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ABSTRACT

Consistency relations of large-scale structures providetenonperturbative results for cross-correlations afnte fields in the
squeezed limit. They only depend on the equivalence piiimeipd the assumption of Gaussian initial conditions, anthie nonzero

at equal times for cross-correlations of density fields wélocity or momentum fields, or with the time derivative ohday fields. We
show how to apply these relations to observational probasitkiolve the integrated Sachs-Wolfffext or the kinematic Sunyaev-
Zeldovich dfect. In the squeezed limit, this allows us to express theethmnt cross-correlations, or bispectra, of two galaxy or
matter density fields, or weak lensing convergence fieldd thie secondary CMB distortion in terms of products of adinend a
nonlinear power spectrum. In particular, we find that cromgelations with the integrated Sachs-Wolfteet show a specific angular
dependence. These results could be used to test the eqaizgenciple and the primordial Gaussianity, or to cheekrttodeling of
large-scale structures.

Key words. Cosmology — large-scale structure of the Universe

1. Introduction non-Gaussian initial conditions). Hence, such relatioqzess
) o _ ) ~a kinematic #ect that vanishes for equal-times statistics, as a
Measuring statistical properties of cosmological streesuis yniform displacement has no impact on the statistical e
=1 not only an dicient tool to describe and understand the mais the density field observed at a given time.
components of our Universe, but also it is a powerful probe of |n practice, it is however dicult to measure dierent-times
possible new physics beyond the standa@DM concordance density correlations and it would therefore be useful taaibt
model. However, on large scales cosmological structueed@s relations that remain nonzero at equal times. One posgibili
O 'scribed by perturbative methods, while smaller scales are g overcome such problem, is to go to higher orders and take
<I" scribed by phenomenological models or studied with numejito account tidal #ects, which at leading order are given by
O. Cal _Slmulatlons. It is therefore filicult to obtain accurate pre-the response of small-scale structures to a Change of the bac
dictions on the full range of scales probed by galaxy and-lenground density. Such an approach, however, introduces adme
ing surveys. Furthermore, if we consider galaxy densityliel ditional approximations$ (Valagéas 201/4a; Kehagias|e(d4B;
< theoretical predictions remain sensitive to the galaxg bifich  [Nishimichi & Valageas 2014).
involves phenomenological modeling of star formation,reife  Fortunately, it was recently noticed that by cross-cotiedg
- . we use cosmological numerical simulations. As a conse@Jengensity fields with velocity or momentum fields, or with theé
= ‘exact analytical results that go beyond low-order pertiioba derivative of the density field, one obtains consistencatiens
theory and also apply to biased tracers are very rare. that do not vanish at equal times (Rizzo et al. 2016). Indied,
— Recently, some exact results have been obtainkidematic éfect modifies the amplitude of the large-scale veloc-
(Kehagias & Riotto 2013; Peloso & Pietroni 2013jty and momentum fields, while the time derivative of the digns
Creminelli et all 2013; Kehagias et al. 2014a; Peloso & Bietr field is obviously sensitive to fferent-times ffects.
2014; [Creminellietal.| 2014] Valageads 2014b; Horn etal. In this paper, we investigate the observational applidgbil
2014,12015) in the form of “kinematic consistency relatibnsof these new relations. We consider the lowest-order oeati
They relate the { + n)-density correlation, witi?' large-scale which relate three-point cross-correlations or bispeairéhe
wave numbers and small-scale wave numbers, to thepoint squeezed limit to products of a linear and a nonlinear power
small-scale density correlation. These relations, obthiat the spectrum. To involve the non-vanishing consistency refesti
leading order over the large-scale wave numbers, arise frara study two observable quantities, the secondary anjsptro
the Equivalence Principle (EP) and the assumption of Gaugsw of the cosmic microwave background (CMB) radiation due
sian initial conditions. The equivalence principle ensutieat to the integrated Sachs-Wolféfect (ISW), and the secondary
small-scale structures respond to a large-scale pertorbday a anisotropyAxsz due to the kinematic Sunyaev-Zeldovich (kSz)
uniform displacement while primordial Gaussianity prasda effect. The first process, associated with the motion of CMB pho-
simple relation between correlation and response funetjsee tonsthrough time-dependent gravitational potentialsedes on
Valageas et al. (2016) for the additional terms associatéil wthe time derivative of the matter density field. The secora pr
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cess, associated with the scattering of CMB photonsby feme e ~ The simplest relation that one can obtain from Eq.(1) is for
trons, depends on the free electrons velocity field. We tiyate the bispectrum witm = 2,

the cross correlations of these two secondary anisotroptes . . Ky K

both galaxy density fields and the cosmic weak lensing cenvers(k, n)d,(k1, 71)d4(K2, 12) )0 = —PL(K, ,,)T

gence.
D(n1) — D(n2)

This paper is organized as follows. In secfion 2 we recall the  x(5,(K1, 71)6, (K2, 72))’ , (2)
consistency relations of large-scale structures thatyappden- D(n)
sity, momentum and momentum-divergence (i.e., time deriv@here we used thak; = —k; — k — —k;. For generality, we

tive of the density) fields. We describe the various obs@mat considered here the small-scale fieﬁ;;$k1) and Sq(kz) to be

probes that we consider in this paper in secfibn 3. We stuely #ssociated with biased tracers such as galaxies. Thegraser

ISW effect in sectiofi 4 and the kSZfect in sectiof 5. We con- sociated withk; andk, can be diferent and have fferent bias.

clude in sectiofil6. At equal times the right-hand side of Hq.(2) vanishes, aallext
above.

