
HAL Id: cea-01464295
https://cea.hal.science/cea-01464295

Submitted on 10 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Glass and jamming transitions: From exact results to
finite-dimensional descriptions

Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani,
Francesco Zamponi

To cite this version:
Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani, Francesco Zamponi. Glass
and jamming transitions: From exact results to finite-dimensional descriptions. Annual Review of
Condensed Matter Physics, 2017, 8, pp.1 - 26. �10.1146/annurev-conmatphys-031016-025334�. �cea-
01464295�

https://cea.hal.science/cea-01464295
https://hal.archives-ouvertes.fr


Glass and Jamming
Transitions: From Exact
Results to
Finite-Dimensional
Descriptions

Patrick Charbonneau,1 Jorge Kurchan,2 Giorgio
Parisi,3 Pierfrancesco Urbani, 4 and Francesco
Zamponi5

1Department of Chemistry, Duke University, Durham, NC 27701, USA.
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Abstract

Despite decades of work, gaining a first-principle understanding of

amorphous materials remains an extremely challenging problem. How-

ever, recent theoretical breakthroughs have led to the formulation of

an exact solution of a microscopic model in the mean-field limit of in-

finite spatial dimension, and numerical simulations have remarkably

confirmed the dimensional robustness of some of the predictions. This

review describes these latest advances. More specifically, we consider

the dynamical and thermodynamic descriptions of hard spheres around

the dynamical, Gardner and jamming transitions. Comparing mean-

field predictions with the finite-dimensional simulations, we identify

robust aspects of the theory and uncover its more sensitive features.

We conclude with a brief overview of ongoing research.
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1. INTRODUCTION

Although amorphous materials, such as grains, foams and glasses, are ubiquitous, their

theoretical description remains rather rudimentary. Compared with ordered solids, which

are central to any solid state textbook, the contrast could hardly be more glaring. The glass

transition is an entirely different phenomenon than the first-order transition into a crystal.

A glass is not the thermodynamic ground state, so the “glass transition” occurs as a liquid

falls out of equilibrium and becomes rigid. The rigidity of glasses hence relies on altogether

different principles than for crystals, and their materials properties bear that imprint.

Developing a theoretical description of amorphous materials is extremely challenging.

Conventional paradigms for describing condensed matter rely on perturbative treatments

around either the low-density, ideal gas limit (for moderately dense gases and liquids),

or an ideal lattice (for crystals). For amorphous materials, however, both strategies fail

badly. Because these materials interact strongly, low-density starting points are unreliable,

and equilibrium particle positions are not forthcoming. A natural controlled reference

system around which to make a small-parameter expansion is thus missing. Understanding

the rich non-equilibrium behavior of these materials, including the glass and the jamming

transitions, has instead been left to uncontrolled treatments, differently balancing rigor and
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guesswork. Constructing a first-principle theory of amorphous materials thus remains one

of the major challenges of theoretical condensed matter physics.

Amorphous materials are not alone without a natural reference for building a pertur-

bative description (1). A similar situation is encountered in liquids (2, 3), strongly coupled

electrons (4), atomic physics (5), and gauge field theory (6). For all these problems, dimen-

sional expansion has been developed as an alternate line of attack. By solving the problem

in infinite-dimensional space, d → ∞, and treating 1/d as a small parameter, one may

hope to recover–to a good approximation–the behavior of physical systems in d = 3. Such

a program for glasses was first proposed by Kirkpatrick, Thirumalai and Wolynes in the

late 1980s (7), as part of a larger effort to construct the “Random First Order Transition”

(RFOT) theory of the glass transition (8, 9, 10, 11, 12, 13). Yet advances have been a long

time coming, because the necessary tools to first solve the d =∞ problem were not readily

available. It is only a decade ago that some of us started attacking the problem head first

for the simplest model glass former, hard spheres (14, 15).

The large-d approach may be a successful calculation device in various fields of physics,

but for glasses it plays an additional–perhaps even more important–role. It helps clearly

define entities that are otherwise only phenomenological. Consider, for instance, the “config-

urational entropy”, i.e., the “entropy of glassy states” (16). In order to define this quantity

properly, one needs to count the logarithm of the number of metastable glassy states. How-

ever, it is not possible to have an exponential number of states that are absolutely stable in

a finite-d system (17). One thus defines complexity as the logarithm of the number of states

with a lifetime larger than an (arbitrarily chosen) t∗. The large-d approach, by contrast,

allows the precise enumeration of states that are stable in the limit d→∞, thus providing

a clear-cut definition. A related question is the definition of activated processes, which are

notably responsible for blurring the dynamical glass transition. It seems mathematically

clear and physically plausible that activated processes may be identified as those that take

an exponentially long time, t ∼ eO(d), to complete. This definition gives a hint of the (non-

perturbative) techniques needed to study such processes. It may even be that the entire

RFOT scenario is but a metaphor based on entities that only truly exist in the limit of

large dimensions.

The essential counterpart to the large d computation is to assess the robustness of the

physical phenomena under changing d. There would be but limited relevance to a d = ∞
solution for processes that acutely depend on spatial details. Consider, for instance, ordered

packings of hard spheres in Rd. Asymptotic packing bounds for d → ∞ (18) have little to

say about the singularly dense triangular lattice in d = 2, root lattice in d = 8 (19),

or Leech lattice in d = 24 (20). Does something similar occur for amorphous materials?

Computational answers to this question have been emerging from various directions over

the last decade (21, 22, 23, 24, 25, 26, 27, 28, 29). It has now become clear that many

features of these materials are, at least qualitatively and sometimes even quantitatively,

remarkably independent of d.

The main purpose of this review is to describe the astounding theoretical and numerical

advances triggered by these realizations. For the sake of concision and in order to be

relatively self-contained, we here only consider hard-sphere glass formers. Note, however,

that this choice is largely done without loss of generality, as we argue in the conclusion.

www.annualreviews.org • Glass and Jamming Transitions 3



1.1. Setup

We consider the behavior of a system of N hard spheres of diameter D within a box of

volume V, in d spatial dimensions. We denote xi the d-dimensional vector that encodes

the coordinates of sphere i, with i = 1, . . . , N , and xµi its coordinates with µ = 1 · · · d.

The singular nature of the hard-core interaction results in temperature playing but a trivial

scaling role. Hence, the only equilibrium control parameter is the packing fraction, ϕ,

i.e., the fraction of V occupied by spheres. For the number density of spheres ρ = N/V,

we thus have ϕ = ρVD, where VD is the d-dimensional volume of a sphere of diameter

D. Throughout the text we also rescaled version of physical quantities, ·̂, such that their

numerical values remain of order unity in the d→∞ limit, e.g., ϕ̂ = 2dϕ/d.

In the following, Section 2 presents the hard sphere liquid dynamics and compares the

exact solution with mode-coupling theory. Section 3 details what happens to an out-of-

equilibrium amorphous solid upon a quasi-static compression, and the jamming endpoint

to these compressions is separately discussed in Section 4. Section 5 presents the results of

various out-of-equilibrium processes. Each section first describes the conceptual framework

and the theoretical results from the exact d → ∞ solution, and then compares these with

experimental and numerical results for finite-d systems. Note, however, that when the

d → ∞ solution straightforwardly reproduces well-known results from other approaches

that have been extensively reviewed elsewhere, we limit ourselves to a minimal discussion

of the low-d results.

2. EQUILIBRIUM DYNAMICS AND MODE-COUPLING THEORY

Consider the following experiment: take at random a valid configuration of hard spheres

at density ϕ, randomly assign each sphere a velocity from the Maxwell distribution, and

evolve the Newtonian dynamics. At very low ϕ, dynamics is mostly ballistic, but the rare

collisions eventually give rise to a diffusive regime. The system is then nearly ideal gas-like.

