therefore, we
should add a second contribution to Qreg(τ, z) in order to match the boundary condition at z = 0. This contribution
can be chosen, for z < 0, as

Qsing(τ, z) =

∫ τ

0

dtG(τ − t, z)B(1− t) =

∫ τ

0

dt
B(1− t)√
2πD(τ − t)

e−
z2

2D(τ−t)

=

∫ 1

1−τ

ds
B(s)√

2πD[s− (1− τ)]
e−

z2

2D[s−(1−τ)] =

∫ 1

1−τ

ds
s(θ−1)/2B(s)√
2πD[s− (1− τ)]

e−
z2

2D[s−(1−τ)] .

(178)

In fact, it is a solution of Eq. (175), such that Qsing(τ = 0, z) = 0, hence it does not affect the initial condition in
τ = 0.
We want to show that choosing B(s) = s(θ−1)/2B(s), where B(s) = B0 +B1s+ · · · is an analytic function of s, such

that

Qsing(τ = 1, z = 0) =

∫ 1

0

ds√
2πDs1−θ/2

B(s) = 0 , (179)

provides a solution with the correct scaling Q(τ, z = 0) ∼ (1 − τ)θ/2. The function B(s) should be determined from
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the matching with the solution at z > 0, but this is not relevant for the rest of this discussion8. In fact, for z = 0 we
have at leading order for small ǫ = 1− τ , using Eq. (179)

Qsing(τ, z = 0) =

∫ 1

ǫ

ds
s(θ−1)/2B(s)√
2πD[s− ǫ]

=

∫ 1−ǫ

0

ds
(s+ ǫ)(θ−1)/2B(s+ ǫ)√

2πDs
∼
∫ 1

0

ds
(s+ ǫ)(θ−1)/2B(s)√

2πDs

=

∫ 1

0

ds
B(s)√
2πDs

[
(s+ ǫ)(θ−1)/2 − s(θ−1)/2

]
∼
∫ 1

0

ds
B0 + B1s+ · · ·√

2πDs1−θ/2

[
(1 + ǫ/s)(θ−1)/2 − 1

]

∼ B0ǫ
θ/2

∫ 1/ǫ

0

du√
2πDu1−θ/2

[
(1 + 1/u)(θ−1)/2 − 1

]
∝ (1− τ)θ/2 ,

(180)

and repeating the same argument at vanishingly small z we obtain

Qsing(τ, z) ∼
∫ 1

0

ds
B0 + B1s+ · · ·√

2πDs1−θ/2

[
(1 + ǫ/s)(θ−1)/2 − 1

]
e−

z2

2Ds

∼ B0ǫ
θ/2

∫ 1/ǫ

0

du√
2πDu1−θ/2

[
(1 + 1/u)(θ−1)/2 − 1

]
e−

z2

2Duǫ = (1− τ)θ/2q[z/(1− τ)1/2] ,

(181)

which translated back to the variable y implies, recalling that b − c = (1− c)/2,

Qsing = ya−cq[zyb−c] , (182)

as expected from Eq. (170). Finally, using again Eq. (179), we have that for small z

Qsing(τ = 1, z) =

∫ 1

0

ds
s(θ−1)/2B(s)√

2πDs
e−

z2

2Ds =

∫ 1

0

ds√
2πDs1−θ/2

[
e−

z2

2Ds − 1
]
(B0 + B1s+ · · · )

∼ B0z
θ

∫ 1/z2

0

du√
2πDu1−θ/2

[
e−

1
2Du − 1

]
.

(183)

We conclude that, even if the function B(s) remains undetermined by this analysis, the resulting function Q(τ, z) =
Qreg(τ, z) +Qsing(τ, z) has all the correct scaling properties. The resulting fuction p0(z) is given by

p0(z) = Q(τ = 1, z) =

∫ 0

−∞
dz′ [G(1, z − z′)−G(1, z + z′)]Qi(z

′) +

∫ 1

0

ds
s(θ−1)/2B(s)√

2πDs
e−

z2

2Ds , (184)

which shows that the function p0(z) depends on non-universal details of the evolution of Q(y, z), such as the initial
condition Qi(z) and the function B(s).

3. Summary

From the analysis of the toy model Eq. (172), we obtain several important informations:

• In the matching regime, the scaling is controlled by a universal function p1(t), solution of Eq. (174), with
exponents b = (1 + c)/2 and a(c) determined by the condition that p1(t) has the correct asymptotic behavior.
However, the exponent c remains undertermined by this analysis, with the only condition that a < c < b which
implies c ∈ [0, 1].

• There is no hope of computing p0(z) from scaling arguments, because this function depends on non-universal
quantities that contain information on the whole evolution of Q(y, z). Hence we have to obtain it through the
full numerical solution of the equation for Q(y, z).

These informations are very useful to understand the complete fullRSB equations.

8 One can choose for illustrative purposes B(s) = −B0[1− s(2 + θ)/θ], which has the required properties.



42

D. Scaling of the functions ĵ(y, h) and P̂ (y, h) in the matching region

Using the analogy with the toy model investigated in the previous section, we can start to discuss the asymptotic
scaling of the solution of the complete fullRSB equations. We consider first the equation for ĵ(y, h). For m = 0, its

initial condition for y = ∞ becomes ĵ(y, h) = 0, see Eq. (113). One can show from Eq. (113) that

ĵ(yi, h → −∞) =

k−1∑

j=i

1

2yj
log(γ̂j+1/γ̂j) , (185)

and in the continuum limit

ĵ(y, h → −∞) =

∫ ∞

y

du

2u

γ̇(u)

γ(u)
; (186)

this relation can also be derived directly from Eq. (116). Similarly, one can easily show that ĵ(y, h → ∞) = 0 for
all y.
At large y, under the assumption that γ(y) ∼ γ∞y−c, we then have ĵ(y, h → −∞) ∼ −c/(2y). We therefore

conjecture the scaling form

ĵ(y, h) = − c

2y
J(hyb/

√
γ∞) , H(y, z) = − c

2
J(zyb−c/

√
γ∞) , (187)

and we insert it in Eq. (116) for ĵ(y, h). As in the case of the toy model, the only choice that leads to a non-trivial
equation is b = (1 + c)/2, which leads to the following equation for J(t) with t = hyb/

√
γ∞ = zyb−c/

√
γ∞:

c

2
J ′′(t) = tJ ′(t)

(
−1 + c

2
+ cθ(−t)

)
+ J(t) − θ(−t) +

c2

4
J ′(t)2 . (188)

This equation must be solved with boundary conditions J(−∞) = 1 and J(∞) = 0, which can be done easily by a
shooting method and leads to a unique solution for each value of c.

