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INFORMATION-THEORETIC THRESHOLDS FROM THE CAVITY METHOD

AMIN COJA-OGHLAN∗, FLORENT KRZAKALA∗∗, WILL PERKINS, AND LENKA ZDEBOROVÁ

ABSTRACT. Vindicating a sophisticated but non-rigorous physics approach called the cavity method, we establish a for-
mula for the mutual information in statistical inference problems induced by random graphs and we show that the mu-
tual information holds the key to understanding certain important phase transitions in random graph models. We work
out several concrete applications of these general results. For instance, we pinpoint the exact condensation phase tran-
sition in the Potts antiferromagnet on the random graph, thereby improving prior approximate results [Contucci et al.:
Communications in Mathematical Physics 2013]. Further, we prove the conjecture from [Krzakala et al.: PNAS 2007]
about the condensation phase transition in the random graph coloring problem for any number q ≥ 3 of colors. More-
over, we prove the conjecture on the information-theoretic threshold in the disassortative stochastic block model [Decelle
et al.: Phys. Rev. E 2011]. Additionally, our general result implies the conjectured formula for the mutual information in
Low-Density Generator Matrix codes [Montanari: IEEE Transactions on Information Theory 2005].

1. INTRODUCTION

Since the late 1990’s physicists have studied models of spin systems in which the geometry of interactions is de-
termined by a sparse random graph in order to better understand “disordered” physical systems such as glasses or
spin glasses [66, 67, 71]. To the extent that the sparse random graph induces an actual geometry on the sites, such
“diluted mean-field models” provide better approximations to physical reality than models on the complete graph
such as the Curie–Weiss or the Sherrington–Kirkpatrick model [65]. But in addition, and perhaps more impor-
tantly, as random graph models occur in many branches of science, the physics ideas have since led to intriguing
predictions on an astounding variety of important problems in mathematics, computer science, information the-
ory, and statistics. Prominent examples include the phase transitions in the random k-SAT and random graph col-
oring problems [69, 87], both very prominent problems in combinatorics, error correcting codes [65], compressed
sensing [86], and the stochastic block model [34], a classical statistical inference problem.

The thrust of this work goes as follows. In many problems random graphs are either endemic or can be intro-
duced via probabilistic constructions. As an example of the former think of the stochastic block model, where the
aim is to recover a latent partition from a random graph. For an example of the latter, think of low density gen-
erator matrix ‘LDGM’ codes, where by design the generator matrix is the adjacency matrix of a random bipartite
graph. To models of either type physicists bring to bear the cavity method [68], a comprehensive tool for studying
random graph models, to put forward predictions on phase transitions and the values of key quantities. The cavity
method comes in two installments: the replica symmetric version, whose mainstay is the Belief Propagation mes-
sages passing algorithm, and the more intricate replica symmetry breaking version, but it has emerged that the
replica symmetric version suffices to deal with many important models.

Yet the cavity method suffers an unfortunate drawback: it is utterly non-rigorous. In effect, a substantial re-
search effort in mathematics has been devoted to proving specific conjectures based on the physics calculations.
Success stories include the ferromagnetic Ising model and Potts models on the random graph [37, 36], the exact
k-SAT threshold for large k [30, 41], the condensation phase transition in random graph coloring [19], work on the
stochastic block model [62, 76, 77] and terrific results on error correcting codes [46]. But while the cavity method
can be applied mechanically to a wide variety of problems, the current rigorous arguments are case-by-case. For
instance, the methods of [19, 30, 41] depend on painstaking second moment calculations that take the physics
intuition on board but require extraneous assumptions (e.g., that the clause length k or the number of colors be
very large). Moreover, many proofs require lengthy detours or case analyses that ought to be expendable. Hence,
the obvious question is: can we vindicate the physics calculations wholesale?

∗The research leading to these results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant Agreement n. 278857–PTCC
∗∗The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant Agreement n. 307087–SPARCS.
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The main result of this paper is that for a wide class of problems within the purview of the replica symmet-
ric cavity method the answer is ‘yes’. More specifically, the cavity method reduces a combinatorial problem on a
random graph to an optimization problem on the space of probability distributions on a simplex of bounded di-
mension. We prove that this reduction is valid under a few easy-to-check conditions. Furthermore, we verify that
the stochastic optimization problem admits a combinatorial interpretation as the problem of finding an optimal
set of Belief Propagation messages on a Galton-Watson tree. Thus, we effectively reduce a problem on a random
graph, a mesmerizing object characterized by expansion properties, to a calculation on a random tree. This result
reveals an intriguing connection between statistical inference problems and phase transitions in random graph
models, specifically a phase transition that we call the information-theoretic threshold, which in many important
models is identical to the so-called “condensation phase transition” predicted by physicists [54]. Moreover, the
proofs provide a direct rigorous basis for the physics calculations, and we therefore believe that our techniques
will find future applications. To motivate the general results about the connection between statistical inference
and phase transitions, which we state in Section 2, we begin with four concrete applications that have each re-
ceived considerable attention in their own right.