Increasing ϕ makes dynamics more liquid-like, as particles move a distance no further than

D before their travel direction gets randomized by collisions and their diffusive behavior

ensues. Further increasing ϕ from this regime is the interest of this review.

If crystallization is successfully avoided–see (30, 21, 23, 24) for practical ways of achiev-

ing this, the liquid dynamics grows increasingly sluggish with ϕ. Sphere diffusivity de-

cays and, correspondingly, the structural relaxation time, τα, grows so much that the sys-

tem remains structurally similar to its initial configuration over experimentally accessible

timescales. This loss of ergodicity defines the experimental glass transition. Why does diffu-

sive dynamics become so slow and eventually freeze? In the d→∞ limit we can answer this

question precisely because the equilibrium dynamics of hard spheres has been solved (31).

In this section, we review this result and comment on its connection with other theoretical

descriptions. We then discuss how it relates to the phenomenology of finite-d systems.

2.1. Mean-field dynamical equations

In order to solve the liquid dynamics, it is convenient to substitute Newtonian by Langevin

dynamics and to momentarily relax the hard-core constraint. We thus assume that spheres

interact through a pair potential V (r) = V [d(r−D)], where V (h) remains finite for d→∞.

The hard sphere limit corresponds to V (h) = 0 for h > 0 and V (h) = ∞ for h < 0. The
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system dynamics is then obtained by solving

mẍi(t) + ζẋi(t) = −∇xiH + ξi(t) , (1)

where m is the mass of the spheres, H =
∑
i<j V (|xi − xj |) is the system energy, ζ

is the friction (or drag) coefficient, and ξi is white noise with zero mean and variance

〈ξµi (t)ξµ
′

j (t′)〉 = 2Tζδijδµµ′δ(t− t′) with temperature T = 1/β. We are interested in under-

standing the behavior of the dynamical response and correlation functions,

R(t, t′) =
2d

D2N

N∑
i=1

d∑
µ=1

δxµi (t)

δξµi (t′)
and ∆(t, t′) =

d

D2N

N∑
i=1

∣∣xi(t)− xi(t′)∣∣2 . (2)

Equilibrium dynamics is described by starting the Langevin process in an equilibrated

configuration at density ϕ and temperature T ; in this case the solution of the dynamical

equations satisfies both time translational invariance, i.e., ∆(t, t′) = ∆(t− t′) and R(t, t′) =

R(t− t′), and the fluctuation-dissipation theorem, i.e., R(t) = βθ(t)∆̇(t) (32, 33).

For d→∞, and in the thermodynamic limit N →∞, ∆(t) obeys (31)

m̂∆̈(t) + ζ̂∆̇(t) = T − β
∫ t

0

duM(t− u)∆̇(u) , (3)

where ζ̂ = D2ζ/(2d2), m̂ = D2m/(2d2), and the memory kernel M(t) is the solution of the

self-consistent equations

m̂ÿ(t) + ζ̂ẏ(t) = T − V ′[y(t)]− β
∫ t

0

duM(t− u)ẏ(u) + Ξ(t)

and M(t− t′) =
ϕ̂

2

∫
dy0ey0−βV (y0)〈F [y(t)]F [y(t′)]〉Ξ ,

(4)

where y(t = 0) ≡ y0, 〈Ξ(t)Ξ(t′)〉 = 2ζ̂T δ(t− t′) +M(t− t′), and F (y) = −V ′(y) is a scaled

interaction force.

The complex problem of N interacting particles in d dimensions has thus been reduced

to a simple one-dimensional problem: an effective degree of freedom moving in an effective

potential V (h)−Ty in presence of a colored noise, whose memory kernel M(t) is determined

self-consistently as the average of a force-force correlation. Remarkably, these equations are

akin to those from the generalized schematic mode-coupling theory (MCT) (34, 35). The key

difference is that within the MCT approximation, the memory kernel is a simple function

of ∆(t) alone (essentially, M ∼ ∆2), while the exact expression for M(t) in d→∞ is given

by Eq. (4) as an implicit functional of ∆(t). Because the critical scaling of the dynamical

equations is insensitive to the precise form of M(t), however, many qualitative features of

standard MCT persist in that case as well.

Recall that the above result was derived for a soft potential V (r) and for a Langevin

dynamics with friction and noise, but one can safely take the hard sphere limit of V (r)

and the limit ζ → 0 at which the noise disappears and the Langevin dynamics becomes

Newtonian. The latter limit, however, should be taken after taking the limits N → ∞
and d→∞. Newtonian dynamics is then described by a self-consistent effective Langevin

dynamics for which noise is generated by interactions.
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Figure 1

(a) Time evolution of the mean-square displacement ∆(t) in the liquid phase for d = 6 (36). As

density increases, the caging regime that separates the short-time ballistic, ∼ dt2 and the

long-time diffusive regimes, ∼ Dt, grows longer. (b) The decay of the diffusivity becomes more
power-law like as dimension increases, in the dynamical regime accessible in simulations (36). (c)

The critical MCT exponent γ extracted from simulations steadily approaches the prediction for

d→∞ (red line) as d increases (37). (d) The relationship between the transport coefficients D
and ηS has a non-trivial density dependence that qualitatively follows the high-d prediction (red

line) (38).

2.2. Dynamical transition

The order parameter for the dynamical transition is the long time limit of the dynamical

mean-square displacement, ∆(t). At low ϕ, the short-time ballistic behavior ∆(t) ∼ t2 is

promptly followed by a diffusive regime ∆(t) ∼ D̂t. The dynamical equation directly gives

the (rescaled) diffusion coefficient (3), and a similar analysis gives the shear viscosity (31),

D̂ =
2d2

D2
D =

T

γ̂ + β
∫∞

0
duM(u)

and η̂S =
2d VD
d2

ηS = βϕ̂

∫ ∞
0

duM(u) , (5)

hence the two transport coefficients obey

D̂ =
T

γ̂ + η̂S/ϕ̂
. (6)

One of the hallmarks of sluggish dynamics is that upon increasing ϕ̂, the ballistic and

diffusive regimes grow separated by a plateau at ∆EA, as in Fig. 1. The dynamical equations

6 CKPUZ



indicate that for d→∞ the length of the plateau diverges at the dynamical transition ϕ̂d.

The long-time limit of the mean-square displacement at that density is thus finite, i.e.,

limt→∞∆(t) = ∆EA < ∞. The system then cannot equilibrate and remains stuck in a

glass state. Correspondingly, M(t) also develops a plateau, limt→∞M(t) = MEA > 0,

indicating that memory of the initial condition persists at all times. As a consequence,∫∞
0

duM(u) → ∞, diffusivity vanishes and viscosity diverges. Yet D̂η̂S/T ∼ ϕ̂ remains

finite, which is reminiscent of the Stokes-Einstein relation.

Upon approaching the dynamical transition, a liquid keeps an increasingly long memory

of the initial configuration and remains in its vicinity. Both ϕ̂d and a measure of that prox-

imity, the plateau height ∆EA, can be obtained from the long time limit of the dynamical

equations (4) as (15, 39)

∆EA = argmax∆F1(∆) and ϕ̂d =
1

F1(∆EA)
,

where F1(∆) = −∆

∫ ∞
−∞

dh eh
d

d∆

[
Θ

[
h+ ∆/2√

2∆

]
ln Θ

[
h+ ∆/2√

2∆

]]
,

(7)

with Θ(x) = [1 + erf(x)]/2. We will see in Section 3 that these results can also be obtained

using a completely static approach.

2.3. Dynamical critical exponents and susceptibility

As we mentioned above, the dynamics exhibits a critical scaling around ϕ̂d akin to standard

MCT (35). In particular, close to ϕ̂d, ∆(t) scales differently upon approaching and leaving

the plateau

∆(t) ' ∆EA −At−a and ∆(t) ' ∆EA + Btb , (8)

with critical exponents that are related through a non-universal exponent parameter (35)

λ =
Γ2(1− a)

Γ(1− 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
. (9)

For hard spheres in d → ∞, we find λ = 0.70698... (40). The dynamical equations ad-

ditionally provide the power-law divergence of the viscosity and τα (and decay of D̂),

ηS ∼ τα ∼ D̂−1 ∼ |ϕ− ϕd|−γ , where γ = 1/(2a) + 1/(2b).