We consider next the scaling of P̂ (y, h) in the intermediate scaling regime that matches around h = 0. According

to Eq. (167) and (170), we have P̂ (y, h) = yap1(hy
b/
√
γ∞) and Q(y, z) = ya−cp1(zy

b−c/
√
γ∞), and we added here

the term
√
γ∞ because in this way the dependence on γ∞ disappears from the scaling equations. We choose again

b = (1 + c)/2, because, as in the case of the toy model, it is the only choice that leads to a non-trivial equation for
p1(t), that depends in a non-trivial way on the function J(t) that varies on the same scale. If we call once again
t = zyb−c/

√
γ∞ = hyb/

√
γ∞, we plug the scaling form of Q(y, z) in Eq. (171), and we use Eq. (187), then we obtain,

at the leading order

c

2
p′′1(t) = (a− cθ(−t)) p1(t) +

(
1 + c

2
− cθ(−t)

)
tp′1(t)−

c2

2
[p′1(t)J

′(t) + p1(t)J
′′(t)] , (189)

which correctly coincides with Eq. (174) of the toy model if one chooses J = 0. Note that for |t| → ∞, J ′ ∼ J ′′ → 0,
therefore one can repeat the same analysis as for Eq. (174) to show that Eq. (189) admits solutions with the correct
asymptotic behavior of p1(t), namely p1(t → ∞) ∼ t−α with α = a/b, and p1(t → −∞) ∼ |t|θ, with θ = (c−a)/(b−c).
Like for Eq. (174), a solution that has both correct asymptotic behaviors exists only for a specific value of a, that can
be determined through a bisection method.
In summary, for given c and b = (1 + c)/2, we have to solve the two Eqs. (188) and (189) with their appropriate

boundary condition. As in the toy model, this fixes the value of a as a function of c. We find that the presence of
J 6= 0 is only a small perturbation of Eq. (189) with respect to Eq. (174), and the resulting values of a are just slightly
smaller than the ones of the toy model.

E. Determination of the critical exponents

Up to now the exponent c has remained undetermined. In this section, we derive a condition that allows us to
determine c and from it a and b, hence obtaining analytical predictions for all the critical exponents.
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1. Some exact relations

We start by deriving a few useful exact relations, following [33]. To do so, we introduce

f̃(y, h) = γ(y)f̂(y, h) = −h2θ(−h)

2
+ γ(y)ĵ(y, h) (190)

and we consider the equation for κ(y) in Eq. (116), which is:

κ(y) =
ϕ̂

2γ2(y)

∫ ∞

−∞
dh ehP̂ (y, h)f̃ ′(y, h)2 . (191)

We take the derivative with respect to y, and using the equation of motion (116) for P̂ (y, h) and f̂(y, h) we obtain

κ̇(y) = − ϕ̂γ̇(y)

2yγ2(y)

∫ ∞

−∞
dh ehP̂ (y, h)f̃ ′′(y, h)2 . (192)

From the relation between κ(y) and γ(y) we have κ̇(y) = − γ̇(y)
yγ2(y) , so we obtain the exact expression

1 =
ϕ̂

2

∫ ∞

−∞
dh ehP̂ (y, h)f̃ ′′(y, h)2 . (193)

Note that to derive Eq. (193) we have assumed that κ̇(y) 6= 0 in a finite interval of y. Hence, for any finite kRSB
solution, Eq. (193) does not hold because κ̇(y) = 0 except in a finite number of isolated points. For a fullRSB solution,

instead, Eq. (193) holds for all y. Indeed, if κ̇(y) = 0 then P̂ (y, h) and f̃ ′′(y, h) do not depend on y, hence if Eq. (193)
holds in the region where κ̇(y) 6= 0, it must also hold (trivially) where κ̇(y) = 0.
If we derive once more Eq. (193) with respect to y, we obtain (using once more the equations of motion)

0 =

∫ ∞

−∞
dh ehP̂ (y, h)

[
2
(
f̃ ′′(y, h)2 + f̃ ′′(y, h)3

)
− γ(y)

y
f̃ ′′′(y, h)2

]
, (194)

from which it follows that

y =
γ(y)

2

∫∞
−∞ dh ehP̂ (y, h) f̃ ′′′(y, h)2

∫∞
−∞ dh ehP̂ (y, h)

(
f̃ ′′(y, h)2 + f̃ ′′(y, h)3

) . (195)

Note that Eq. (195) can only hold in the region where κ̇(y) 6= 0; this is obvious because the right hand side is constant
when κ̇(y) = 0.

2. Scaling regime

These equations have important consequences in the scaling regime. First of all, Eq. (193) is a kind of normalization

condition for P̂ (y, h). In the limit y → ∞, at the leading order we have f̃ ′′(y, h) = −θ(−h), and using Eq. (167) one
can show that Eq. (193) becomes

1 =
ϕ̂

2

∫ 0

−∞
dz p0(z) , (196)

which will be crucial, in the following, to obtain isostaticity. Also, in the same regime f̃ ′(y, h) = −hθ(−h) and
Eq. (191) gives

κ∞ = κ(y → ∞) =
ϕ̂

2γ2
∞

∫ 0

−∞
dz p0(z)z

2 . (197)

Eq. (195), instead, receives non-vanishing contributions only from the matching regime, both in the numerator and
in the denominator, as one can check that the other contributions vanish. In the matching regime for large y, using
γ(y) ∼ γ∞y−c and Eq. (187), one can show easily that

f̃ ′′(y, h) = −θ(−t)− c

2
J ′′(t) ,

f̃ ′′′(y, h) =
y(1+c)/2

√
γ∞

d

dt

[
−θ(−t)− c

2
J ′′(t)

]
.

(198)
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Plugging this in Eq. (195), we get

1

2
=

∫∞
−∞ dt p1(t)

[
θ(−t) + c

2J
′′(t)

]2 [
θ(t) − c

2J
′′(t)

]
∫∞
−∞ dt p1(t)

[
d
dt

(
θ(−t) + c

2J
′′(t)

)]2 . (199)

Now, remember that for a given c, we can determine a, b, J(t) and p1(t) through Eqs. (188) and (189). Hence,
Eq. (199) becomes a condition on the exponent c. Solving this condition numerically, and also using Eq. (168), we
obtain the values of the exponents:

a = 0.29213 . . . b = 0.70787 . . . c = 0.41574 . . . ,

α = 0.41269 . . . θ = 0.42311 . . . κ = 1.41574 . . . .
(200)

The precision of the determination of these exponents depends on the cutoffs that are used to discretize Eqs. (188)
and (189): we estimate (conservatively) that the error in Eq. (200) is smaller than ±1 on the last reported digit.
These are our analytic predictions for the scaling exponents, and they complete the analysis of the scaling regime of
Eq. (116). Note that within our error we find that a = 1− b, which, together with b = (1 + c)/2, implies the relation
α = 1/(2 + θ) that has been derived in [25] using scaling arguments. We will come back on this point later. In the
next sections we test the correctness of our scaling analysis, and we relate these exponents to observable quantities.

X. NUMERICAL TEST OF THE CRITICAL SCALING OF THE FULLRSB SOLUTION

Having obtained analytical results for the exponents that characterize the asymptotic scaling of the fullRSB solution
at jamming, we now solve the fullRSB numerically to test them and check the pre-asymptotic corrections.
We consider Eq. (113) at m = 0, which means that yk = ∞ and ĵ(yk, h) = 0, and we solve the recurrence equations

numerically. We use here a different code than in the 2RSB computation, which is not optimized to work at large
densities, hence it does not make use of the decomposition (149). This code just solves the equations by iterating
them, carefully taking into account the behavior of the various functions for h → ±∞. The code can work for any
number k of RSB. Note that even if m = 0, numerically solving the equations necessitates working at finite k, hence
we effectively introduce a cutoff yk−1 = ymax which is akin to a finite m (we will come back to this point later). To
study the fullRSB solution at m = 0 we therefore have to set ymax and k to be as large as possible. Cutoffs are also
used to discretize the integrals, but we checked that the results we report are independent of their choice so we do
not further discuss this issue below.
In the following, all numerical results are obtained for ϕ̂ = 10, which is a value large enough that we are sure to be

above the threshold, but low enough that our code works well.