2. Consistency relations for large-scale structures 2.2. Consistency relations for momentum correlations

The density consistency relatiorig (1) express the unifomn m
tion of small-scale structures by large-scale modes. Tiiple
2Olé(iner_natic dfect vanishes for equal-time cor_relati_ons of th_e den-

asny field, precisely because there are no distortions,enthiére
is a nonzero fect at diferent times because of the motion of
the small-scale structure betweerfelient times. However, as

lations between density correlations offdrent orders in the pointed out in_Rizzo etall 20116), it is possible to obtaimno

squeezed limit, where some of the wavenumbers are in tkﬂﬁrlin(g'v'al equal-times results by considering velocity or mantum

regime and far below the other modes that may be strongly n aﬁ-lds’ which are not only displaced but also see their ammbt
linear. These “kinematic consistency relations”, obtdiaéthe ected by the large-scale mode. Let us consider the momentum

leading order over the large-scale wavenumbers, arise fihem p defined by
equivalence principle and the assumption of Gaussian pdi@o p = (1 + 6)v, 3)
perturbations. They express the fact that, at leading avtiere
a large-scale perturbation corresponds to a linear gtait
potential (hence a constant Newtonian force) over the éxten
a small-size structure, the latter falls without distam8dn this
large-scale potential.

Then, in the squeezed limit — 0, the correlation between

one large-scale density modék) and n small-scale density . L N ,
modesi(kj) can be expressed in terms of t@oint small-scale (o(k,m) 1_[ o(kj,m) 1_[ Pk}, 1i)kso = —Pulk,7)

2.1. Consistency relations for density correlations

As described in recent works_(Kehagias & Ribtto
Peloso & Pietroni 2013; Creminelli etial. 2013; Kehagiadat
2014a| Peloso & Pietrahi 2014; Creminelli et'al. 2014; Velag
2014bj Horn et al. 2014, 2015), it is possible to obtain exect

wherev the peculiar velocity. Then, in the squeezed likit>
0, the correlation between one large-scale density na@de n
small-scale density modeégk ), andm small-scale momentum
modesp(kj) can be expressed in terms of £ m) small-scale
correlations, as

n+m

correlation, as j=1 j=n+1
n n X{<]_[ 5<im) | | Blkim)y %kik'zk
(@) | ] 80¢jomico = =Pulio ] ] i, m)y =t j=nit =
i1 =1 n+m dD d : n . - .
. D(ni) ki -k | ) (dD/dn ) [/)(2))()7)<1_[5(kjﬂ71) [ ] Bt
XZ D(nl) Ik2 , 1) i=nt1 j=1 j=n+1
i=1 K . n+m )
X('@[%(ki) +5(ki,77i)]) 1_[ p("jﬁj))’}- 4)

where the tilde denotes the Fourier transform of the fiejds, =i+l

the conformal timeD(n) is the linear growth factor, the primeThese relations are again valid in the nonlinear regime and f
in (...)" denotes that we factored out the Dirac factor,) = biased galaxy fields,(k;) andp,(k;). As for the density con-
(...Y6p(X kj), andP_(K) is the linear matter power spectrum. Isistency relatior{{|1), the first term vanishes at this ortlegaal

is worth stressing that these relations are valid even imtre times. The second term however, which arises fronfitfields
linear regime and for biased galaxy fielgjgk ;). The right-hand only, remains nonzero. This is due to the fact tfanhvolves
side gives the squeezed limit of they(f) correlation at the lead- the velocity, the amplitude of which isfacted by the motion
ing order, which scales agK. It vanishes at this order at equainduced by the large-scale mode.

times, because of the constraint associated with the Déaoif The simplest relation associated with Eg.(4) is the bispec-
op(2 kj). trum among two density-contrast fields and one momentum

The geometrical factorsk( - k) vanish ifk; L k. Indeed, field,
the large-scale mode induces a uniform displacement alung t % ~ .
direction ofk. This has no ffect on small-scale plane waves of (k. 77|)(<5g(|;1, 11)Pg(K2:12))i0 Pk )
wavenumberg; with ki L k, as they remain identical after such x(l—'@(kl, n1)B, (K2, nz))/w
a displacement. Therefore, the terms in the right-hand sfde k2 ‘ D()
Eg.{3) must vanish in such orthogonal configurations, asame ¢ ko~ ~ , 1 dD
check from the explicit expression. +'@<5fl(k1’ 11)0g(K2: 112)) D) d_U(UZ))' ®)
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For generality, we considered here the small-scale figJls) 3. Observable quantities
andp, (k) to be associated with biased tracers such as galax
and the tracers associated withandk, can again be dierent
and have dferent bias. At equal times Elgl(5) reads as

LFS test cosmological scenarios with the consistency miatof

large-scale structures we need to relate them with obskervab

guantities. We describe in this section the observatioraigs

.k dinD that we consider in this paper. We use the galaxy numberdgoun

l@d—PL(k)Pg(kl), (6) or the weak lensing convergence to probe the density field. To
n apply the momentum consistency relatidis (6) (10), we us

where P, (k) is the galaxy nonlinear power spectrum and wée ISW dfect to probe the momentum divergencénore pre-

omitted the common time dependence. This result does net véigely the time derivative of the gravitational potentiatlanatter

ish thanks to the term generatedjbin the consistency relation density) and the kSZfkect to probe the momentum

G).