At a standard phase transition, one commonly detects a critical point by considering

the correlation function of the order parameter and its integral over V. By analogy, in the

case of the dynamical transition one can study the dynamical susceptibility

χ4(t) = N
(

∆2(t)−∆(t)
2
)
, (10)

where the overline denotes averaging a quantity over both the system thermal history, 〈·〉,
and initial configurations {xi(0)}. χ4(t) encodes the fluctuations of dynamical correlators,

here represented by the mean square displacement.

In the glass phase, the long-time limit of this susceptibility goes to a constant, i.e.,

limt→∞ χ4(t) = χ, that diverges upon approaching the dynamical transition from the glass

phase (ϕ̂ → ϕ̂+
d ) as χ ∼ |ϕ̂ − ϕ̂d|−1/2. Approaching the dynamical point from the liquid

side instead, χ4(t) peaks at t ∼ τα, with χ = χ4(τα) similarly diverging (11, 41, 42, 43,

44, 45, 46, 47). In addition, a dynamical correlation length associated with χ4 diverges as

ξd ∼ |ϕ̂− ϕ̂d|−1/4 near the transition (48, 49, 50).
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2.4. Liquid dynamics in finite dimensions

The dynamical transition at ϕ̂d found in the d → ∞ limit is quite fragile. It does not

formally exist in any finite dimension (51). Activated processes sidestep the dynamical

arrest, hence all configurations have a finite lifetime (13). Despite this difficulty, we can

nevertheless probe what aspects of the d→∞ transition have a lower-dimensional echo.

Because many physical features of the exact dynamical solution qualitatively coincide

with those of standard MCT (the latter preceding the former by more than 30 years),

substantial efforts have already been devoted to evaluating some of the theoretical pre-

dictions (35). The two-step behavior of ∆(t) (Fig. 1a), the scaling relations between the

critical dynamical exponents, and the growing dynamical susceptibility that accompanies

the lengthening plateau in ∆(t), have indeed been carefully documented in d = 3 (47).

Because activated processes are expected to disappear exponentially quickly when di-

mension increases, however, one might also hope for quantitative aspects of the theory to

be validated by numerical simulations in higher d. In this respect, a few results are note-

worthy. (i) The dynamical range over which a power-law scaling of τα is observed steadily

increases with d (see Fig. 1b). From barely larger than a decade in d = 3, it grows to

nearly three decades (before exhausting computational resources) in d = 8 (36). (ii) If

one carefully avoids the activated dynamical regime, the exponent parameter λ that ap-

pears in Eq. (9) tends toward the d → ∞ prediction as d increases (37) (Fig. 1c). (iii)

The difference between standard MCT and the exact d→∞ results for M(t) gives rise to

diverging asymptotic predictions for ϕ̂d (52, 53). While numerical simulations in d = 2 to

13 are more consistent with the exact solution (26), even in d = 12 the asymptotic scal-

ing regime remains distant. Efforts at systematically computing finite-d corrections to the

exact theory have been made (15), but the subject remains an open area of research (54).

(iv) The scaling τα ∼ D̂−1, often dubbed the Stokes-Einstein relation in liquids, is violated

abruptly in finite-d glass formers. As d increases, however, this violation gets pushed back

to increasingly long timescales, revealing the linear correction to the Stokes-Einstein scaling

predicted by Eq. (6) (25, 38, 38, 31) (Fig. 1d).

A key prediction of the exact solution that has yet to be convincingly tested is the critical

scaling of χ4 and ξd – see Ref. (55) for a test in a different model. Because increasing d

enlarges the range of power-law scaling of τα, the divergence of χ4 should then also become

sharper. The significant computational efforts needed to extract this quantity in d > 3 has

thus far discouraged attempts in that direction, but its time will certainly come.

2.5. Exploring dynamics through equilibrium calculations

The dynamical equations that describe the equilibrium liquid in the limit d → ∞ reveal

that, upon approaching a critical density, the relaxation timescale diverges. Equilibration

is impossible beyond that point. An equilibrium liquid that is “crunched” (quickly com-

pressed) to such densities does not, however, immediately acquire an infinite relaxation

time, but ages instead; as time passes, ∆ relaxes ever more slowly. Hence, ∆(t, tw) be-

comes a function of both the (waiting) time tw elapsed since the crunch and of the time

difference t − tw (32, 56). Given that equilibrium is not achieved over reasonable times in

this regime, equilibrium calculations may seem of limited interest. By modifying the set of

configurations considered, i.e., the measure, however, one may nonetheless hope to extract

dynamical information. And because they are often technically simpler–using the replica

and cavity methods (57)–than their dynamical counterpart, a panoply of methods have
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been developed. Results for various equilibrium methods are presented in the following sec-

tions, but before proceeding this brief overview aims to guide disoriented readers through

some of the relevant spin-glass literature, where these ideas were first developed. Note that

the precise dynamical justification, varies from scheme to scheme. In most cases, however,

such justification is only known for a normal glass, and it remains unclear how to interpret

equilibrium calculations in a marginal glass.

Counting metastable states: Bray and Moore (58) first showed that the number of

metastable states (as defined by the Thouless-Anderson-Palmer equations, assumed by Bray

and Moore to be relevant for dynamics) is exponential. This computation can also be

implemented from the dynamical equations (59).

Dynamics starting from various equilibrium measures: The dynamical equations can

be modified to describe exactly the evolution of an equilibrium configuration at a different

temperature or density (60). In a normal glass phase, the long time evolution can be

described by computing the probability distribution of a configuration kept at fixed distance

away from a reference one (61); this construction – reviewed in Sec. 3 – accesses certain

quantities associated with a full dynamical computation (60). Once can also extend it to

an entire chain of copies, which is conjectured to mimic slow dynamics in its full generality,

including in the marginal glass phase (62, 63).

Threshold level and marginality: In a normal glass, computing the level at which states

become marginally stable – as measured by their diverging four-point correlations–is justi-

fied from the dynamical solution. Without any special assumption, this analysis finds that

aging takes place at free energies above which the landscape connects and below which it

disconnects (32). This threshold level corresponds to the neighborhood of marginal states.

We review this construction in Sec. 5.

Effective temperatures via Edwards-like assumptions: Another feature that appeared

in the dynamical solution, and that validates a quasi-equilibrium approach, is that during

aging the system samples states with a fixed energy uniformly. This assumption, which

is equivalent to that proposed by Edwards for granular matter (64), is surprisingly exact

within the dynamical solution (65, 66, 67). We review this construction in Sec. 5.

Parisi matrices as generating functions of (certain) dynamical diagrams: A recent appli-

cation of replicas exploits the mathematical correspondence between the diagrams generated

by Parisi matrices, which can be efficiently evaluated, and those used to compute some dy-

namic quantities (68, 69), such as the exponents for time relaxation within and away from

a state. This correspondence is purely mathematical – it implies no physical assumption.