A. Dependence on the cutoffs k and ymax

We start our discussion with a brief study of the dependence of the function ∆(y) on the cutoffs k and ymax. For
our numerical studies, we chose logarithmically spaced yi, between y1 = 1 and yk−1 = ymax. In Fig. 9 results for
several k at fixed ymax, and for fixed k at several ymax, show that we can reach the limit where both k and ymax can be
considered as infinite. Clearly, ∆(y) is a non-trivial continuous function of y, which confirms that we are in a fullRSB
phase, as we conjectured at the beginning of Sec. IX. Our results are also perfectly compatible with the expected
behavior at large y, ∆(y) ∼ ∆∞y−κ with κ given in Eq. (200). A deviation is observed for values of y close to the
cutoff at ymax, but the value of y at which we observe the deviation grows proportionally to ymax. This observation
will be important later. Note that in the region where this deviation is observed, we expect that ∆(y) should tend to
be approximately constant. The reason why this is not the case is that the convergence of our code to the fixed point
of Eq. (113) is very slow in that region. We could perform more iterations to observe full convergence but we did not
do so, because this calculation is computationally hard and because the behavior of this cutoff-dependent region is
irrelevant for our analysis.

B. Test of the critical exponents

We now perform a more detailed test of the critical scaling derived in Sec. IX using the data with the largest
available cutoff, ymax = 10000, and k = 100. In Fig. 10 we plot γ as a function of y−c and ∆ as a function of y−c−1;
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FIG. 9: The function ∆(y) at m = 0 and ϕ̂ = 10. In left panel we report results for fixed ymax = 100 and k = 20, 50, 100,
which show that k = 100 is large enough to be considered infinite. In right panel we report results for fixed k = 100 and
ymax = 50, 100, 200, which show that for large ymax the cutoff at large y disappears. The power law regime ∆(y) ∼ ∆∞y−κ

with ∆∞ ≈ 0.023 and κ given in Eq. (200) is approached at large y.
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FIG. 10: Plot of γ versus y−c (left), and of ∆ versus y−1−c (right), with c given in Eq. (200). The linear fits give γ∞ ≈ 0.080
and ∆∞ = c

c+1
γ∞ ≈ 0.023.

the plots are linear at large y and provide an estimate of γ∞ ≈ 0.080 and ∆∞ = c
c+1γ∞ ≈ 0.023, which is also

perfectly compatible with Fig. 9.
Having an estimate of γ∞, we can test the scaling of Eq. (187), see Fig. 11, and the scaling in Eq. (167), see Fig. 12.

In both cases we find excellent agreement between the analytical results of Sec. IX and the numerical solution of the
equations.

XI. CRITICAL SCALING OF PHYSICAL OBSERVABLES

We have confirmed that the asymptotic solution of Eqs. (113) and (116) found in Sec. IX is realized by the numerical
solution of the fullRSB equations. We now start to investigate the physical consequences, in particular to identify
observables that display critical scaling controlled by the exponents in Eq. (200).
In Sec. XIA we show that the exponent κ is related to the scaling of the cage radius with pressure. In Sec. XIB

we discuss the scaling of the pair correlation function of the glass on approaching jamming and we show that it is
determined by the exponents α and θ. In Sec. XIC we show that the distribution of forces in the packing can be
obtained from the pair correlation function and that it is characterized by the exponent θ. Finally, in Sec. XID we
show that the fullRSB solution predicts that jammed packings are isostatic, i.e. particles touch on average 2d other
particles.
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On increasing y the curves approach the master function.
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FIG. 12: Test of Eq. (167) and (170), with exponents given by Eq. (200). (Left) Convergence to the function Q(y, z) to p0(z).

(Right) Scaling in the region around h = 0 where P̂ (y, h) ∼ yap1(hy
b), compared with the solution p1(z) of Eq. (189).

A. Scaling of the cage radius with pressure

First, we discuss the physical meaning of the exponent κ. We have already explained that finite pressures are
equivalent to finite m with m ∼ 1/p. Moreover, we see from Eq. (113) that a finite (small) m is equivalent to a
cutoff for ∆(y) at ymax ∼ 1/m ∼ p. In fact, the only difference between the equations at finite m and the ones at

m = 0 with a cufoff at ymax is the initial condition for ĵ(y, h), which is non-vanishing (but small) for finite small
m. However, this difference is completely irrelevant because the scaling regime is universal and independent of the
initial conditions. From this argument we conclude that the intra-state cage radius (or mean square displacement, or

Debye-Waller factor) scales as ∆̂EA ∼ ∆(y ∝ 1/m) ∝ mκ ∝ p−κ, which provides a way to measure the exponent κ.

Note that instead, at any level of kRSB with finite k, we have ∆̂EA = ∆̂k ∝ m ∝ 1/p as in the 1RSB solution. As in
the Sherrington-Kirkpatrick model, the presence of a fullRSB solution is the signature of a marginally stable phase
where the scaling of the intra-state overlap is changed.
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B. Pair correlation function

We now want to study the scaling of the effective potential given by Eq. (108), that in d → ∞ coincides with the
glass correlation function9 g(r) as a function of h = d(r −D)/D (recall that mk = 1 and yk = 1/m):

e−φeff (h) = θ(h)

∫ ∞

−∞
dz ez−h γ∆̂k

(h− z)
e−z−∆̂1/2P (mk, z)

g(mk, z)
= θ(h)

∫ ∞

−∞
dz ez−h γ∆̂k

(h− z)
P̂ (yk, z)

Θ

(
z/

√
2∆̂k

)

= θ(h)

∫ ∞

−∞
dz

γ∆̂k
(h+ ∆̂k − z)

Θ

(
z/

√
2∆̂k

) P̂ (yk, z)e
∆̂k/2 .

(201)

1. Finite kRSB

Before looking at the fullRSB solution, it is instructive to examine what happens at any finite level of kRSB. In

that case, when m → 0, we have ∆̂k ∼ m and P̂ (mk, h) tends to a finite function for all h. In this situation, if h > 0,

the kernel γ∆̂k
(h+∆̂k−z) forces |z−h| ∼ m1/2 → 0, hence z > 0. The function Θ

(
z/

√
2∆̂k

)
→ 1, and we conclude

that

e−φeff (h) = P̂ (yk, h)e
∆̂k/2 . (202)

In particular, in the 1RSB case, P̂ (y1, h)e
∆̂1/2 = 1 and the effective potential is 1 corresponding to no correlations

at all for any h > 0. Note however that for k > 1RSB, the function P̂ (yk, h) has qualitatively the shape of Fig. 7,
although the peak is not divergent. We therefore obtain that the glass correlation has a peak for small h.
On top of that, there is a highly non-trivial behavior when h ∼ m [11]. In fact, in that regime z is not always

positive. The positive part of the integral over z gives a small contribution, but for negative z the function Θ can
be computed in large and negative arguments where it goes to zero. This small denominator changes completely the
behavior of the function inducing a large peak. In this regime, defining λ = h/m, making use of the expansion of the

error function Θ(s → ∞) ∼ e−s2

2
√
π|s| [11], and omitting subleading terms, we get:

e−φeff (h) =

∫ 0

−∞
dz

e
− (mλ+∆̂k−z)2

2∆̂k√
2π∆̂k

|z| e
z2

2∆̂k

√
2π

∆̂k

P̂ (yk, z) =

∫ 0

−∞
dz |z| 1

∆̂k

e
z

(
mλ

∆̂k
+1

)

P̂ (yk, z) . (203)

Now, using that ∆̂k = mγ̂k, and that γ̂k remains finite for m → 0, we have

e−φeff (h) =
1

m

∫ 0

−∞
dz |z| 1

γ̂k
e
z
(

λ
γ̂k

+1
)

P̂ (yk, z) =
1

mγ̂k
Fk

(
λ

γ̂k

)
=

1

mγ̂k
Fk

(
h

mγ̂k

)
, (204)

which shows that the contact value of the pair correlation g(r) diverges as 1/m and the peak is characterized by a
scaling function10 Fk on a scale h ∼ m. This function is finite for λ = 0 (remember that P (yk, z) is a finite function,
and it decays as a Gaussian for large z), while for λ → ∞ it decays as 1/λ2, because P (yk, z) is finite in z = 0. These
results were already derived in [11] at the 1RSB level.