1.1. The Potts antiferromagnet. As a first example we consider the antiferromagnetic Potts model on the Erdős-
Rényi random graph G=G(n,d/n) with n vertices where any two vertices are connected by an edge with probabil-
ity d/n independently. Letβ> 0 be a parameter that we call ‘inverse temperature’ and let q ≥ 2 be a fixed number of
colors. With σ ranging over all color assignments {1, . . . ,n} → {1, . . . , q} the Potts model partition function is defined
as

Zβ(G) =
∑

σ
exp

(

−β
∑

{v,w }∈E (G)
1{σ(v) =σ(w)}

)

. (1.1)

Standard arguments show that the random variable Zβ(G) is concentrated about its expectation. Thus, the key
quantity of interest is the function

(d ,β) ∈ (0,∞)× (0,∞) 7→ lim
n→∞

−
1

n
E[ln Zβ(G(n,d/n))],

the free energy density in physics jargon; the limit is known to exist for all d ,β [20]. In particular, for a given d we
say that a phase transition occurs at β0 ∈ (0,∞) if the function

β 7→ lim
n→∞

−
1

n
E[ln Zβ(G(n,d/n))]

is non-analytic at β0, i.e., there is no expansion as an absolutely convergent power series in a neighborhood of β0.1

According to the cavity method, for small values of β (“high temperature”) the free energy is given by a simple
explicit expression. But as β gets larger a phase transition occurs, called the condensation phase transition, pro-
vided that d is sufficiently large. Contucci, Dommers, Giardina and Starr [33] derived upper and lower bounds on
the critical value of β, later refined by Coja-Oghlan and Jaafari [29]. The following theorem pinpoints the phase
transition precisely for all d , q . Indeed, the theorem shows that the exact phase transition is determined by the
very stochastic optimization problem that the cavity method predicts [65].

To state the result we need a bit of notation. For a finite set Ω we identify the set P (Ω) of probability measures
on Ω with the standard simplex in R

Ω. Let P
2(Ω) be the set of all probability measures on P (Ω) and write P

2
∗ (Ω)

for the set of π ∈ P
2(Ω) whose mean

∫

P (Ω) µdπ(µ) is the uniform distribution on Ω. Moreover, for π ∈ P
2
∗(Ω) let

µ(π)
1 ,µ(π)

2 , . . . be a sequence of samples from π and let γ= Po(d), all mutually independent. Further, let Λ(x) = x ln x

for x ∈ (0,∞) and Λ(0) = 0. For an integer k ≥ 1 let [k] = {1, . . . ,k}. Finally, we use the convention inf;=∞.

Theorem 1.1. Let q ≥ 2 and d > 0 and for c ∈ [0,1] let

BPotts(q,d ,c) = sup
π∈P

2
∗ ([q])

E

[

Λ(
∑q

σ=1

∏γ

i=1 1−cµ(π)
i

(σ))

q(1−c/q)γ
−

dΛ(1−
∑q

τ=1 cµ(π)
1 (τ)µ(π)

2 (τ))

2(1−c/q)

]

, (1.2)

βq,cond(d) = inf
{

β> 0 : BPotts(q,d ,1−exp(−β)) > ln q +d ln(1− (1−exp(−β))/q)/2
}

. (1.3)

1This definition of ‘phase transition’, which is standard in mathematical physics, is in line with the random graphs terminology. For instance,
the function that maps d to the expected fraction of vertices in the largest connected component of G(n,d/n) is non-analytic at d = 1.
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Then for all β<βq,cond(d) we have

lim
n→∞

−
1

n
E[ln Zβ(G(n,d))]=− ln q −d ln(1− (1−exp(−β))/q)/2 (1.4)

and if βq,cond(d) <∞, then a phase transition occurs at βq,cond(d).