3. FOLLOWING GLASSES UNDER SLOW COMPRESSION

As argued in Sec. 2, the diffusion constant strictly vanishes beyond the dynamical transition

for d→∞, because the timescale for activated processes grows exponentially quickly with

d. The system thus remains trapped for an extremely long (infinite) time into a restricted

region of phase space, which defines a metastable state. Insights into this regime can then be

obtained from statistical mechanics alone–without solving the dynamical equations–using

tools developed by Franz and Parisi (61, 70, 71, 72). In this section, we first formalize

the notion of metastable states and present the exact solution for compressing equilibrium

configurations at ϕ̂ > ϕ̂d for d → ∞. We then discuss how such configurations can be

obtained in finite d, and compare simulated compressions with theoretical predictions.
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3.1. Metastable states

First, consider an equilibrium configuration Y at ϕ̂g > ϕ̂d, and a configuration X(t) that

is dynamically evolved following Eq. (1) from the initial condition X(0) = Y . Because

diffusivity vanishes in this regime for d→∞, i.e., D = 0, the relative mean square distance

between X(t) and Y remains finite, even in the long-time limit, i.e.,

lim
t→∞

∆(X(t), Y ) = lim
t→∞

d

ND2

∑
i

|xi(t)− yi|2 = ∆r . (11)

Moreover, because Y is sampled from the equilibrium distribution, the dynamics of X(t)

must be stationary, i.e.,

∆(X(t+ τ), X(t)) = ∆(τ)→τ→∞ ∆r , ∀t > 0 . (12)

Next, consider first compressing (or decompressing) the initial configuration X(0) to

ϕ̂ 6= ϕ̂g, and then evolving the system dynamics at this new density. If the diffusion

constant remains zero, then we expect Eq. (11) to hold, and X(0), X(t) and X(t + τ) to

always be close to one another. Although the overall dynamics for this protocol is not

stationary in general, it nonetheless becomes so at long times, i.e.,

lim
t→∞

∆(X(t+ τ), X(t)) = ∆(τ)→τ→∞ ∆ . (13)

In other words, ∆r is the relative long-time displacement between X and Y , while ∆ is the

relative displacement between configurations X at very different times. For X and Y at

the same density ∆ = ∆r, but otherwise the two quantities differ.

In finite d the configuration X is not expected to remain trapped around Y for an infinite

time. This residence time, however, can be made sufficiently long for a clear separation of

timescales between sampling a glass state and leaving that state. The region initially visited

by X around Y is thus only a metastable state.

3.2. The Franz-Parisi restricted free energy and the order parameters

We now wish to translate the dynamical formulation of Sec. 3.1 into a purely thermodynamic

description. Consider again an equilibrium configuration Y at ϕ̂g > ϕ̂d that is evolved to a

metastable state visited by X at a packing fraction ϕ̂ 6= ϕ̂g. From the discussion in Sec. 3.1,

we know that in the long-time limit the distance between X and Y is ∆r. The minimal

assumption about X is that it is sampled by the Boltzmann distribution at ϕ̂, under the

constraint that it maintains its average distance to Y . We thus get

P (X, ϕ̂|Y, ϕ̂g) = e−βH[X;ϕ̂]

Z[∆r,ϕ̂|Y,ϕ̂g]
δ(∆r −∆(X,Y )) , (14)

with Z[∆r, ϕ̂|Y, ϕ̂g] =
∫

dXe−βH[X;ϕ̂]δ(∆r −∆(X,Y )) (15)

and ∆r left unspecified for now. (Recall that for hard spheres these quantities do not

actually depend on β.) We can then define the generalized free energy of a metastable state

selected by Y

f(∆r, ϕ̂|Y, ϕ̂g) = − 1

Nβ
lnZ[∆r, ϕ̂|Y, ϕ̂g]. (16)

This quantity is a random variable that depends on the initial configuration Y ; because

different Y select different metastable states the free energy fluctuates. The free energy,
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Figure 2

(a) Phase diagram summarizing the exact results for hard spheres in the limit d→∞. Dashed

lines correspond to the equations of state of glasses prepared at different initial packing fractions

ϕ̂g (black squares). The limit case is the solid line at ϕ̂d (blue square). For ϕ̂g > ϕ̂d,
decompression results in hysteresis, and upon compression a glass undergoes a Gardner transition

(blue dot) before jamming (red triangle)(72). (b) Corresponding phase diagram for d = 3 hard

spheres (73).

however, self-averages. Hence, in the thermodynamic limit it concentrates on its mean

value and it suffices to compute the average of f(∆r, ϕ̂|Y, ϕ̂g) over Y . We then obtain the

Franz-Parisi free energy (or potential)

VFP(∆r, ϕ̂|ϕ̂g) = f(∆r, ϕ̂|Y, ϕ̂g)
Y

= − 1

βN

∫
dY

Z[ϕ̂g]
e−βH[Y ;ϕ̂g] lnZ[∆r, ϕ̂|Y, ϕ̂g] , (17)

where Z[ϕ̂g] =
∫

dY e−βH[Y ;ϕ̂g] is the equilibrium partition function at ϕ̂g.

For d→∞, the potential VFP(∆r, ϕ̂|ϕ̂g) can be computed explicitly though the replica

method (71), and expressed as a function of the two order parameters, ∆r and ∆, introduced

in Sec. 3.1. Note that Eq. (17) explicitly depends on ∆r, but ∆ only appears upon unfolding

the logarithm of the partition function by the replica method. Its value is then chosen so as

to minimize the free energy. The value of ∆r, by contrast, is obtained from the Franz-Parisi

potential and thus has a richer physical interpretation. If VFP(∆r, ϕ̂|ϕ̂g) displays a local

minimum at a finite ∆r, then the probability of finding X a distance ∆r away from Y is

high, and the metastable state is characterized by this ∆r. If the potential shows no local

minimum at finite ∆r, then Y is unable to trap X at long times, and the system is liquid.

From this construction, we can determine the phase diagram of the metastable states.

For each ϕ̂g, this computation describes a set of equivalent states that all have the same

properties in the thermodynamic limit. For fixed ϕ̂g, we can also follow the adiabatic

evolution of these states at different ϕ̂, and obtain their pressure p(ϕ̂|ϕ̂g) from the derivative

of Eq. (17) with respect to ϕ̂ (71). The resulting curve, p(ϕ̂|ϕ̂g), is the glass equation of state

for a given ϕ̂g (see examples in Fig. 2). An especially remarkable feature of these curves is

their hysteresis under decompression. A glass state can be followed up to a spinodal point,

whereat it melts. Note that denser ϕ̂g display more extended hysteresis branches.
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3.3. Equilibrium Glasses

In the above treatment, the case ϕ̂ = ϕ̂g corresponds to equilibrium glasses. As expected,

we then obtain ∆ = ∆r = ∆EA. In addition, the pressure p(ϕ̂g|ϕ̂g) along this line is exactly

the analytic continuation of the equilibrium liquid pressure beyond ϕ̂d (black line in Fig. 2a).

We thus obtain the following interpretation for the continuation of the liquid line in the

regime ϕ̂ > ϕ̂d: the system is frozen, with D = 0, and the liquid phase is replaced by a

collection of glassy metastable states, each with the same pressure as the equilibrium liquid

would have at that density. In other words, while the system dynamics arrests completely

at ϕ̂d, its thermodynamics remains perfectly smooth and analytic.

The Franz-Parisi potential, by going beyond standard thermodynamics, also gives access

to features of the dynamical transition. The transition, for instance, occurs at the smallest

density for which a minimum at ∆r = ∆EA exists. For ϕ̂g < ϕ̂d, the potential has no local

minimum and the system is a liquid. Pursuing this analysis provides the same results as the

dynamical approach of Sec. 2 for the dynamical critical exponent λ and the critical scaling

of χ4 (68, 40). There is a complete correspondence between the two approaches.

3.4. Gardner transition

An implicit assumption of the above discussion is that glass states prepared at ϕ̂g do not

undergo a phase transition as ϕ̂ increases. A glass state can thus be described as an isolated

set of configurations, with a typical mutual distance ∆, a typical distance from the reference

configuration ∆r, and a finite relaxation time. Each glass state is then an amorphous solid

characterized by a well-defined shear modulus and non-linear elastic susceptibilities (74).

Neglecting the Debye contribution to the vibrational spectrum, such solid also displays

a gapped vibrational density of states (75, 76). In short, the behavior of this glass is

characteristic of a normal solid. The normal glass scenario, however, is not the whole story.