(B3(K)3y(K1)Bg(K2)io = —

3.1. Galaxy number density contrast ¢,

2.3. Consistency relations for momentum-divergence From galaxy surveys we can typically measure the galaxy den-
correlations sity contrast within some redshift bin, smoothed with some
In addition to the momentum fielp, we can consider its diver- finite-size window on the sky,
genced, defined by
. 53(6) = f do’ We (16" — 6)) f dny 1, (), [r. 18" 7], (11)
A=V [+ = _6_17' (7) whereWp (|6’ — 6)) is a 2D symmetric window function centered

on the directior® on the sky, of characteristic angular rad@s
The second equality expresses the continuity equationjshal,(y) is the radial weight along the line of sight associated with
the conservation of matter. In the squeezed limit we obt@mf a normalized galaxy selection functiop(2),
Eq.(4) (Rizzo et al. 2016)

dz
: - L) = || @ (12)
Gk m) | |6ki,m) | | ARG i) = —Pulk.n)

1]:1[ b ,l;[l b0 : r = no — n is the radial comoving coordinate along the line of
n nem nem sight, andro is the conformal time today. Here and in the fol-

{ = 3 D(@ni) ki - k lowing we use the flat sky approximation, aa the 2D vector

ok, n; Ak )Y > ——= . A P .
% <1]:1[ (k; n’)]l;[l (kismi)) ; D(p) k2 that describes the direction on the sky of a given line oftsifhe

H M g S H
nem N nem superscript “s” in> denotes that we smooth the galaxy density

~ ~ ~ , contrast with the ﬁnite-size windoWg. Expanding in Fourier
= 7 0am) [ [okpm) [ kg m) o- =Xpanding

, , , space the galaxy density contrast we can write
i=n+1 j=1 j=n+1

j#
(dD/dn)(mi) ki - k}
D(n) k2

550 = [ dowiogo’ - [ rt,m

X f dk ghir ka8 5 (k) (13)
These relations can actually be obtained by taking devieati
with respect to the timeg; of the density consistency relationsyherek, andk , are respectively the parallel and the perpendicu-
(@, using the second equalify (7). As for the momentum &nsjar components of the 3D wavenumiker: (k;, k) (with respect
tency relations[(4), these relations remain valid in thelinear to the reference directiof= 0, and we work in the small-angle
regime and for biased small-scale fielij¢k;) and1,(k;). The |imit § <« 1). Defining the 2D Fourier transform of the window
second term in EG.I8), which arises from thdields only, re- W as
mains nonzero at equal times. This is due to the fact that

(8)

volves the velocity or the time-derivative of the densityioh Vi, () = fdo e "Wo (6], (14)
probes the evolution between (infinitesimally closeffatient
tmes. _ . . . ~ we obtain
The simplest relation associated with [E§.(8) is the bispec-
trum among two density-contrast fields and one momentupt(g) = fdﬂlg('l)fdk \INV@(klr)eW”ikf”’Sg(k,q). (15)
divergence field, ’
~ ~ ~ ki-k .
Ok, 7)8,(K1, 71) Ay (K2, 120 = —PL(K, ,7)1(_2 3.2. Weak lensing convergence «
~ ~ ,D(171) — D(12) From weak lensing surveys we can measure the weak lensing
><(<5g(k1, m)Ag(K2,12)) W + convergence, given in the Born approximation by
< < 1 dD , ' F+o. o
+6y ke )3 (ka2 5 < (2)). © <0 = [do oo’ - 0) [dnr g5 Inre%al. (16)
D(n) dn
At equal times, Eq{9) reads as where¥ and® are the Newtonian gauge gravitational potentials
and the kernej(r) that defines the radial depth of the survey is
. ~ ki-kdInD o0
PN dz rs—r
<6(k)6g(kl)/lg(k2)>k—>0 K2 dy PL(k)Pg(kl)- (10) g(r) = f dfsd—rsn_q(zs) Sr , (17)
r S S
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wheren,(zs) is the redshift distribution of the source galaxiesl998). The temperature perturbatidwsz = 6T/T, due to this
Assuming no anisotropic stress, i®.= ¥, and using the Pois- kinematic Sunyaev Zeldovich (kSZjfect, is
son equation,

VAW  4rGupos/a, (18) esel6) = - [dl-verrnee ™ = [dyhsclin® pe.  (@6)
whereGy is the Newton constanpg is the mean matter density . ) .
of the Universe today, aralis the scale factor, we obtain wherer is again the optical deptio;r the Thomson cross sec-

tion, | the radial coordinate along the line of sigh{the number
s ~ ik 10 % density of free electrons, their peculiar velocity, and(6) the
«(6) = fdn |K(77)fdk Wo (k. r)e ™" o(k, ), (19) radial unit vector pointing to the line of sight. We also defin
the kSZ kernel by
with
(1) lksz(n7) = —orheae™, (27)

l(m) = 4ﬂQNﬁoT- (20)

and the free electrons momentyas

3.3. ISW secondary anisotropy Aisw NeVe = Mo(L + Se)Ve = Nape. (28)

From Eq.[(¥)1 can be obtained from the momentum divergence

or from the time derivative of the density contrast. Thesamjy Because of the projection - pe along the line of sight, some
ties are not as directly measured from galaxy surveys as deare must be taken when we smoatfsz(6) over some finite
sity contrasts. However, we can relate the time derivatifve size angular windowVe (|6’ — 6]). Indeed, because thefidirent

the density contrast to the ISWfect, which involves the time lines of sight®’ in the conical window are not perfectly parallel,
derivative of the gravitational potential. Indeed, thew®tary if we define the longitudinal and transverse momentum compo-
cosmic microwave background temperature anisotropy duentents by the projection with respect to the mean line of sight
the integrated Sachs-Wolfdéfect along the directiofl reads as n(6) of the circular window, e.gpg; = n(6) - pe, the projection