A simple first moment calculation shows that βq,cond(d) < ∞, and thus that a phase transition occurs, if d >
(2q −1) ln q [29]. In fact, for any β> 0 the formulas (1.2)–(1.3) yield a finite maximum value

dq,cond(β) = inf
{

d > 0 : BPotts(q,d ,1−exp(−β)) > ln q +d ln(1− (1−exp(−β))/q)/2
}

(1.5)

such that (1.4) holds if and only if d ≤ dq,cond(β). Thus, (1.2)–(1.3) identify a line in the (d ,β)-plane that marks the
location of the condensation phase transition.

1.2. Random graph coloring. The random graph coloring problem is one of the best-known problems in prob-
abilistic combinatorics: given a number q ≥ 3 of available “colors”, for what values of d is it typically possible to
assign colors to the vertices of G=G(n,d/n) such that no edge connects two vertices with the same color? Since the
problem was posed by Erdős and Rényi in their seminal paper that started the theory of random graphs [42], the
random graph coloring problem and its ramifications have received enormous attention (e.g., [7, 8, 13, 22, 47, 52,
59, 87]). Of course, an intimately related question is: how many ways are there to color the vertices of the random
graph G with q ≥ 3 colors such that no edge is monochromatic? In fact, for q > 3 the best known lower bounds
on largest value of d up to which G remains q-colorable, the q-colorability threshold, are derived by tackling this
second question [8, 19]. If d < 1, then the random graph G does not have a ‘giant component’. We therefore expect
that the number Zq (G) of q-colorings is about qn(1−1/q)dn/2, because a forest with n vertices and average degree
d has that many q-colorings. Indeed, for d < 1 it is easy to prove that

1

n
ln Zq (G(n,d/n))

n →∞→ ln q +
d

2
ln(1−1/q) in probability (1.6)

and the largest degree dq,cond up to which (1.6) holds is called the condensation threshold. Perhaps surprisingly, the
cavity method predicts that the condensation threshold is far greater than the giant component threshold. Once
more the predicted formula takes the form of a stochastic optimization problem [87]. Prior work based on the
second moment method verified this under the assumption that q exceeds some (undetermined but astronomical)
constant q0 [19]. Here we prove the conjecture for all q ≥ 3.

Theorem 1.2. For q ≥ 3 and d > 0 and with BPotts from (1.2) let

dq,cond = inf
{

d > 0 : BPotts(q,d ,1) > ln q +d ln(1−1/q)/2
}

. (1.7)

Then (1.6) holds for all d < dq,cond . By contrast, for every d > dq,cond there exists ε> 0 such that w.h.p.

Zq (G(n,d/n)) < qn(1−1/q)dn/2 exp(−εn).

It is conjectured that d3,cond = 4 [87], but we have no reason to believe dq,cond admits a simple expression for
q > 3. Asymptotically we know dq,cond = (2q − 1) ln q − 2ln2+ εq with limq→∞ εq = 0 [19]. By comparison, for
d > (2q −1) ln q −1+εq the random graph fails to be q-colorable probability tending to 1 as n →∞ [28].

Since (1.6) cannot hold for d beyond the q-colorability threshold, dq,cond provides a lower bound on that thresh-
old. In fact, dq,cond is at least as large as the best prior lower bounds for q > 3 from [8, 19], because their proofs
imply (1.6). But more importantly, Theorem 1.2 facilitates the study of the geometry of the set of q-colorings for
small values of q . Specifically, if d , q are such that (1.6) is true, then the notoriously difficult experiment of sam-
pling a random q-coloring of a random graph can be studied indirectly by way of a simpler experiment called the
planted model [3, 18, 53]. This approach has been vital to the analysis of, e.g., the geometry of the set of q-colorings
or the emergence of “frozen variables” [3, 70]. Additionally, in combination with results from [74] Theorem 1.2 im-
plies that for all q ≥ 3 the threshold for an important spatial mixing property called reconstruction on the random
graph G(n,d/n) equals the reconstruction threshold on the Galton-Watson tree with offspring distribution Po(d).

Finally, the formula (1.1) suggests to think of the inverse temperature parameter β in the Potts antiferromagnet
as a “penalty” imposed on monochromatic edges. Then we can view the random graph coloring problem as the
β =∞ version of the Potts antiferromagnet. Indeed, using the dominated convergence theorem, we easily verify
that that the number dq,cond from Theorem 1.2 is equal to the limit limβ→∞ dq,cond(β) of the numbers from (1.5).
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1.3. The stochastic block model. We prove results such as Theorem 1.1 and 1.2 in an indirect and perhaps sur-
prising way via statistical inference problems. In fact, we will see that these provide the appropriate framework
to investigate the replica symmetric cavity method. Let us look at one well known example of such an inference
problem, the stochastic block model, which can be viewed as the statistical inference version of the Potts model.