At a sufficiently high density ϕ̂G–or pressure pG– each glass state undergoes a Gardner

phase transition. Beyond this ϕ̂G (the value depends on ϕ̂g) the simple description in terms

of two order parameters, ∆r and ∆, breaks down (40, 77, 78, 71).

The phase transition that ensues, which was first described in spin glasses by Gardner

(79) and by Gross, Kanter and Sompolinsky (80), provides a whole new paradigm for

understanding glass properties. At the Gardner transition, the region of phase space (or

basin) to which a given glass state belongs develops a non-trivial internal structure of states

described by the full-replica-symmetry-breaking solution of the partition function (57, 77,

78, 72). For ϕ̂g < ϕ̂ < ϕ̂G(ϕ̂g), a glass state corresponds to a minimum in the free energy

landscape, but at ϕ̂G(ϕ̂g) this minimum flattens, and for ϕ̂ > ϕ̂G(ϕ̂g) it transforms into a

metabasin, i.e., a collection of metastable states with an ultrametric structure (Fig. 3).

This nontrivial result is interesting for a number of reasons. Consider first the impact of

the Gardner transition on a glass state prepared at ϕ̂g and compressed up to ϕ̂. In a normal

glass, the time τβ for equilibrating vibrations within the state (and thus for ∆(t) to reach

its long time limit ∆) is finite. Upon approaching ϕ̂G(ϕ̂g), however, this timescale diverges

as a power law, τβ ∼ |ϕ̂ − ϕ̂G|−a, with a non-universal critical exponent a that depends

on ϕ̂g (69, 72, 73, 81). This dynamical slowing down is a consequence of the second-order

nature of the Gardner transition and of the associated soft modes. The emergence of these

soft modes further translates into the divergence of the long-time limit of the dynamical

susceptibility, limt→∞ χ4(t) = χ, as χ ∼ |ϕ̂G − ϕ̂|−1. This divergence is also related to the

emergence of long-range correlations with a diverging correlation length ξG (73, 81).
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Figure 3

The three phases of hard spheres. First column: In the liquid all of phase space can be

dynamically reached. The long-time limit of the mean-square displacement is infinite and
diffusive. Spheres are not caged. Second column: For ϕ̂g > ϕ̂d, and for ϕ̂ ∈ [ϕ̂g, ϕ̂G(ϕ̂g)] the

system is a normal glass. Phase space is broken into an exponential number of metastables states,

which results in disconnected clusters of configurations. Starting from a configuration within a
given cluster, only configurations within that cluster can be dynamically reached. Because these

configurations correspond to caged spheres vibrating around an amorphous lattice, the

mean-square displacement has a finite long-time limit ∆(t)→ ∆1 that is proportional to the
amplitude of these vibrations. Third column: For ϕ̂ > ϕ̂G(ϕ̂g) the system is a marginal glass. The

metastable states become basins of hierarchically organized configurations. Different typical

configurations can be at different mutual distance, ∆i. The long-time dynamics of ∆(t) is not
stationary, but displays an infinite series of plateaus. Vibrations are very spatially heterogeneous

with correlated regions of highly vibrating spheres and regions with nearly frozen spheres.

3.5. Marginal glass phase

Beyond the Gardner transition the system enters a marginal glass phase. Recall that liquid

dynamics is diffusive and ergodic (Fig. 3 first column), while in a normal glass there exists

an exponential number of metastable states, and dynamically the system quickly and fully

explores one basin but cannot visit other basins. The mean square displacement then

has a finite long-time limit ∆(t) → ∆ ≡ ∆1 (Fig. 3 second column). By contrast, the

typical relative mean-square distance between two amorphous lattices corresponding to two

different basins is infinite.

At higher densities, however, the system enters the marginal glass phase (Fig. 3 third

column). There, various amorphous lattices (glassy states) belong to a same metabasin and

are organized hierarchically. For the sake of illustration, consider a k-step replica symmetry
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breaking (kRSB) approximation of phase space in that regime. At the very bottom of the

hierarchy a state is made by vibrations around an amorphous lattice with an amplitude

∆k. Two amorphous lattices can be at only k − 1 different mean square displacements

{∆k−1, . . . ,∆1}. For each triplet of amorphous lattices, at least two of the three distances

must be equal, which makes the space ultrametric (see Fig. 3 top-right panel for k = 4).

The complete solution of hard spheres in d→∞ requires an infinite number of hierarchical

levels and k → ∞ (fullRSB) with infinitesimally close distances ∆i,∆i+1. The spheres

vibrate around positions on an amorphous lattice followed by (infinitely) slowly changes

of the amorphous lattice itself, giving rise to a sequence of infinitely close plateaus in the

mean square displacement (Fig. 3). Moreover, the amplitude of vibrations fluctuates and is

correlated over large regions. The system is thus much more heterogeneous than a normal

glass.

3.6. Gardner transition and marginal glass in finite dimensions

In experiments and simulations, the first challenge to test the above predictions is to obtain

fully equilibrated samples at ϕ̂g > ϕ̂d. More precisely, equilibrium glass configurations must

be obtained for which the characteristic lifetime of the metastable state, τα, is much longer

than the time needed to equilibrate vibrations within the metastable state, τβ . Only in this

regime, can an experimental time scale be identified, such that τα(ϕ̂g) � τexp � τβ . It is

therefore possible to equilibrate inside the metastable glass without escaping it. Because τα
monotonically increase with ϕ̂g, while τβ is very large around ϕ̂d and decreases for ϕ̂ > ϕ̂d,

this condition can only be achieved with deeply equilibrated glasses. In order to distinguish

between falling out of equilibrium at ϕ̂g and the Gardner transition, one must also reach

ϕ̂g well above ϕ̂d, because the two processes mix and merge for ϕ̂g → ϕ̂+
d (Fig. 2).

Thanks to the existence of activated processes in finite dimension, it is possible to

anneal hard spheres beyond ϕ̂d by compressing the system at a small fixed rate R, i.e.,

τexp = R−1. In order for the system to trace the equilibrium liquid equation of state,

one must keep τexp � τα at each moment along the compression. Equilibration becomes

impossible when τexp ∼ τα, and the system falls out of equilibrium. Further compression

leaves the system stuck inside the last equilibrated metastable glass state at ϕ̂g, as long as

τexp � τα. And as long as τexp � τβ the system remains at equilibrium within the fraction

of configuration space restricted to the metastable glassy state in which it got trapped.

Obtaining such fine control over τexp through numerical compression (or thermal an-

nealing in experimental glass formers), however, can be difficult to achieve. The studies

that have most carefully examined this regime have thus relied on alternative preparation

schemes. In simulations, non-local Monte Carlo sampling has been used to achieve equili-

bration at densities otherwise unreachable (82, 73); in experiments, vapor deposition has

been used to generate ultrastable glasses (83). Although the details vary, the key result

is that both schemes give access to equilibrium glasses for which τα � τexp � τβ . Such

preparation protocol enables the validation of the above theoretical predictions. The most

thoroughly documented feature is the hysteresis of glass melting. In fact, the phenomenon

was known in physical systems well before a complete theoretical explanation could be

provided (84, 83). The qualitative features of this process are thus fairly robust (73).

The Gardner transition from the normal to the marginal glass is an original prediction of

the d→∞ solution. In finite-d numerical simulations a distinct crossover in glassy dynamics

can be seen upon compression, and, as expected, the position of the crossover increases with
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ϕ̂g (Fig. 2b). Signatures also appear in the growth of τβ , χ, and ξG (73). Interestingly, the

sharpness of that crossover also becomes more pronounced as ϕ̂g (and thus ϕ̂G) increases.

Yet, establishing whether the crossover is a true thermodynamic transition and measuring its

critical properties requires a systematic study of larger systems and longer timescales. There

is therefore ample room to explore the physics of the Gardner transition both numerically

and experimentally (85). Fuller field-theoretical and renormalization group descriptions

might also help grasp the impact of finite-d fluctuations on the transition (86).