2. FullRSB

Let us now see how this scenario is profoundly modified in the fullRSB case. As discussed in Sec. XIA, at finite
m the scaling discussed in Sec. IX holds, but there is a cutoff at y = xmax/m with some constant factor xmax, after

9 The reader should not confuse this function, which is a standard object of liquid theory [70] with the auxiliary function g(m, h) that
has been introduced above.

10 We called the scaling function Fk to keep the same notation used in previous papers [11]. This function should not be confused with

the function F(∆̂) that has been introduced in the expression of the replicated entropy at the beginning of the paper.
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which ∆(y) is constant, and so is P̂ (y, h). Therefore, ∆̂k ∼ ∆∞(m/xmax)
1+c. At the same time, P̂ (yk, h) is not finite

anymore: it satisfies the scaling (167) and in particular for h < 0 we have

P̂ (yk, h) ∼ (xmax/m)cp0(h(xmax/m)c) . (205)

The reasoning that leads to Eq. (203) still holds, but now we have to take into account these modifications. We get,
calling t = −z(xmax/m)c,

e−φeff (h) =

∫ 0

−∞
dz |z| 1

∆∞(m/xmax)1+c
e
z
(

mλ

∆∞(m/xmax)1+c +1
)

(xmax/m)cp0(z(xmax/m)c)

=
xmax

m∆∞

∫ ∞

0

dt t p0(−t)e−tλxmax
∆∞ =

xmax

m∆∞

∫ ∞

0

dt t p0(−t)e−thxmax
m∆∞ .

(206)

The divergent part of the pressure is given by the contact value of g(r), hence

p = 1 + 2d−1ϕg(D) ∼ d

2
ϕ̂e−φeff (0) =

d

2
ϕ̂
xmax

m∆∞

∫ ∞

0

dt t p0(−t) =
dxmax

m∆∞

∫∞
0 dt t p0(−t)∫∞
0 dt p0(−t)

≡ dxmax

m∆∞
t , (207)

where we made use of Eq. (196) and introduced t. Note that this result confirms that the pressure is indeed proportional
to 1/m as we have already discussed above. Eq. (206) can therefore be written as

g(r)

g(D)
=

e−φeff (h)

e−φeff (0)
=

∫∞
0 dt t p0(−t)e−thxmax

m∆∞

∫∞
0 dt t p0(−t)

=

∫∞
0 dt t p0(−t)e−

t
t

hp
d

∫∞
0 dt t p0(−t)

. (208)

We now define the scaling variable λ = (hp)/d = p(r −D)/D and the function

P∞(f) =
p0(−ft)∫∞

0 df f p0(−ft)
, (209)

and we obtain the final result

g(r)

g(D)
=

∫ ∞

0

df f P∞(f) e−λf ≡ F∞(λ) = F∞

(
p
r −D

D

)
. (210)

Note that the function P∞(f) is normalized in such a way that

∫ ∞

0

df P∞(f) =

∫ ∞

0

df f P∞(f) = 1 , (211)

therefore F∞(λ = 0) = 1 as it should. Furthermore, because p0(z) ∼ |z|θ for small z, one has P∞(f) ∼ fθ for small f
and F∞(λ) ∼ λ−2−θ for large λ, which provides a way to measure θ from the scaling of the contact peak of the pair
correlation function.
Finally, Eq. (202) remains true also in the fullRSB case, but we have seen that the function p2(h) that describes the

behavior of P̂ (yk, h) at finite h diverges as h−α when h → 0. We therefore predict that the pair correlation function,
at jamming, should diverge as h−α for h → 0+, which provides a way to measure the exponent α.

C. Force distribution

It has been shown in [44] that the function P (f) that enters in the scaling function F(λ) in Eq. (210) is exactly the
probability distribution of the forces between particles. Here forces are scaled by the average force, in such a way that
the average force is 1, which is consistent with the normalization (211). Obviously, we cannot compute directly P (f)
for hard spheres, because forces between hard particles are due to collisions: they have dynamical origin and cannot
be obtained through a static computation without making assumptions about the connection between structure and
forces [21, 44].
Interestingly, however, in the case of soft harmonic spheres the forces are simply linear functions of the overlaps,

and therefore their distribution P (f) is related to g(r) by a straightforward relation [27]. In Appendix A we present
a simple extension of the theory to soft harmonic spheres, following [14], that allows us to compute P (f) directly.
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Because the distribution of forces at jamming is only determined by the contact network [25, 28], P (f) must be the
same if one approaches jamming from below using hard spheres or from above using soft spheres. Indeed, as in the
1RSB case [27], we find that the soft sphere computation gives the result in Eq. (209), thus identifying P∞(f) with
the (scaled) force distribution at jamming in the fullRSB solution. This result provides an indepenent proof of the
relation (210) between P (f) and F(λ) derived in [44].
Note that a similar manipulation starting from Eq. (204) shows that at any finite level of kRSB

Pk(f) =
e−tf P̂ (yk,−ft)∫∞

0 df f e−tf P̂ (yk,−ft)
, (212)

with t defined by the same normalization condition as in Eq. (211). The resulting force distribution is finite for f → 0
and decays as a Gaussian at large forces, as found at the 1RSB level in [11]. At the fullRSB level, thanks to the
appearance of the scaling regime, Eq. (212) becomes Eq. (209). This is very interesting, because for finite forces we
obtain a function that is still qualitatively similar to the kRSB result (it is close to a Gaussian), but for small forces
we have a large deviation and in particular P∞(f) ∼ fθ with θ given in Eq. (200). As noted in [25], the opening
of this “pseudogap” in the force distribution is exactly the same phenomenon as the opening of a pseudogap in the
frozen field distributions of the SK model [63, 71], and it fully reflects the presence of fullRSB.

D. Isostaticity

Finally, we can compute the integral of the delta peak to obtain the coordination number. The number of neighbors
at distance h is

Z(h) = ρVd d

∫ 1+h/d

0

dssd−1e−φeff = dϕ̂

∫ h

−∞
dueue−φeff (u) = dϕ̂

∫ h

0

dueue−φeff (u) (213)

The rise of Z(h) from 0 to the plateau happens on the scale λ = h/m. We obtain therefore for the contact number,
using Eq. (206):

z = dϕ̂

∫ ∞

0

dλ
xmax

∆∞

∫ ∞

0

dt t p0(−t)e−tλxmax
∆∞ = dϕ̂

∫ ∞

0

dt p0(−t) . (214)

Now, we know from Eq. (196) that
∫∞
0 dt p0(−t) = 2/ϕ̂, we therefore predict that jammed packings are isostatic with

z = 2d, indepentently of their density. Note that isostaticity appears as a direct consequence of Eq. (193).