(Garriga et al. 2004) n(@’) - pe receives contributions from botpy andpe, . In the
limit of small angles we could a priori neglect the contribat
Asw(@) = fd'? o) (5_‘1' N 5_‘1)) [r.r6: 1] associated witlpe, , which is multiplied by an angular factor and
og  on)- vanishes for a zero-size window. However, for small but dinit

oV angles, we need to keep this contribution because fluchsatio
= 2fdn e*T(”)a—[r, ré; nl, (21) along the lines of sight are damped by the radial integratiord
n vanish in the Limber approximation, which damps the contrib
wherer(z) is the optical depth, which takes into account the polion associated withg.
sibility of late reionization, and in the second line we assd For small angles we write at linear orde(®) = (6x, 6,, 1),
no anisotropic stress, i.®. = ¥. We can relaté\ sy to A through close to a reference directigh= 0. Then, the integration over
the Poisson equatiof{118), which reads in Fourier space as the angular window gives for the smoothed kSieet

—K2¥ = 4nGnpod/a. 22 e[ =
el S (R T N K [ e
This gives B
b o —ikikpeLW(’a(klr)]. (29)
Y AnGnpo ~ ~ L
5 = i HD), 23)

Here we expressed the result in terms of the longitudinal and

where = dIna/dn is the conformal expansion rate. Integratt_ransverse components of the wave numbers and momenta with

h - ! . respect to the mean line of si of the circular window\jg.
ing the I_SW éfect&sw over some finite-size window on the sky,l.hfS Whereas the radial uni?tagt):torri@) = (0. 6,.1), we c(?in
we obtain as in EJ.(15) ' = (6x, 6, 1),

define the transverse unit vectorsras = (1,0, -6x) andn,, =
s - ik, 0 0,1,-6,), a~nd we WriIe for instancle = K, xN . x + Ky, + kn.
Asw(0) = fd’I“SW(U) fdk Wo (K, r)em e We denotel; (£) = dWe/d¢. The last term in EQL{29) is due to
the finite size® of the smoothing window, which makes the lines

XM, (24) of sight within the conical beam not strictly parallel. Itnishes
k2 for an infinitesimal window, wheré/g(6) = 6p(6) andWg = 1,
with We = 0.
lsw(n) = BrGinio (25)
= Ot —_—. . .
Iswiit NP0y 4. Consistency relation for the ISW temperature

anisotropy

3.4. Kinematic SZ secondary anisotropy A . . . . .
y Py Aksz In this section we consider cross correlations with the ISW e

Thomson scattering of CMB photon& anoving free electrons fect. This allows us to apply the consistency relatidn (9)iol
in the hot galactic or cluster gas generates secondaryteopges involves the momentum divergendeand remains nonzero at
(Sunyaev & Zeldovich 1980; Gruzinov & tHu 1998; Knox et alequal times.
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4.1. Galaxy-galaxy-ISW correlation where€’is a stochastic component that represents shot noise and

the dfect of small-scale (e.g., baryonic) physics on galaxy for-

To take advantage of the consistency rglatiﬁn (9), we must Cation. From the decompositidn {35), it is uncorrelatedhwie
sider three-point correlationg (in configuration space) with large-scale density field (Hamaus et.al. Efoxélk)é(k)) - 0.

one observable that involves the momentum diverganetere, 14 i >
, ! g en, in Eql(34) we neglected the tek@d,, (12 + H202)). In-
using the expressiofi_{4), we study the cross-correlatisn eed, the small-scale local processes Wi%in the regisimould

tween two galaxy density contrasts and one ISW temperatyie ey weakly correlated with the density fields in the dis-

anisotropy, tant regionsd; and #,, which at leading order are only sensi-
S S AS _ /sS s s tive to the total mass within the large-scale regioiTherefore,
£3(0g> 0g,> Misw,) = (05(0) 34,(61) A, (82))- (30) (€6,,(12 + Ha62)) should exhibit a fast decay at loy whereas
The subscripts, g1, and ISW denote the three lines of sight asthe term in Eql(34) assolC|a_ted with the consistency relaiidy
sociated with the three probes. Moreover, the subsajiptalg;  decays a®(K)/k ~ k™ with ns ~ 0.96. In Eq(34), we also
recall that the two galaxy populations associated wjtandss, assumed that the galaxy biasgoes to a constant at large scales,
can be diferent and have fferent bias. As we recalled in secWhich is usually the case, but we could take into account e sca
tion[2, the consistency relations rely on the undistortediono dependence [by keeping the factp(k, ) in the integral over
of small-scale structures by large-scale modes. This sporeds K]. , ) , .
to the squeezed limk — O in the Fourier-space equations$ (1%] The small-scale two-point correlatiotts- 2)" are dominated
and [8), which writes more precisely as y contributions at almost equal timeg,~ ., as diferent red-
shifts would correspond to points that are separated byraleve
k<k, k<ki (31) Hubble radii along the lines of sight and density correladiare
negligible beyond Hubble scales. Therefareis dominated by
wherek, is the wavenumber associated with the transition bthe second term that does not vanish at equal times. Theatseg
tween the _linear and nonlinear regimes. The first condition ealong the lines of sight suppress the contributions frongiior
sures that(k) is in the linear regime, while the second condidinal wavelengths below the Hubble radij$i, while the angu-
tion ensures the hierarchy between the large-scale modtandar windows only suppress the wavelengths below the trarsve
small-scale modes. In configuration space, these conditior radii c®/H. Then, for small angular window§) < 1, we can

respond to use Limber's approximatiork < k, hencek ~ k, . Integrating
overk; through the Dirac factafp(k + ky + ko), and next over