4. JAMMING

The endpoint of the compression presented in Sec. 3, i.e., the end of the marginal glass

phase, has a diverging pressure. At that point spheres are in direct mechanical contact

with each other; the glass reaches its densest (or close) packing point. This point has

properties similar to granular materials at jamming (87, 88, 89, 15), which is a mechanical

rigidity transition (90, 47) that describes the emergence of solidity in athermal systems,

such as foams and grains. These systems jam when an applied pressure leads to slight

deformations (elastic or not) of its components. The jamming transition then corresponds

to the point where the applied pressure vanishes (88, 89). Theoretical understanding of

jamming was further enriched by including marginal stability in the description (91), as we

describe in this section.

4.1. Mean-field jamming criticality

As discussed in Sec. 3, the d → ∞ theory predicts that every equilibrium glass state

undergoes a Gardner transition from a normal to a marginal glass at a finite pressure.

Hence, the jamming transition, for which p→∞, systematically occurs within the marginal

glass phase. Like many other glass properties, the density at which jamming takes place,

ϕ̂J, depends on ϕ̂g. Moreover, because of the complex state structure in the marginal glass

phase, no two compressions ever lead to a same jammed configuration.

What is especially remarkable is that despite this very strong protocol dependence the

critical behavior at and near jamming is universal. For instance, the number of force-bearing

sphere-sphere contacts at jamming, Z, scales as Z ∼ dN in the thermodynamic limit. More

impressively, the distribution of weak forces f applied on these contacts as well as the

distribution of small gaps h between spheres have a power-law scaling, i.e., P (f) ∼f→0

fθe and P (h) ∼h→0 hγ , with irrational exponents θe = 0.42311 . . . and γ = 0.41269 . . .,

respectively. Part of this robustness likely stems from the hierarchy of subbasins in the

marginal glass state upon approaching jamming. As mentioned in Sec. 3, this organization

is a fractal with universal dimension 2/κ, where κ = 1.41574 . . . also describes how the

innermost subbasins shrink in size upon approaching jamming, i.e., ∆ ∼ p−κ. These scalings

markedly differ from what one expects in a normal glass or in a crystal (15, 92). Indeed,

in neither of these cases is a power-law scaling of weak forces or small gaps expected, while

∆ ∼ p−1 in a normal glass and ∆ ∼ p−2 in a crystal.

The exact solution for the vibrational modes around jamming presents a vast excess

of low-frequency modes compared with the Debye model for solids (a so-called Boson

peak) (75). The low-frequency limit of the density of states does not vanish as in the

Debye model but tends to a constant (89, 93, 94, 95, 96). The structure of these modes is

as extended as phonons, but their organization in no way resembles plane waves (97).

www.annualreviews.org • Glass and Jamming Transitions 15



4.2. Scaling Relations

Treating jammed states as mechanically marginally stable packings allows for a number

of general properties to be worked out independently of the d → ∞ solution. Isostaticity

states that a jammed configuration has precisely the number of sphere-sphere force-bearing

contacts for the system to be mechanically stable (98, 91). More precisely, the saturation of

the Maxwell stability criterion gives Z = dN +O(1), where the correction deterministically

depends on the choice of boundary conditions. Note that this result is fully consistent

with the scaling of the d → ∞ solution, but more precise. The mechanical marginality

analysis further provides relationships for the critical exponents, i.e., θe = 1/γ − 2 and

κ = 2/(1 + γ) (98, 99), that are precisely obeyed by the d → ∞ exponents (77, 100). In

addition, it predicts the existence of low-energy localized excitations, which are absent from

the exact d→∞ solution and display a different scaling of the weak force distribution with

θ` = 1− 2γ < θe (98, 101, 99, 91).

4.3. Jamming in finite dimensions

One of the most remarkable features of the d → ∞ solution is its agreement with both

qualitative and quantitative aspects of jamming observed in numerical simulations. This

outcome is especially stunning, because only a few years ago, the notion that ϕ̂g and ϕ̂J

were actually different transitions was far from generally appreciated.

Since then, a key qualitative aspect of the jamming transition has been unambiguously

confirmed. Jamming indeed occurs over a range of ϕ̂J, depending on the preparation proto-

col (103, 104, 102), and that range increases with d (26, 102). Until now, we have focused on

a single preparation protocol to construct jammed states: adiabatic compression of glassy

states obtained from equilibrated liquid configurations at density ϕ̂g (15). In this specific

case, we find that denser equilibrated liquid configurations (higher ϕ̂g) lead to denser final

jammed configuration (higher ϕ̂J). This is clearly observed in the phase diagrams of Fig. 2,

both in the analytical prediction for d → ∞ and in the numerical simulation for d = 3.

We will see in Sec. 5 that the existence of a range of ϕ̂J remains true when considering

more general preparation protocols of jammed states. It is important to emphasize that

this phenomenon is neither a result of the finite-size systems used in simulations, nor of

partial crystallization, although both can compound it.

Many properties of jammed configurations are dimensionally robust and universal:

(i) Particles belonging to the force network at jamming form a perfectly isostatic sys-

tem (90, 105, 101, 100), thus confirming the prediction, Z ∼ dN , but in a much more

precise way. Only two types of corrections are found, neither having to do with finite-

size fluctuations. First, the choice of boundary conditions affects the number of degrees of

freedom in the system, and thus a correction of order d must be made to the number of

force-bearing contacts. Second, a fraction fratt of particles end up not being part of the

force network proper, but rattle within pores of that network. Hence, it is observed that

Z = dN(1− fratt(d)) +O(d). Because fratt vanishes exponentially quickly with dimension,

however, the exact solution cannot predict this non-perturbative effect (Fig. 4a). They are

thus typically excluded from the structural analysis of jammed configurations.

(ii) It has long been appreciated that the distribution of small interparticle voids in

jammed hard sphere configurations displays an anomalous power-law scaling (90). Numer-

ically, various measures of that exponent give γ = 0.40(4) (90, 102). This result holds,

irrespective of preparation protocol, for d = 2 to 12, and agrees with the d→∞ prediction
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The robust critical behavior around jamming critical is one of the key highlights of the exact
solution. It it is, however, only observed when leaving out rattlers (particles with a number of

contacts z < d+ 1) and bucklers (with z = d+ 1), (a) whose fractions decay exponentially quickly

with dimension (102, 100), and are thus nonperturbative effects. (b) The number of neighbors a
distance h from contact, Z(h), then robustly scales as h1−γ (102). (c) Separating the contribution

from bucklers (blue) from that of other force bearing contacts (red) reveals the critical scaling of

the cumulative distribution function of forces, G(f), for both species (100). (d) Upon approaching
the jamming transition, a nontrivial decay of ∆EA ∼ p−κ is robustly observed in d = 3, 4, 6, and

8 (symbols as in Fig. 1) (77).

(Fig. 4b).

(iii) Mechanical marginality considerations first predicted that a complementary power-

law scaling of the weak contact forces should also be observed (98), and an anomalous

scaling was noted quickly thereafter in simulations. In order to fully clarify the situation,

however, a subtle distinction between particles that are part of the force network is needed.

Particles with d+ 1 force-bearing contacts, d of which are nearly coplanar, result in a weak

force being associated with the remaining contact. Such particles can buckle in and out of

the plane of the coplanar neighbors and give rise to quasi-localized excitations. Because the

fraction of bucklers vanishes exponentially with d, here again this effect cannot be obtained

from the exact solution. But treating bucklers separately from the rest of the force network

gives robust critical exponents θe = 0.40(4) and θ` = 0.18(2) (101, 99, 100) (Fig. 4c). Here

again, these values are in complete agreement with the d→∞ solution and with arguments
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based on mechanical marginality.