XII. MARGINAL STABILITY

In this section we want to prove that the fullRSB solution is marginally stable. This means that the matrix of small
fluctuations around the optimum selected by the variational equations has at least one zero eigenvalue. The complete
proof of this statement in the case of the SK model has been given in [39–42]. Here we do not discuss the complete
calculation of all the eigenvalues but we focus our attention to the one that is responsible for the marginal stability
of the fullRSB state. We consider the replicon eigenvalue that is responsible for the stability of the fullRSB solution
with respect to small fluctuations of the mean square displacement matrix that are localized in the innermost blocks.
We start the computation from the replicated entropy defined by Eq. (1). We want to study the eigenvalues of the

matrix defined by

M
(k)
ab;cd =

2

d

∂2s

∂∆a<b∂∆c<d
=

∂2

∂∆a<b∂∆c<d

[
log det(α̂m,m)− ϕ̂F(∆̂) ,

]
(215)

where all the four indexes a, b, c, d are in the same innermost block in a kRSB ansatz and the derivatives are computed
on the kRSB solution. We follow the same convention as in [2] by assuming that the variation of ∆ab also induces an
identical variation of ∆ba, thereby preserving the symmetry of the matrix. We denote this “symmetric” derivative by
∂/∂∆a<b. Replica symmetry implies that all the innermost blocks are equivalent, and that the form of the stability
matrix in each of these blocks is

M
(k)
ab;cd = M1

(
δacδbd + δadδbc

2

)
+M2

(
δac + δbd + δad + δbc

4

)
+M3 . (216)
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The replicon eigenvalue responsible for the stability of the innermost states is given by [35, 66]

λ
(k)
R = M1 . (217)

If we consider a kRSB matrix and make a variation of the innermost element ∆̂k, we have (here B denotes one of the
innermost blocks)

2

d

∂2s

∂∆̂2
k

=
m

mk−1

∑

a 6=b,c 6=d∈B

2

d

∂2s

∂∆ab∂∆cd
+

m

mk−1

(
m

mk−1
− 1

)
[mk−1(mk−1 − 1)]2

2

d

∂2s

∂∆ab∂∆cd

∣∣∣∣
a 6=b∈B,c 6=d∈B′ 6=B

=
1

4
m(mk−1 − 1)M1 +O((mk−1 − 1)2) ,

(218)

where in the first step we used that ∂2s
∂∆ab∂∆cd

is independent of the choice of indexes if they belong to different blocks,

and in the second step we used Eq. (216) and neglected higher orders in mk−1 − 1. This is due to the fact that
eventually we want to take the continuum limit k → ∞ in which mk−1− 1 → 0, and we only want to keep the leading
order. The factor 1/4 in the second line comes from the symmetrization of the derivative. We therefore obtain the
result for the replicon eigenvalue in the continuum limit

λR =
4

m(mk−1 − 1)

2

d

∂2s

∂∆̂2
k

=
4

m(mk−1 − 1)

∂2

∂∆̂2
k

[
log det(α̂m,m)− ϕ̂F(∆̂)

]
. (219)

For the first term (the entropic term) we use the kRSB expression given in Eq. (39). We have

∂

∂∆̂k

log det(α̂m,m) =
1

∆̂k

(
m

mk
− m

mk−1

)
+O((mk−1 − 1)2) (220)

and

∂2

∂2∆̂k

log det(α̂m,m) = − 1

∆̂2
k

(
m

mk
− m

mk−1

)
+O((mk−1 − 1)2) , (221)

so that the contribution to the replicon of the entropic term is in the continuum limit (remember that mk = 1 and
mk−1 → 1):

λ
(E)
R = − 4

∆(1)2
. (222)

We have now to compute the interaction part of the replicon eigenvalue. This can be done following exactly the
same lines of Sec. IVA. The result is

λ
(I)
R = 2

∫ ∞

−∞
dheh

d

dh

[
γ−∆̂1

⋆

[
P (1, h)

[
(g′′(1, h))2

g2(1, h)
− 2

(g′(1, h))2g′′(1, h)

g3(1, h)
+

(g′(1, h))4

g4(1, h)

]]]

= 2

∫ ∞

−∞
dhehγ−∆̂1

⋆

[
d

dh

[
P (1, h)(f ′′(1, h))2

]]
= −2

∫ ∞

−∞
dhehP̂

(
1

m
,h

)
(f ′′(1, h))2 .

(223)

Putting all the pieces together, we obtain

λR = − 4

∆(1)2
+ 2ϕ̂

∫
dhehP̂

(
1

m
,h

)
(f ′′(1, h))2 . (224)

By using the fact that ∆(1) = mγ(1/m), and f(1, h) = f̂(1/m, h)/m we can rewrite this expression in the following
form

λR = − 4

m2γ(1/m)2

[
1− ϕ̂

2
γ(1/m)2

∫ ∞

−∞
dhehP̂ (1/m, h)f̂ ′′(1/m, h)2

]
. (225)

Eq. (193) with y = 1/m therefore implies that λR = 0 everywhere in the fullRSB phase, which shows the marginal
stability of the fullRSB solution. This result is important because we have shown in the previous sections that
Eq. (193) is the key ingredient to obtain the critical exponents at jamming. This means that the marginal stability
of the fullRSB solution plays a prominent role in characterizing the properties of the jamming transition.
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FIG. 13: (Left) Time evolution of the mean-square displacement in the equilibrated liquid at ϕ = 0.405 as well as in the glass
for different p = 102–108 . (Right) Pressure evolution of the Debye-Waller factor ∆EA in d = 3, 4, 6, 8. The black line is a

power-law with exponent κ given by Eq. (200). For comparison, we also show a power-law p−3/2 as a grey line.

XIII. COMPARISON WITH RESULTS OF MOLECULAR DYNAMICS SIMULATIONS IN FINITE
DIMENSIONS

The scaling of the fullRSB solution provides a number of predictions for the critical scaling at the jamming transition.
It predicts that packings are isostatic with average contact number z = 2d, that the cage radius scales as ∆EA ∼ p−κ,
that the correlation function at jamming diverges on approaching contact as (r−D)−α, that the contact peak of the
correlation function, on approaching jamming, has a scaling form given by Eq. (210) (see also [11]) with a scaling
function F∞(λ) ∼ λ−2−θ at large λ, and that the force distribution is characterized by P∞(f) ∼ fθ for small f . The
exponents κ, α, θ are given in Eq. (200).
Some of these predictions have already been verified in the past using molecular dynamics simulation. In particular

isostaticity is a well-known property of jammed packings (see [11, 46, 72] for reviews). Also, the exponent α in
g(r) ∼ (r −D)−α has been independently measured with good precision by a number of groups [27, 28, 44, 73, 74]
and its mostly accepted value α ≈ 0.42 is perfectly compatible with the prediction in Eq. (200).
The scaling of ∆EA ∼ p−κ has been studied in [21–23, 26] and the data were found to be compatible with κ = 3/2,

which is slightly different from our prediction, and had been proposed in [20, 23] using a scaling argument based on
marginal stability. To check whether the numerical data are also compatible with our prediction for κ, we performed
additional molecular dynamics simulations. Hard-sphere systems in d=3, 4, 6, and 8 with N=8000 particles are
simulated under periodic boundary conditions using a modified version of the event-driven molecular dynamics code
described in Refs. [12, 13, 73]. We consider monodisperse spheres with unit mass and unit diameter D and unit

mass m, hence time is expressed in units of
√
βmD2 at fixed unit inverse temperature β. Hard sphere glasses are

obtained using a Lubachevski-Stillinger algorithm initiated in the low-density fluid state with a slow growth rate
γ̇ = 3 × 10−4. The fluid then falls out of equilibrium near the dynamical transition. Using these configurations, the
mean-square displacement 〈∆r2(t)〉 = 〈1/N∑i[ri(t)−ri(0)]