0>0, 0>0 [0-0]>]0.-6 (32) Ky andky, we obtain the Dirac factors £325p(r1 — r)dp(r2 —r).
This allows us to integrate oveg andr, and we obtain

The first condition ensures thag(6) is in the linear regime,

whereas the next two conditions ensure the hierarchy oéscal 2 dinD
i i = —(2n dn b, (m1,(m)] I
The expression§ (15) and {24) give &3 (27) f 1 by (Mg ()1 g, (M) Nisw, (1) ay
& = fdndﬂldﬂz LM g1 () hisw, (72) X fddekudkzl(SD(kl + koo + ko )We(k.r)
- ~ - XW k r VN\/ k r eir(kl'0+kli'01+k21'02)

X f dkdk 10k 2 We (K, 1)We, (K1, F1)We, (K2, F2) s (k1. f(h@f(kjl )

X ei(kﬂ"Jrkll\"lJrKZH|'2Jrki-I’t9:rku'I'1t91+kzi-r292’)~ XPL(kL’ U)F P(ll»m(kll’ Tl)’ (36)

X(64(K, )8, (K1,772) Alkz,n2) + Z{Z(s(kz’ 772)>. (33) whereP,,  is the galaxy-matter power spectrum. The integra-

ks tion overk,, gives

The configuration-space conditiols32) ensure that wefgati 5 dinD ~
the Fourier-space conditioris{31) and that we can applydhe cé3 = —(27) fdn bg'g'm'lswzd—n fdkidknW@(kﬂ)
sistency relationg{2) andl(9). This gives ~ ~

Y 12) ®) g XWo, (K1 NWe, (K1 NPL(KL, 7)Pgym(Ki, 1)

& = - f dndiadnz by (M1 (m)1 g, (71) hisw, (172) g Tk 0-0 sk (0100 K1 Ko (37)
ki, Kt
X f dkdkadkz We (k. r)We, (k1. r1)We, (k2. r2) and the integration over the angleskafandky, gives
% ei(k”r+k1”r1+k2”r2+kl.r0+kh.r101+k2l.r202) (0 _ 02) . (01 _ 02) dinD
ky-k &3 = 00,6, 0, (Zﬂ)Afd’?bglglglllswzd—n
XPL(k, U)V(SD(k + kl + kz) M
x((S A +7{252>, D(71) — D(17) X j; dk, dky, We (K. )W, (k1. r)We, (ki)
g1
k3 D) XPL(K., 1Py, m(kaL, 1) Ju (K. 110 - 62])
~ 62, 1 dD xJ1(Kp. 1|01 — 62]), 38
i) o) ) (34) 1(ka.rifs = 62) (38)
ky - whereJ; is the first-order Bessel function of the first kind. .
Here we assumed that on large scales the galaxy bias is lin-AS the expressiof (38) arises from the kinematic consigtenc
ear, relations, it expresses the response of the small-scalgoivd
N N correlatior(dy, (61) Al (62)) to a change of the initial condition
k—0: §,(k)=by(n)do(k) + €K), (35) associated with the large-scale m@g@). The kinematic #ect
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given at the leading order by Elq.{38) is due to the uniform moeads as

tion of the small-scale structures by the large-scale mobis. .

explains why the resuli(38) vanishes in the two followinges & = (Zﬂ)zfdn Ly Vs f dk ki, Fo, (Ki.r)

1. 0 -6,) L (61— 6). There is a nonzero response(6f1,) . 0
if there is a linear dependence 6(®) of (5112), so that its XFo,(Kir)Jo(kir01 — 62])Py, m(KiL), (40)
first derivative is nonzero. A positive (negativgy) leads to
a uniform motion a#, towards (away fromy, along the di- where we again used Limber’s approximation. Here we denoted
rection @ — 6,). From the point of view of; andé., there the angular smoothing windows Ifyto distinguishg, from &;.
is a reflection symmetry with respect to the axds € 62). Then, we can write
For instance, i5; > 0 the density contrast at a positién
typically decreases in the mean with the radé4s- 64|, and (0-6,)-(0.-6)
for A8, L (61 — 6) the pointsgZ = @, + A@, are at the same $3 = 0= 6,6, — 64| &2,
distance fron®;, and have the same density conti&sh the
mean, with typicallys < 6, as|bs — 64| > |62 — 61]. There- ¢ ype angyiar windows of the two-point correlation are ahios
fore, the large-scale flow along ¢ 6,) leads to a positive such that
A2 = —Ad2/An, independently of whether the matter moves
towards or away frorfl (here we took a finite deviatiokd,). N N ,lglisw,, dInD
This means that the dependencéfafl,) ons(6) is quadratic Fo,(kiiNFe,(kiL) = (271)°- by d

[it does not depend on the sign&(®)] and the first-order re- 1

sponse function vanishes. Then, the leading-order cantrib fm i _
tion to &; vanishes. [For infinitesimal deviatiaxd, we have “\Js dk. Wo(kur)Ja(k.r16 = 02D P (k.. m)