(iv) The small excitations associated with opening and breaking force contacts have

been separated between extended and quasi-localized excitations (97, 98, 101). The former

is qualitatively predicted from the exact solution, while the latter likely results from the

presence of bucklers and of otherwise dimensionally anomalous local geometrical arrange-

ments. A clear geometrical description of these localized excitations remains to be obtained,

because these processes are beyond the scope of the d→∞ solution.

(v) The anomalous nature of κ was suggested from mechanical marginality consider-

ations (106), but extracting this quantity is riled with challenges. Unlike the previous

exponents, it requires dynamical simulations, and is thus not purely a property of jammed

configurations. At finite p within the Gardner phase, all of the processes not captured by

the exact solution can further hinder its measurement in low d. Recent numerical deter-

mination nonetheless give κ = 1.40(4) in d = 3 − 8 (77), which is once again in excellent

agreement with the d→∞ solution (Fig. 4d).

The triangular comparison between the d → ∞ solution, mechanical marginality con-

siderations, and finite-d numerical results has thus been remarkably productive in clarifying

the jamming phenomenology.

5. SAMPLING GLASSY STATES

In the previous sections we have considered what happens to a system of hard spheres that

is slowly compressed in the liquid and in the equilibrium glass regimes. In this section we

take a different approach. We construct a measure that gives equal weight to all exist-

ing glassy states at a given density ϕ̂ and pressure p to determine where glasses can be

found and in what number. This computation allows us to obtain information on strongly

non-equilibrium dynamical protocols for preparing glasses, and is related to the Edwards

ensemble.

5.1. Effective temperature

We have seen above that at high densities, the equilibrium measure for hard spheres is

supported on a large set of distinct metastable states, which we now label by an index α.

Our aim here is to sample these states using non-equilibrium weights. For finite systems, one

can construct a partitioning of phase space, i.e., the unique association of each configuration

X to a state α, denoted byX ∈ α, by identifying each state with a potential energy minimum

α, and each configuration X to the minimum reached by energy minimization via steepest

descent (107, 108). In the thermodynamic limit, and especially in analytic computations,

this procedure cannot be used directly (109, 17), but it remains informative – see, e.g.,

Appendix A of Ref. (110). We introduce the free energy of a state and a generalized

partition function (111), respectively

e−βN fα(ϕ̂) =

∫
X∈α

dXe−βH[X;ϕ̂] , and Zm =
∑
α

e−βmN fα(ϕ̂) . (18)

Here, the control parameter m defines the inverse effective temperature βeff ≡ βm at which

states are sampled. If m = 1 the equilibrium partition function is recovered, while for m 6= 1

states have weights that differ from their equilibrium values. Defining the configurational
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entropy Σ(f, ϕ̂) then allows us to rewrite the generalized partition function as

Σ(f, ϕ̂) ≡ 1

N
ln
∑
α

δ [f − fα(ϕ̂)] ⇒ Zm =

∫
df eN [Σ(f,ϕ̂)−βmf] . (19)

In the thermodynamic limit, the integral is dominated by states with a free energy f∗ that

maximizes the integrand, i.e., it satisfies dΣ(f,ϕ̂)
df

∣∣∣
f=f∗

= βm. Because all states that have

non-negligible weight in Eq. (19) have the same free energy fα(ϕ̂) = f∗, they also have

the same pressure p. In other words, for fixed ϕ̂ and m (recall that β is irrelevant), the

modified Boltzmann measure mainly contains states with pressure p(ϕ̂,m). Inverting the

relation to fix ϕ̂ and p as control parameters determines the effective temperature m(ϕ̂, p)

needed to achieve the desired pressure. In the thermodynamic limit the measure used to

compute Zm is then essentially uniform over all glassy states with fixed ϕ̂ and p. Using

the configurational entropy, Σ(m, ϕ̂) = Σ[f∗(m, ϕ̂), ϕ̂], which counts the number of glassy

states that dominates the uniform measure, and substituting pressure p for m, as discussed

above, gives Σ(p, ϕ̂) = Σ[m(p, ϕ̂), ϕ̂], i.e., the (logarithm of the) number of glassy states

with pressure p and density ϕ̂.

An explicit calculation of Zm and of all the derived quantities, including Σ(p, ϕ̂), can

be performed using the replica method (111, 15, 39, 77, 78). The resulting phase diagram

in Fig. 5 indicates where ∆ has a finite solution (white region). Outside of that region,

the number of glassy states is negligible in the thermodynamic limit. In the following

subsections, we describe various aspects of this phase diagram in more details.

5.2. Equilibrium sampling

The equilibrium partition function corresponds to m = 1, where βeff = β. In this case, we

recover the equilibrium line where, for each ϕ̂, the pressure of the dominant glass states is

the liquid equilibrium pressure p = pliq(ϕ̂) (black line in Fig. 5b). We can thus compute

the configurational entropy of equilibrium glassy states, Σeq(ϕ̂) ≡ Σ[pliq(ϕ̂), ϕ̂], which is

plotted in Fig. 5a. When ϕ̂ ≥ ϕ̂K ∼ log d is reached (14, 15), the configurational entropy

vanishes. The ensuing Kauzmann (or ideal glass) transition results from the population

of glassy states becoming subextensive in system size. It therefore has a thermodynamic

signature, and contrary to the dynamical transition it may remain a phase transition even

in finite dimension. Whether that is the case, however, remains an open question. Note

that this question is a logically separated issue from the existence of metastable states. As

such, it is irrelevant for most of the previous discussion about out-of-equilibrium glasses.

The relevance of the d → ∞ solution to describe finite-d glasses is not related in any way

to the existence of a Kauzmann transition and of an ideal, thermodynamically stable glass.

5.3. The Gardner line

For sufficiently high ϕ̂, it is possible to find states with a pressure, different from that of

the equilibrium liquid, p 6= pliq. At each state point in the white zone of Fig. 5b we can also

compute the stability of the glassy states with respect to the marginal glass phase (40). The

blue line separates stable from unstable states. In the latter regime, each glass becomes

a metabasin of marginally stable glassy states. This Gardner transition has the same

properties as that found in Sec. 3.4, but now distinct groups of glass states are sampled at

each state point (ϕ̂, p): in other words, moving in the plane (ϕ̂, p) does not correspond to

adiabatically following a given group of states.
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(a) Configurational entropy for equilibrium hard spheres at ϕ̂d ≤ ϕ̂ ≤ ϕ̂K (black), and for jammed

states in d = 100 computed à la Edwards (red solid line) and using a slow, adiabatic, compression

of the liquid (dot-dashed red line). Adiabatic compression creates exponentially fewer packings
than there exist. (b) Phase diagram with generalized Edwards’ measure (Monasson real replicas

scheme). The black line depicts the equilibrium liquid line (same as in Fig. 2b); the blue line

depicts the Gardner transition. Between the blue and the violet lines, glassy states become
metabasins of marginally stable states. The red line is the jamming line for uniformly-sampled

jammed states, i.e., à la Edwards.

5.4. Jamming line: the Edwards ensemble

Within the glassy regime, the limit p → ∞ is particularly interesting. It corresponds to

giving a uniform weight to all stable jammed states of hard spheres at a given density ϕ̂ (15),

which is precisely the Edwards ensemble prescription. The effective temperature formalism

thus represents a generalization of the Edwards measure to finite pressures. Figure 5b

shows that there exists a line of jammed states along which the configurational entropy

Σ
(E)
J (ϕ̂) ≡ Σ[p → ∞, ϕ̂] can be computed (Fig. 5a), and that this line falls entirely within

the marginal glass phase (Fig. 5b). Hence, all relevant glassy states within the Edwards

measure are marginally stable. As discussed in Sec. 4 the marginality of glassy states

at jamming is responsible for the critical behavior of jammed packings, and the critical

exponents calculated in this ensemble (78) are the same as the ones obtained by following

states adiabatically (72). This correspondence is quite remarkable. Two very different ways

of sampling jammed packings (uniformly à la Edwards, or by slowly annealing the liquid)

give the same critical properties. This observation leads us to conjecture that all jammed

states, however sampled, have the same universal critical properties.