2〉 is obtained, and reported in Fig. 13. The rattlers, which
are identified as the particles having fewer than d + 1 contacts at p = 1010 (following Ref. [27]), are removed when
analyzing systems at p & 105. The long-time mean square displacement plateau provides 〈∆r2(t → ∞)〉 = d∆EA,
where the Debye-Waller factor ∆EA is an estimate of the average cage size in the glass [13]. Using this approach, we
find that in all dimensions the exponent κ is close to 3/2, but the data are better described by our predicted value of

κ, see Fig. 13. Note that the theoretical prediction is that ∆EA = ∆̂EA/d
2 should decrease as d2 (at fixed ϕ̂), while in

Fig. 13 we see that ∆EA is roughly independent of dimension in the range of d we investigated. This discrepancy is
probably due to the fact that the numerically investigated dimensions are quite far from the asymptotic d → ∞ limit
(as far as prefactors are concerned), as it has been already noted in [12, 13]. An approximate analytical computation
of the prefactor ∆∞ of the p−κ scaling in finite d is certainly possible and would shed light on this issue.
The measure of the exponent θ is more problematic. In fact, previous attempts at measuring θ using different

techniques reported results in the range 0.2 ÷ 0.45 [27, 28]. In [28] it has been shown that the behavior of the force
distribution P (f) at small forces is dominated by two different ways in which the force network responds to an external
perturbation: extended modes and local buckling modes. According to the results of [28, 43], extended modes give
an exponent θe = 1/α− 2, which perfectly agrees with our results given in Eq. (200). Buckling modes, instead, give
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an exponent θb = 1 − 2α and using the value of α predicted by our theory in Eq. (200), one obtains θb = 0.17462,
which agrees with the numerical value reported in [28, 43]. According to the analysis of [28], in presence of both
modes the force distribution is dominated by the smallest exponent, hence θ = min{θb, θe} = 0.17462 is the value that
enters in P (f). However, in our approach we do not see any trace of the buckling modes and P (f) is characterized
by the exponent θ associated with extended modes. This is probably due to the fact that buckling modes disappear
in large dimensions, similarly to what happens to rattlers [27]. A careful numerical investigation of this effect would
be important.

XIV. CONCLUSIONS

We have derived the fullRSB equations that describe infinite-dimensional hard spheres (and, en passant, more
general potentials). We have shown that a marginal fullRSB phase exists at high pressure and that it correctly predicts
isostaticity and the critical exponents κ, α, θ associated with the jamming transition, unlike the 1RSB solution. The
predicted values of the exponents are given in Eq. (200). These predictions have been reviewed and compared with
numerical simulations in Sec. XIII.
Of course, a lot of work is still needed to understand and characterize this phase. Let us summarize a certain

number of research directions that should be explored in the near future:

• The exponents κ, α and θ recently attracted a lot of attention because they are related to the marginal mechanical
stability of the packing in real space [20, 25, 28, 43, 75]. Furthermore, the analysis of [25, 28, 43] predicts two
scaling relations, α = 1/(2 + θ) and κ = 2 − 2/(3 + θ), that are exactly verified by our predicted exponents,
see Eq. (200). Within the present approach, the critical regime around jamming emerges as a consequence of
a marginal stability in phase space, a consequence of the vanishing of the replicon eigenvalue of the fullRSB
solution [30, 40]. The scaling relations α = 1/(2 + θ) and κ = 2 − 2/(3 + θ) can be derived from Eq. (168),
using b = (1 + c)/2 (which we proved) and a + b = 1, a relation that we were not able to prove but holds
within arbitrary numerical precision, see Eq. (200). It seems therefore that our approach, based on phase-space
marginality, and the approach of [25, 28, 43], based on marginal mechanical stability, are intimately related,
and making this connection more explicit would be extremely interesting.

• In [28] it was claimed that another exponent θb, associated to local buckling modes, controls the behavior of
the small force distribution, and this exponent is smaller than θ and verifies a different scaling relation, see the
discussion in Sec. XIII. Yet we do not see any trace of the exponent θb in our d = ∞ solution. Clarifying
this point is therefore of crucial importance. It might be possible that the modes leading to the exponent θb
disappear in the limit d → ∞. This could be checked through numerical simulations.

• An important technical issue is to perform a state following calculation [57, 76]. Such a computation would allow
one to compute the Gardner transition and the fullRSB phase for a given glass phase, which would facilitate
the comparison with numerical simulations.

• Following [47–49], one can hope to compute exactly the shear modulus, which is another important observable
showing anomalous scaling at the jamming transition [18, 77]. This is particularly interesting in light of the
recent numerical results of [78], which show some possible direct observations of fullRSB effects.

• It could be possible to compute the distribution of avalanche sizes, following [50], who performed a similar
computation in the Sherrington-Kirkpatrick model.

• Although in this paper we focused only on hard spheres, the computations can be easily extended to soft
spheres, in order to study the complete scaling on both sides of the jamming transition [14, 26]. A preliminary
and incomplete account of this extension is reported in Appendix A. It would also be interesting to check what
is the temperature scale of the Gardner transition in thermal systems.

• The results should be extended to finite dimensional systems (still within a mean-field approximation) by using
the effective potential approximation scheme of [11, 14]. This would be extremely important, as it would allow
one to compute precise numbers (e.g. for the distribution of mean-square displacements among different states)
to be compared with numerical simulations and experiments.

• It would be very important to understand how truly finite dimensional corrections around the mean field
approximation, i.e. critical fluctuations in a renormalization group approach, affect the scenario proposed in
this paper. Some attemps to study this problem have been made e.g. in [79–81].
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• The most important point is, however, the study of the off-equilibrium dynamics, that is still poorly understood
in presence of fullRSB effects even in spin glass models [31–33]. In this paper, we assumed that, since fullRSB
seems to characterize all glasses at high enough pressure, it will be present in whatever state is reached by the
off-equilibrium dynamics. However, how this is realized precisely, and which are the dynamical signatures of
fullRSB in the context of structural glasses, remains an open problem.
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Appendix A: Extension to soft spheres

We consider a system of soft spheres interacting through the potential v(r) = ǫ(1−|r|/D)2θ(1−|r|/D). Introducing
h = d(|r| −D)/D we have

e−βv(r) = e−βǫ(1−|r|/D)2θ(1−|r|/D) = e−(βǫ/d2)h2θ(−h) = e−β̂h2θ(−h) = e−v̂(h) , (A1)

where we introduced a scaled temperature β̂ = βǫ/d2. Note that if we want to keep β̂ finite, we have βǫ ∼ d2 hence
the soft sphere system is effectively at a very low temperature; for this reason the soft sphere system is close to a hard
sphere one and neglecting higher order virial diagrams is correct as in the case of hard spheres. The equations for soft
spheres have been derived in Sec. V: they are identical to Eq. (113), with only a difference in the initial condition for

f̂(y, h), which can be deduced from Eq. (102) and becomes11:

g(mk, h) = γ∆̂k
⋆ e−v̂(h) , f̂(yk, h) = m log γmγ̂k

⋆ e−v̂(h) . (A2)

The effective potential in Eq. (108), similarly to Eq. (201), has the following expression:

e−φeff (h) = e−v̂(h)

∫ ∞

−∞
dz ez−h γ∆̂k

(h− z)
e−z−∆̂1/2P (mk, z)

g(mk, z)
= e−v̂(h)

∫ ∞

−∞
dz

γ∆̂k
(h+ ∆̂k − z)

γmγ̂k
⋆ e−v̂(z)

P̂ (yk, z)e
∆̂k/2 .