Suppose we choose a random coloring σ∗ of n vertices with q ≥ 2 colors, then generate a random graph by con-
necting any two vertices of the same color with probability din/n and any two with distinct colors with probability
dout/n independently; write G∗ for the resulting random graph. Specifically, set din = d q exp(−β)/(q−1+exp(−β))
and dout = d q/(q −1+ exp(−β)) so that the expected degree of any vertex equals d . Then bichromatic edges are
preferred if β > 0 (“disassortative case”), while monochromatic ones are preferred if β < 0 (“assortative case”).
The model was first introduced in machine learning by Holland, Laskey, and Leinhardt [50] as early as 1983,
and has since attracted rather considerable attention in probability, computer science, and combinatorics (e.g.,
[12, 14, 23, 24, 27, 60]).

The inference task associated with the model is to recoverσ∗ given just G∗. When d remains fixed as n →∞ then
typically a constant fraction of vertices will have degree 0, and so exact recovery of σ∗ is a hopeless task. Instead
we ask for a coloring that overlaps with σ∗ better than a mere random guess. Formally, define the agreement of two
colorings σ,τ as

A(σ,τ) =
−1+maxκ∈Sq

q
n

∑

v∈V (G) 1{σ(v) =κ◦τ(v)}

q −1
.

Then for all σ,τ, A(σ,τ) ≥ 0, A(σ,σ) = 1, and two independent random colorings σ,τ have expected agreement
o(1) as n →∞. Hence, for what d ,β can we infer a coloring τ(G∗) such that A(σ∗,τ(G∗)) is bounded away from 0?

According to the cavity method, this question admits two possibly distinct answers [34]. First, for any given q,β
there exists an information-theoretic threshold dinf(q,β) such that no algorithm produces a partition τ(G∗) such
that A(σ∗,τ(G∗)) ≥ Ω(1) with a non-vanishing probability if d < dinf(q,β). By contrast, for d > dinf(q,β) there is
a (possibly exponential-time) algorithm that does. The formula for dinf(q,β) comes as a stochastic optimization
problem. The second algorithmic threshold dalg(q,β) marks the point from where the problem can be solved by an
efficient (i.e., polynomial time) algorithm. The cavity method predicts the simple formula

dalg(q,β) =
(

q −1+exp(−β)

1−exp(−β)

)2

. (1.8)

While the information-theoretic threshold is predicted to coincide with the algorithmic threshold for q = 2,3, we
do not expect that there is a simple expression for dinf(q,β) for q ≥ 4, β> 0.

The physics conjectures have inspired quite a bit of rigorous work (e.g. [38, 48, 75]). Mossel, Neeman and
Sly [76, 77] and Massoulié [62] proved the conjectures for q = 2. Abbe and Sandon [2] proved the positive part of
the algorithmic conjecture for all q ≥ 3; see also Bordenave, Lelarge, Massoulié [25] for a different but less general
algorithm. Moreover, independently of each other Abbe and Sandon [2] and Banks, Moore, Neeman and Netra-
palli [16] derived upper bounds on the information-theoretic threshold that are strictly below dalg(q,β) for q ≥ 5 by
providing exponential-time algorithms to detect the planted partition. Banks, Moore, Neeman and Netrapalli ad-
ditionally derived lower bounds on the information-theoretic threshold via a delicate second moment calculation
in combination with small subgraph conditioning. Their lower bounds match the upper bounds up to a constant
factor. The following theorem settles the exact information-theoretic threshold for all q ≥ 3, β > 0. Recall BPotts

from (1.2).

Theorem 1.3. Suppose β> 0, q ≥ 3 and d > 0. Let

dinf(q,β) = inf
{

d > 0 : BPotts(q,d ,1−exp(−β))> ln q +d ln(1− (1−exp(−β))/q)/2
}

.

• If d > dinf(q,β), then there exists an algorithm (albeit not necessarily an efficient one) that outputs a parti-

tion τalg(G∗) such that E[A(σ∗,τalg(G∗))]≥Ω(1).

• If d < dinf(q,β), then for any algorithm (efficient or not) we have E[A(σ∗,τalg(G∗))]= o(1).