This approach also reveals that there is at least one natural algorithm (adiabatic com-

pression) that produces jammed packings sampled with weights that are distinct from the

Edwards measure. To prove this point, Fig. 5 compares the configurational entropy of

jammed states produced by adiabatic compression and of Edwards’ jammed states. Be-

cause for an adiabatic compression the jamming density is a unique function ϕ̂J(ϕ̂g) of the

initial equilibrium density, the configurational entropy of the resulting packings is simply

Σ
(SF )
J (ϕ̂J) = Σeq[ϕ̂g(ϕ̂J)]. This quantity is systematically smaller than the Edwards con-

figurational entropy (Fig. 5a), and that this line falls entirely within the marginal glass

phase (Fig. 5b). Hence, adiabatic compression creates exponentially fewer packings than
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there exist. Moreover, the range of ϕ̂J that can be constructed via adiabatic compression

is smaller than the range of over which jammed packings exist.

5.5. The threshold and aging dynamics after a crunch

The phase diagram in Fig. 5b shows a third line departing from the equilibrium supercooled

liquid line at ϕ̂d. This threshold line has two branches: one from (ϕ̂d, pd) to (ϕ̂∗, p∗) (purple

diamond), where the threshold states are normal glasses and described by a single order

parameter ∆, and one from (ϕ̂∗, p∗) to (ϕ̂th,∞) (purple dot), where the threshold states

are broken into a full hierarchy of sub-states. Both branches maximize the configurational

entropy and correspond to states that are marginally stable. This marginal stability, how-

ever, is different than in the Gardner phase. Deep in the Gardner phase, far away from the

threshold line, metabasins are separated from one another by extensive barriers; it is their

interior subbasins that are characterized by a hierarchical structure of marginally stable

states. On the threshold line, by contrast, it is the metabasins themselves that become

marginally stable. There are nearly flat directions that connect them with one another,

enabling the system to age. Within the metabasins, however, the hierarchical structure of

states persists.

In order to understand the physical relevance of threshold states, consider the following

experimental protocol. Take a well-equilibrated liquid at ϕ̂ < ϕ̂d and p < pd, where pd is the

liquid pressure at the dynamical transition. The system is then crunched to p → pa > pd,

and the time evolution of the packing fraction is monitored. In the exact solution it is

expected that ϕ̂ increases up to ϕ̂a, such that (ϕ̂a, pa) is on the threshold line. This

strongly out-of-equilibrium protocol is expected to give rise to strong aging. It can indeed

be shown that for large times, if pa < p∗, the response and correlation functions R(t, t′) and

∆(t, t′) are related by a modified fluctuation-dissipation relation, where only one effective

temperature βeff defined in Eq. (19) appears. For pa > p∗ the situation is still somewhat

unclear (112), but the picture emerging from (113, 40) suggests that aging dynamics is

then spread over an infinite number of timescales, each characterized by its own effective

temperature.

5.6. Out-of-equilibrium glasses in finite dimension

Studies of finite-d, out-of-equilibrium glasses have thus far focused on: (i) developing pro-

tocols for generating configurations at the jamming point, and (ii) assessing the validity of

the Edwards measure. Although relatively few of the many predictions of the exact solution

have been tested, (i) and (ii) establish a strong foundation for exploring these predictions.

Because (i) and (ii) have already been extensively reviewed (90, 114, 115), we here only

focus on the aspects most related to the exact solution.

Two main families of out-of-equilibrium protocols have been developed for generat-

ing hard-sphere configurations at jamming. The first obeys the volume exclusion of hard

spheres throughout the preparation. It thus reaches the jamming transition from densities

below it. Typical protocols include the Lubachevsky-Stillinger algorithm, which grows the

diameter of hard particles at a fixed rate while running an event-driven molecular dynamics

simulation (116), overdamped event-driven algorithm under external forcing (117), and a

sequential linear programming algorithm (118, 119), which iteratively approaches jamming

by linearizing the optimization of the packing fraction. The second family of protocols al-

lows particles to overlap during the preparation and steadily minimizes the system energy in
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order to systematically eliminate these overlaps, thus reaching the jamming transition from

densities above it (88, 89). Approaches typically vary in the choice of (purely repulsive)

interaction potential and on the initialization condition (102).

As mentioned above the key structural properties of the resulting configurations are

found to be invariant to the choice of preparation protocol. More subtle aspects, how-

ever, remain to be theoretically understood. Although the final density of the jammed

configuration is expected to depend on the algorithmic details, systematic changes to the

concentration of rattlers at jamming, for instance, are less easily rationalized (118).

Over the years, various efforts have probed the Edwards measure both in experiments

and in simulations, but the results have often been challenging to interpret (see Ref. (115)

for a recent review). In particular, it has been difficult to obtain sufficient control over the

preparation protocol to interpret discrepancies. A rather sophisticated (and computation-

ally demanding) set of methodologies has recently been developed to avoid these pitfalls.

For instance, a direct computation of the volume of the basins of attractions of jammed

configurations, for a given minimization protocol, has been attempted (120, 121). Yet even

under these highly constrained conditions, the observed measure does not match that of Ed-

wards (122, 121). Although explanations for these discrepancies have been suggested (123),

their inclusion within the framework of the exact solution remains to be achieved.

6. ONGOING AND FUTURE DIRECTIONS

The advances presented above hint at firm ground for completely solving the glass problem.

In closing, we provide an overview actively explored questions.

The rheology of hard-sphere glasses is a key part of the d→∞ description that remains

to be carefully assessed in finite d. The strain deformation of glassy states up to their

yielding spinodal has been obtained from an analysis akin to the compression of glass

states (71, 72). Remarkably, strain leads to dilatancy and is initially elastic, with higher

ϕ̂g glasses being more rigid. These glasses, however, also systematically undergo a Gardner

transition before reaching the yielding point, and higher ϕ̂g glasses display later transitions.

This marginal stability should match the onset of system-spanning avalanches. Direct

experimental or computational validation of these predictions, however, have yet to be

obtained.

Beyond the hard-sphere idealization, important avenues of research have yet to be fully

explored. Most of the predictions discussed above for hard spheres are thought to ap-

ply to a broad selection of liquids, whatever the interaction type (31). The behavior of

low-temperature glasses, however, may not be quite as universal. In particular, not all

glasses may display a marginal phase. For instance, although the vibrational spectrum

of soft spheres is remarkably robust with dimension, and marginality persists even when

compressed far above the jamming transition, this regime is eventually extinguished (76).

Open theoretical questions also remain. First and foremost, the dimensional robustness

of the jamming description is both remarkable and puzzling. The physical origin of this effect

has no fully satisfying explanation. The universality of the phenomenon is also thought to

apply far beyond structural glasses (124, 75). Second, renormalization group analysis of

these effects have yet to be fully developed (86). Whether perturbative or non-perturbative

in nature, finite-d analysis of the different transitions remains a work in progress. Third,

the hard-sphere solution proposes tighter packing bounds than known, rigorous results (18)

(see (125) for a recent discussion). Formalizing the results, as has been done for the solution
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of many problems with disorder over the last couple of decades, could thus open a new

chapter in the venerable field of discrete geometry.
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96. DeGiuli E, Laversanne-Finot A, Düring G, Lerner E, Wyart M. 2014. Soft Matter 10:5628–

5644

97. Xu N, Vitelli V, Liu AJ, Nagel SR. 2010. Europhys. Lett. 90:56001

98. Wyart M. 2012. Phys. Rev. Lett. 109:125502

99. DeGiuli E, Lerner E, Brito C, Wyart M. 2014. Proc. Nat. Acad. Sci. U.S.A. 111:17054

100. Charbonneau P, Corwin EI, Parisi G, Zamponi F. 2015. Phys. Rev. Lett. 114:125504
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