(A3)

In the case of soft spheres, the jamming limit can be approached from above by an appropriate scaling of the

parameters [14]. First, the zero-temperature soft sphere limit is obtained by letting m → 0 with T̂ = 1/β̂ = mτ and
fixed τ . After this limit has been taken, the jamming point is approached from above by letting τ → 0.

1. The zero temperature limit

We now focus on the zero-temperature soft sphere limit. To take this limit we have to compute

f̂(yk, h) = m log γmγ̂k
⋆ e−β̂h2θ(−h) (A4)

11 Remember that according to our definitions, mk = 1, ∆̂k = mγ̂k , yk = mk/m = 1/m, and f̂(yk, h) = y−1
k log g(mk , h).
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in the limit where m → 0 and β̂ = 1/(mτ). Note that it is natural to assume that γ̂k remains finite in this limit:

therefore, ∆EA = ∆̂k ∼ m ∼ T vanishes proportionally to temperature, as found numerically in [26]. We have

γmγ̂k
⋆ e−β̂h2θ(−h) =

∫ ∞

−∞
dz

e
− (h−z)2

2mγ̂k
− 1

mτ z2θ(−z)

√
2πmγ̂k

(A5)

which for m → 0 can be evaluated by a saddle-point. For h > 0, the saddle point is z∗ = h > 0, while for h < 0 it
is z∗ = h/(1 + 2γ̂k/τ) < 0. In both cases therefore the integral is strongly peaked around z∗. Because the integral is
quadratic, computing the corrections to the saddle point is equivalent to replacing θ(−z) with θ(−h), and we obtain

γmγ̂k
⋆ e−β̂h2θ(−h) ∼

∫ ∞

−∞
dz

e
− (h−z)2

2mγ̂k
− 1

mτ z2θ(−h)

√
2πmγ̂k

=




e
− 1

m(2γ̂k+τ)
h2
(
1 + 2γ̂k

τ

)−1/2

for h < 0

1 for h > 0
(A6)

For m → 0, one therefore obtains

f̂(yk, h) = − 1

2γ̂k + τ
h2θ(−h) . (A7)

This is therefore the appropriate initial condition for f̂(yk, h) for soft spheres at T = 0. Note that the asymptotic
behavior is therefore modified with respect to the hard sphere case. As in hard spheres, inserting these asymptotes

in the evolution equation for f̂(yi, h), one can show that Eq. (110) becomes

f̂(yi, h → −∞) ∼ − h2

2γ̂i + τ
. (A8)

The correct definition of ĵ(yi, h) is therefore

f̂(yi, h) = −h2θ(−h)

2γ̂i + τ
+ ĵ(yi, h) . (A9)

It is also convenient to define γ̂τ
i = γ̂i + τ/2. Then Eqs. (113) become, recalling that yk = 1/m is formally infinite:

SkRSB =
k∑

i=1

(
1

yi
− 1

yi−1

)
log(γ̂τ

i − τ/2)− ϕ̂ e−∆̂1/2

∫ ∞

−∞
dh eh

{
1− e

−h2θ(−h)
2γ̂τ

1
+ĵ(y1,h)

}
,

∆̂i =
γ̂τ
i

yi
+

k∑

j=i+1

(
1

yj
− 1

yj−1

)
γ̂τ
j ,

ĵ(yk, h) = 0 ,

ĵ(yi, h) =
1

yi
log

[∫ ∞

−∞
dz Kγ̂τ

i ,γ̂
τ
i+1,yi

(h, z) eyiĵ(yi+1,z)

]
, i = 1 · · · k − 1 ,

P̂ (y1, h) = e
−∆̂1/2−h2θ(−h)

2γ̂τ
1

+ĵ(y1,h)
,

P̂ (yi, h) =

∫
dz Kγ̂τ

i−1,γ̂
τ
i ,yi−1

(z, h) P̂ (yi−1, z) e
z−h e−yi−1ĵ(yi−1,z)+yi−1ĵ(yi,h) i = 2, · · · , k ,

κ̂i =
ϕ̂

2

∫ ∞

−∞
dh eh P̂ (yi, h)

(
−hθ(−h)

γ̂τ
i

+ ĵ′(yi, h)

)2

,

1

γ̂τ
i − τ/2

= yi−1κ̂i −
i−1∑

j=1

(yj − yj−1)κ̂j ,

(A10)

where the kernel K is the same as the one for hard spheres given in Eq. (114). We notice that, in terms of γ̂τ
i ,

these equations are almost identical to the ones of hard spheres, except for slight modifications to the first and last
equations. When τ = 0, the equations correctly give back the HS equations for m → 0 [14, 27]. In the continuum
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limit the equations above become

S∞RSB = −
∫ ∞

1

dy

y2
log
[
γτ (y)−

τ

2

]
− ϕ̂ e−∆(1)/2

∫ ∞

−∞
dh eh[1− e−

h2θ(−h)
2γτ (1)

+ĵ(1,h)] ,

∆(y) =
γτ (y)

y
−
∫ ∞

y

dz

z2
γτ (z) , ⇔ γτ (y) = y∆(y) +

∫ ∞

y

dz∆(z) ,

lim
y→∞

ĵ(y, h) = 0 ,

∂ĵ(y, h)

∂y
=

1

2

γ̇τ (y)

y


−θ(−h)

γτ (y)
+

∂2ĵ(y, h)

∂h2
− 2y

hθ(−h)

γτ (y)

∂ĵ(y, h)

∂h
+ y

(
∂ĵ(y, h)

∂h

)2

 ,

P̂ (1, h) = e−∆(1)/2−h2θ(−h)
2γτ (1) +ĵ(1,h) ,

∂P̂ (y, h)

∂y
= −1

2

γ̇τ (y)

y
e−h

{
∂2[ehP̂ (y, h)]

∂h2
− 2y

∂

∂h

[
ehP̂ (y, h)

(
−hθ(−h)

γτ (y)
+

∂ĵ(y, h)

∂h

)]}
,

κ(y) =
ϕ̂

2

∫ ∞

−∞
dh eh P̂ (y, h)

(
−hθ(−h)

γτ (y)
+ ĵ′(y, h)

)2

,

1

γτ (y)− τ
2

= yκ(y)−
∫ y

1

dzκ(z) .