(41)

Iy,

Ay = —062/0n2 = 0; by this symmetry, in the meaf; is an W (ke . WWe (ks )31 (ke 116+ — 6
extremum of the density contrast along the orthogonal direc s (k1. YWe, (k. 1) Ju(ko 1161 = 6al) (42)
tion to @1 — 6>).] k1 Jo(ki 1|61 — 62l)

2.6, =6, Thisis a particular case of the previous configura- _ - -
tion. Again, by symmetry from the viewpoint 6f, the two This implies that the angular windows, andFe, of the two-
pointss(62+A6,) ands(6.—Aby) are equivalent and the mearpoint correlatiorg, have an explicit redshift dependence.
response associated with the kinemaffeet vanishes. In practice, the expression {42) may not be very convenient.
. . . . Then, to use the consistency relatinl(38) it may be more-prac
This also explains why Eq.(88) changes sign with £ 6) jcal to first measure the power specia and P,, , indepen-

and @ — 6,). Let us consider for simplicity the case where th . ; :
three points are aligned arfd) > 0, so that the Iarge-scalesie ?\tthEB%; tg(:]drendesxr;n;tinqeg?ee?h];Ointggslgrtgﬁltﬁlt?}ggewg_
flow points toward®. We also takes; > 0, so that in the mean '9 ! ted with ?h ?,E P

the density is peaked &t and decreases outwards. Let us takdo" (38) computed wi €se power spectra.

0, close tof,, on the decreasing radial slope, and on the other

side of@; than@. Then, the large-scale flow moves mattefat 4.3. [ ensing-lensing-ISW correlation

towardsf;, so that the density @& at a slightly later time comes

from more outward regions (with respect to the peagavith From Eq{38) we can directly obtain the lensing-lensing¢lS
a lower density. This means thas = —3d,/d1- is positive so three-point correlation,

thatés > 0. This agrees with EQ.(B8), a8 € 6,) - (61 — 6,) > 0

in this geometry, and we assume the integrals over wavensmig(k®, «3, Ajgy,) = (k°(6) «3(61) Ajsy, (62)), (43)
are dominated by the peaks &f > 0. If we flip 8, to the other

side off;, we find on the contrary that the large-scale flow bringsy; yeplacing the galaxy kerneligl, andl,, by the lensing con-
higher-density regions t, so that we have the change of Si9”§ergence kernel and| o .
Ay < 0 andé; < 0. The same arguments explain the change

of sign with @ — 6-). In fact, it is the relative direction between — ). (0 —
(6-62) and @1 - 0,) that matters, measured by the scalar produgi = (0“9 _02)“6(’01_ 00|2) (2ﬂ)4fdnlklkll|sw2d:j£
(6 - 62) - (61— 62). AL 2 7

This geometrical dependence of the leading-order contribu foo K. dks . Wa (k. W, (ke IV, (K
tion to&; could provide a simple test of the consistency relation,  Jo dk. ke Wo (k. 1)We, (ki)W (ks..1)

K11

without even computing the explicit expression in the righnhd XPL(Ky, 7)P(kaL, 7)Ju(korl0 — 62])
side of Eql(3B).
XJ1 (K1, 1|01 — 62). (44)
4.2. Three-point correlation in terms of a two-point As compared with Ed.(38), the advantage of the cross-
correlation correlation with the weak lensing convergerds that Eql(44)

involves the matter power spectrupfks, ) instead of the more

The three-point correlatiogs in Eq.{38) cannot be written as acomplicated aalaxy-matter cross power s ectRymn(k
product of two-point correlations because there is only ione P ¢ y P P Wn(kes)-

tegral along the line of sight that is left. However, if thedar
power spectrunP(k, 2) is already known, we may writ&; in . .
terms of some two-point correlatiah. For instance, the small->- Consistency relation for the kSZ effect

scale cross-correlation between one galaxy density GHdr@l |, this section we consider cross correlations with the k6Z e

one weak lensing convergence, fect. This allows us to apply the consistency relatidn (B)ick

E(85,5 k5) = (65, (01)x5(62)) (39) involves the momentum and remains nonzero at equal times.
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5.1. Galaxy-galaxy-kSZ correlation we usedP (k,7) = D(n)?Po(K). If we approximate the three
lines of sight as parallel, we can write - k = k;, where the lon-
gitudinal and transverse directions coincide for the thiress of
sight. Then, Limber’s approximation, which correspondgi®
limit where the radial integrations have a constant weighthe

S S AS Y _ /sS s s infinite real axis, gives a Dirac terdgb(kj) and&g; = 0 [more
§3009: 0g1» Ausz) = (94(6) 04, (61) sz, (02)- (45) precisely, as we recalled above IEE(@IG), the radial intEgra
in the squeezed limit given by the conditiolis1(31) in Fourigivesk; < H/c while the angular window gives, < H/(c®) so
space and_(32) in configuration space. The expresdiohs ft5) thatk; < k,]. Taking into account the small angles between the

In a fashion similar to the galaxy-galaxy-ISW correlatitundied
in sectio 411, we consider the three-point correlationvben
two galaxy density contrasts and one kSZ CMB anisotropy,

(29) give different lines of sight, as for the derivation of Eq](29), the-in
gration ovelk, through the Dirac factor gives at leading order in

&3 =E3+&au (46) the angles

with

dD
&3 = - f dndn.dn, bg(n)Ig(n)D(n)Igl(nl)IkSZz(’]Z)d_n(772)
&3 = f dndnadnz 14(m)1 4, (1711) sz, (172) f dkdkidka
sca(®nrrkenarsrkenarah\Re (KO )W - (KM
~ () - ?( * ) (il(r(lz)ll 1) s @lkir=T2)+k -(0-62)ra+ky(r1—r2)+k1.-(01-62)r2]
XW@Z( i r2)<59(k’ n)égl(kl, 771) pe“ )(k2, 772)) (47) k“ + kJ_ . (02 _ 0)

X f dk;dk , dkydky, We (K. r)We, (k1. F1)We, (K1, 2)

X PLo(KL) Py, e(Kiy; 171, 172)i (51)
and ! kZ
_ We used Limber’s approximation to write for instarfeg(k) =
far = |fdndn1dn2 ly (g, (72)lksz (72) fdkdkldkz PLo(k.), but we kept the factok; in the last term, as the trans-
i(k-nr+kyngr+ko oWV 7 (1 R (n1) verse factok, - (62— 6), due to the small angle between the lines
xe Wo (k. r)WQI((nk)ll r(ln)) of sightn andn,, is suppressed by the small an¢flg — 6]. We
ko - Pe. again splits over two contributionsés = £}, + &3, associated

with the factorsg andk, - (62 — 6) of the last term. Let us first

(4g) consider the contributiost . Writing ikjgh(—"2) = Zek(-r2),

we integrate by parts over For simplicity we assume that the
where we split the longitudinal and transverse contrimgio galaxy selection functioh, vanishes az = 0,
to Eq.[29). Here{n,ny,n,} are the radial unit vectors that
point to the centers6, 6:,6,} of the three circular windows, l4(10) =0, (52)

and{(kﬁn)’ k™), (k(lr\}l)’ k™), (kg|]|2)» k{™)} are the longitudinal and sq that the boundary term at= 0 vanishes. Then, the integra-

transverse wave numbers with respect to the associatedhkenions overk, andky give a factor (2)%p(r — r2)dp(r1 — r), and

lines of sight [e.g.Lﬂ(l”) =n-k]. we can integrate over andn;. Finally, the integration over the
The computation of the transverse contribution (48) is sinangles of the transverse wave numbers yields

ilar to the computation of the ISW three-point correlati@dl,

Wi, (KEPr2)(B (k. )3, (ko n1>2j<2T(kz, n2)),
ol

using again Limber’s approximation. At lowest order we dabta fgu = —(27r)4fd;7 dg [nggD] Igllkszz(;—D
U n
_ (0-61)-(02-61) 4 dinD °° X % i
a1 = 0= 6116, — 64| (2n)" | dn bglglgllkSZZd—n X fo dk dky, We(K.r)We, (K1) We,(Ki.T)
X fo dk, iz, ko Wo (K. 1)We, (Ko, 1) W, (Kz.1) xkkl—lPLo(kL)PgLe(kh, 1) Jo(K.r16 — 62))
L
xPu(k.,n) Pgl,e(kZJ_, ) J1(k.rlé — 64) xJo(K1.r|01 — 62]), (53)
XJ1(K2, 1162 — 61]), (49)

where Jg is the zeroth-order Bessel function of the first kind.

whereP,, ¢ is the galaxy-free electrons cross power spectrum For the transverse contributiag, we can proceed in the same
The computation of the longitudinal contribution 147) refashion, without integration by parts owerThis gives

quires slightly more care. Applying the consistency relat)

. dD
gives f?i\l = _(2”)4fd77bg|ylgllk322Dd_n
& = - f dndn1dnz by ()1 ()14, (72) lksz (172) X f dk., dky. We (K. r)We, (ky.r)We, (K. T)
0
x f dkdk;dka We (KD r)We, (K1) W, (KI'r) Xka1 Pro(K1) Py, e(kus, 7)€ — 62131 (K.r|6 — 62])
XJo(K1.r161 — 62). (54)

) dD
(k-nr+kq-niri+konorp) -
x @ienrramirie 2 B Py o(k) i (m2) Comparing Eq[{54) with Eq.(53), we fi §§”/§g” ~ K.rle - 62].

If the cutdT onk, is set by the Bessel functions, we obta.gmfv
§2H. For very small angle$d— 6| — 0, the cutdf overk is set by
where we only kept the contribution that does not vanish aakq the angular windowVe (k. r) or by the falldt of the linear power

times, as it dominates the integrals along the lines of sad spectrunPyo(k,), andéy, < gu.

Ny-K ~ ~
X |2k—2<5glaez> So(K + Ky + ko), (50)
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In contrast with Eq[(38), the kSZ three-point correlation, The application of the relations above is, unfortunately, a
given by the sum of Eq§.(#9)_(63) and {54), does not vanentrivial task in terms of observations: to test thosetiwie
ish for orthogonal directions between the small-scalersgjpm one would require the mixed galaxy (matter) - free electrons
(61— 6,) and the large-scale separation-@,). Indeed, the lead- power spectrum. One possibility would be to do a stackindg-ana
ing order contribution in the squeezed limit to the respoofse ysis of several X-rays observations of the hot ionised gas by
(61p2) to a large-scale perturbatiahfactors out ags16,)v2, measuring the bremsstrahlun@eet. For instance, one could in-
where we only take into account the contribution that does rfer nenp,T~Y/2, by making some reasonable assumptions about
vanish at equal times (and we discard the finite-size smogththe plasma state, as performed.in Fraser-McKelvielet al. 1.0
effects). The intrinsic small-scale correlati@d,) does not de- with the aim to measum in filaments. We would of course need
pend on the large-scale modewhereasy; is the almost uni- to cover a large range of scales. For kpc scales, inside -galax
form velocity due to the large-scale mode, which only degenis and in the intergalactic medium, one could use for irtgan
on the direction t@(#) and is independent of the orientation oilicon emission line ratios (Kwitter & Henry 1998; Henryadt
the small-scale mod@{ — 6,). 1996). For Mpc scales, or clusters, one may use the SZ ef-
Because the measurement of the k®2@ only probes the fect (Rossetti et al. 2016). Nevertheless, all these pregpop-
radial velocity of the free electrons gas along the line ghsi proaches are quite speculative at this stage.
which is generated by density fluctuations almost parail¢hé
line of sight over which we integrate and are damped by this rg lusi
dial integration, the resulf(53) is suppressed as compaithd ~- Conclusions