(A11)

Using these equations it is possible to derive the marginal stability condition also in the soft sphere case. We can

derive the equation for κ(y) in terms of P̂ with respect to y to get

(
γτ (y)

γτ (y)− τ/2

)2

=
ϕ̂

2

∫ ∞

−∞
dh ehP̂ (y, h)f̃ ′′(y, h)2 , (A12)

where f̃(y, h) = γτ (y)f̂(y, h). Note that again, this equation holds only if there is a domain where γτ (y) is not
piecewise constant, namely where a fullRSB solution is present. By deriving again this equation with respect to y we
get

−τ
γ2
τ (y)(

γτ (y)− τ
2

)3 =
ϕ̂

2

∫
dh ehP̂ (y, h)

[
2
(
f̃ ′′(y, h)2 + f̃ ′′(y, h)3

)
− γτ (y)

y
f̃ ′′′(y, h)2

]
, (A13)

that can be rewritten as

y =
1

2
γτ (y)

∫
dhehP̂ (y, h)f̃ ′′′(y, h)2

τ
ϕ̂

γ2
τ (y)

(γτ (y)− τ
2 )

3 +
∫
dh ehP̂ (y, h)f̃ ′′(y, h)2

[
1 + f̃ ′′(y, h)

] . (A14)

The above equation can be seen as an equation for the breaking points of the fullRSB profile of γτ (y).
It is interesting to compute the effective potential (A3) in the limit m → 0. Using Eq. (A6), and with similar

manipulations, we obtain

e−φeff (h) =





e−
1

mτ h2 ∫∞
−∞ dz e

−
(h−z+mγ̂k)2

2mγ̂k
+ 1

m
z2

2γ̂k+τ√
2πmτγ̂k/(τ+2γ̂k)

P̂ (yk, z) ∼
(
1 + 2γ̂k

τ

)
e

2γ̂k
τ hP̂

[
yk, h

(
1 + 2γ̂k

τ

)]
for h < 0

∫∞
−∞ dz e

−
(h−z+mγ̂k)2

2mγ̂k√
2πmγ̂k

P̂ (yk, z) ∼ P̂ (yk, h) for h > 0

(A15)

From this result, we can compute the number of contacts using Eq. (213). For soft spheres, all particles with h < 0
are in contact, and we have

z = dϕ̂

∫ 0

−∞
dhehe−φeff (h) = dϕ̂

(
1 +

2γ̂k
τ

)∫ 0

−∞
dhe

(
1+

2γ̂k
τ

)
h
P̂

[
yk, h

(
1 +

2γ̂k
τ

)]
= dϕ̂

∫ ∞

0

dte−tP̂ [yk,−t] . (A16)
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2. The jamming limit and the force distribution

It is natural to expect that away from jamming (a small) τ acts as a cutoff for the scalings of Sec. IX, like m for
hard spheres. We assume therefore that all the scalings of Sec. IX hold, but with a cutoff at ymax(τ). In the limit
τ → 0, the cutoff must diverge to recover the jamming physics.
For soft spheres, the inter-particle force is f = 2 ǫ

D (1 − |r|/D) = − 2ǫ
dDh for h < 0. Let us rescale the forces by a

factor dD
2ǫ in such a way that f = −h exactly. In any case we are not interested in the prefactors in the overall scaling

of forces. Then the probability distribution of forces is, following [27] and recalling that f ≥ 0:

P (f) =
e−f−φeff(−f)

∫∞
0 df ′e−f ′−φeff (−f ′)

. (A17)

Using Eq. (A15), we then obtain

P (f) ∝ e
−f

(
1+

2γ̂k
τ

)

P̂

[
yk,−f

(
1 +

2γ̂k
τ

)]
. (A18)

In the jamming limit τ → 0, we expect that γ̂k ∼ γ∞y−c
max and P̂ (yk, h) ∝ ycmaxp0(hy

c
max). Note that we also have

∆EA = ∆̂k = mγ̂k =
T

τ
γ∞y−c

max . (A19)

We also must assume that γ̂k/τ ∼ γ∞ymax(τ)
−c/τ diverges for τ → 0, because ∆EA/T must diverge on approaching

jamming to match with the hard sphere regime. Therefore

P (f) ∝ e−f
2γ̂k
τ P̂

[
yk,−f

2γ̂k
τ

]
∝ e−f

2γ∞y−c
max

τ p0

(
−f

2γ∞y−c
max

τ
ycmax

)
= e−f

2γ∞y−c
max

τ p0

(
−f

2γ∞
τ

)
∼ p0

(
−f

2γ∞
τ

)

(A20)
where the exponential factor can be neglected in the last step because the natural scale of forces is f ∼ τ . This is
correct because the pressure scales as τ [14].
It is customary in the literature to scale the forces in such a way that the average force is 1. We have for the average

force in the limit τ → 0

f =

∫∞
0 dffp0

(
−f 2γ∞

τ

)
∫∞
0 dfp0

(
−f 2γ∞

τ

) =
τ

2γ∞

∫∞
0 dt t p0 (−t)∫∞
0 dtp0 (−t)

=
τ

2γ∞
t (A21)

Defining therefore a scaled force f̂ = f 2γ∞

τt
, we have for the scaled distribution

P (f̂) =
p0(−f̂ t)∫∞

0 df̂ p0(−f̂ t)
=

p0(−f̂ t)∫∞
0 df̂ f̂ p0(−f̂ t)

, (A22)

which confirms the validity of Eqs. (209) and (210). Note that from Eq. (A16) we find that also jammed soft spheres
are isostatic. In fact, for τ → 0,

z = dϕ̂

∫ ∞

0

dte−tP̂ [yk,−t] ∼ dϕ̂

∫ ∞

0

dte−ty−c
maxp0(−ty−c

max) ∼ dϕ̂

∫ ∞

0

dtp0(−t) = 2d . (A23)

Actually, using Eq. (193) and Eq. (198), we can also compute the scaling of the corrections to this result:

z

2d
=

ϕ̂

2

∫ ∞

0

dte−tP̂ [yk,−t] =
ϕ̂

2

∫ ∞

−∞
dhehP̂ [yk, h] [θ(−h) + f̃ ′′(yk, h)

2 − f̃ ′′(yk, h)
2]

= 1 +
ϕ̂

2

∫ ∞

−∞
dhehP̂ [yk, h] [θ(−h)− f̃ ′′(yk, h)

2] = 1 +
ϕ̂

2

∫ ∞

−∞
dhehP̂ [yk, h] [−

c2

4
J ′′(hybk)

2 − cJ ′′(hybk)θ(−h)]

= 1 +
ϕ̂

2

∫ ∞

−∞
dhehyakp1(hy

b
k)[−

c2

4
J ′′(hybk)

2 − cJ ′′(hybk)θ(−h)] = 1 + ya−b
k

ϕ̂

2

∫ ∞

−∞
dtp1(t)[−

c2

4
J ′′(t)2 − cJ ′′(t)θ(−t)] .

(A24)

Therefore, we conclude that δz = z − 2d ∝ ya−b
max = y−c

max, using the relations b = (1 + c)/2 and a = 1− b = (1− c)/2.



57

From this analysis we conclude that the pressure P ∝ τ , that the cutoff is such that y−c
max ∝ δz, and that

∆EA ∝ T

P
δz . (A25)

Note that we expect that pressure scales linearly in δϕ̂ = ϕ̂ − ϕ̂j , hence also τ ∝ P ∝ δϕ̂. The scaling of ymax(τ)
remains however undetermined from this analysis. If we assume that ymax ∼ τ−ν ∼ δϕ̂−ν , then we have δz = δϕ̂cν

and ∆EA ∼ Tδϕ̂−1+cν. We note that the choice νc = 1/2 allows us to recover the scaling of [43], i.e. δz = δϕ̂1/2 and
∆EA ∼ Tδϕ̂−1/2.
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