the ISW result[(38) by the radial derivativdn(b,l,D)/dn ~ |n this paper, we have shown how to relate the large-scale
1/r. Also, the contribution(53), associated with transverse-fl consistency relations with observational probes. Assgrtiie
tuations that are almost orthogonal to the second line bitsi§ standard cosmological model (more specifically, the equiva
suppressed as compared with the ISW regult (38) by the sma#ice principle and Gaussian initial conditions), nonzsgoal-
anglelé — 62| between the two lines of sight. times consistency relations involve the cross-correfetibe-

One drawback of the kSZ consistency relationl (49) Bnbl (53veen galaxy or matter density fields with the velocity, mome
(24), is that it is not easy to independently measure thexgalatum or time-derivative density fields. We have shown thas¢he
free electrons power spectrufy, e, which is needed if we wish relations can be related to actual measurements by coimgjder
to test this relation. Alternatively, Es.(53)-(54) mayu®ed as the ISW and kSZ @ects, which indeed involve the time deriva-
a test of models for the free electrons distribution and 8 tive of the matter density field and the free electrons momen-
power spectruniy, e. tum field. We focused on the lowest-order relations, whigiyap
to three-point correlation functions or bispectra, beesiigher-
order correlations are increasinglfiiult to measure.

The most practical relation obtained in this paper is prob-
Again, from Eqgs[(49) and(53)-(54) we can directly obtaia thably the one associated with the ISWest, more particularly

5.2. Lensing-lensing-kSZ correlation

lensing-lensing-kSZ three-point correlation, its cross-correlation with two cosmic weak lensing coneece
S S AS N\ s Sian S s statistics. Indeed, it allows one to write this three-paintrela-
£3(K° k1, Dysz,) = (&(0) k1(01) Ays7, (62)), (35)  tion function in terms of two matter density field power spact

by replacing the galaxy kernelgl, andl,, by the lensing con- (linear and norll|ipeaf), which c_an)bi/ldirectly mﬁaSUfedr&(bh)g
is Qi - | L i two-point weak lensing statistics). Moreover, the reswhijc
vergence kemel andl,,. This givests = £3, + TR with is the leading-order contribution in the squeezed limipveh
(0—61)- (62— 01)

dinD a specific angular dependence as a function of the relative an
gular positions of the three smoothed observed statistisn,

§3J_ (27r)4fd77|/<|/<1|k822

OLO ~ 611162 = 04| both the angular dependence and the quantitative predistm
> dk dko: ko We (K, P)We. (ko W (Ko T vide a test of the consistency relation, that is, of the emjaivce
fo ke ke Wo k)W, (k. 1)We, (ke. 1) principle and of primordial Gaussianity. If we considerteed
XPL(KL, 7)Pme(kor, 7)J1(K.r|0 — 64]) the cross-correlation of the ISWfect with two galaxy density
xJ1(Ka. 7102 — 61]) (56) fields, we obtain a similar relation but it now involves thexed

galaxy-matter density power spectru?p, and the large-scale
d dD galaxy biag,. These two quantities can again be measured (e.g.,
gg” = —(2n)* f dn — [1,D] L, lksz,— f dk, dkq, by two-point galaxy-weak lensing statistics) and providetaer
dn dn Jo test of the consistency relation.
The relations obtained with the kS#ect are more intricate.

% ~ % K1y
XWG(kLr)W@’l(k“r)Wez(k“r)EPLO(ki) They do not show a simple angular dependence, which would

XPme(ke, 1) Jo(K.r10 — 8]) Jo(Ke. 1161 — 62]), (57) provide a simple signature, and they involve the galaxeg-flec-
trons or matter-free electrons power spectra. These pgveer s
and tra are more diicult to measure. One can estimate the free elec-
dD tron density in specific regions, such as filaments or claster
& = —(27r)4fd17 el lksz, D f dk, dka, through X-ray or SZ observations, or around typical streesu
- - - " Jo by stacking analysis of clusters. This could provide anmests
XWe (K. We, (K. )We, (KL ki Pro(k.) of the free electrons cross power spectra and a check of the co
XPme(KiL,17)10 — 02131(K. 1|0 — 62]) Jo(Ky. 1|01 — 65]). sistency relations. Although we can expect significantrdyaos,

(58) it yvould be inter_esting to_check that the results remain isbeist
with the theoretical predictions.
This now involves the matter-free electrons cross powecspe A violation of these consistency relations would signal ei-
trum Ppe. ther a modification of gravity on cosmological scales or non-
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Gaussian initial conditions. We leave to future works thevae
tion of the deviations associated with various nonstandaed
narios.
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