While the claim that dalg(q,β) = dinf(q,β) for q = 3 is not apparent from Theorem 1.3, the theorem reduces
this problem to a self-contained analytic question that should be within the scope of known techniques (see Sec-
tion 2.5). Furthermore, the proofs of Theorems 1.1 and 1.2 are actually based on Theorem 1.3, and we shall see that
quite generally phase transitions in “plain” random graph models can be tackled by way of a natural corresponding
statistical inference problem.
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1.4. LDGM codes. But before we come to that, let us consider a fourth application, namely Low-Density Generator

Matrix codes [26, 51]. For a fixed k ≥ 2 form a bipartite graph G consisting of n “variable nodes” and m ∼ Po(dn/k)
“check nodes”. Each check node a gets attached to a random set ∂a of k variable nodes independently. Then select
a signal σ∗ ∈ {±1}n uniformly at random. An output message y ∈ {±1}m is obtained by setting ya =

∏

i∈∂a σ
∗
i

with
probability 1−η resp. ya = −

∏

i∈∂a σ
∗
i

with probability η for each check node a independently. In other words, if
we identify ({±1}, ·) with (F2,+), the signal σ∗ is encoded by multiplication by the random biadjacency matrix of G ,
then suffers from errors in transmission, each bit being flipped with probability η, to form the output message y .
Now let G∗ be the bipartite graph G decorated on each check node a with the value y a ∈ {±1}. The decoding task
is to recover σ∗ given G∗.

The appropriate measure to understand the information-theoretic limits of the decoding task is the mutual

information between σ∗ and G∗, which we recall is defined as

I (σ∗,G∗) =
∑

G ,σ
P

[

G∗ =G,σ∗ =σ
]

ln
P[G∗ =G,σ∗ =σ]

P[G∗ =G]P[σ∗ =σ]
, (1.9)

with the sum ranging over all possible graphs G and σ ∈ {±1}n . Abbe and Montanari [1] proved that for any d ,η and
for even k the limit limn→∞

1
n

I (σ∗,G∗) of the mutual information per bit exists. The following theorem determines

the limit for all k ≥ 2, even or odd. Let P0([−1,1]) be the set of all probability distributions on [−1,1] with mean 0.
Let J , (J b)b≥1 be uniform ±1 random variables, let γ= Po(d), and let (θ(π)

j
) j≥1 be samples from π ∈P0([−1,1]), all

mutually independent.

Theorem 1.4. For k ≥ 2, η> 0, and d > 0, let

I (k,d ,η) = sup
π∈P0([−1,1])

E

[

1

2
Λ

(

∑

σ∈{±1}

γ
∏

b=1
1+σJ b(1−2η)

k−1
∏

j=1
θ(π)

kb+ j

)

−
d(k −1)

k
Λ

(

1+ J (1−2η)
k
∏

j=1
θ(π)

j

)]

.

Then

lim
n→∞

1

n
I (σ∗,G∗) = (1+d/k) ln2+η lnη+ (1−η) ln(1−η)−I (k,d ,η).

Kumar, Pakzad, Salavati, and Shokrollahi [57] conjectured the existence of a threshold density below which
the normalized mutual information between σ∗ and y conditioned on G, 1

n I (σ∗, y |G), is w.h.p. strictly less than
the capacity of the binary symmetric channel with error probability η. Since a simple calculation shows that
I (σ∗,G∗) coincides with the conditional mutual information I (σ∗, y |G), the result of Abbe and Montanari [1] that
limn→∞

1
n I (σ∗,G∗) exists implies this conjecture for even k. Theorem 1.4 extends this result to all k. Moreover,

Montanari [72] showed that for even k the above formula gives an upper bound on the mutual information and ex-
tends to LDGM codes with given variable degrees. He conjectured that this bound is tight. Theorem 1.4 proves the
conjecture for all k for the technically convenient case of Poisson variable degrees. The LDGM coding model also
appears in cryptography and hardness-of-approximation as the problem k −LIN(η) or planted noisy k-XOR-SAT
(e.g., [11, 15, 44]) and the gap between the algorithmic and the information-theoretic threshold is closely related
to deep questions in computational complexity [11, 43].

2. THE CAVITY METHOD, STATISTICAL INFERENCE AND THE INFORMATION-THEORETIC THRESHOLD

In this section we state the main results of this paper about statistical inference problems and their connections
to phase transitions. Theorems 2.2 and 2.4 below provide general exact formulas for the mutual information in
inference problem such as the stochastic block model or the LDGM model. Then in Theorems 2.6 and 2.7 we
establish the existence of an information-theoretic threshold that connects the statistical inference problem with
the condensation phase transition. Let us begin with the general setup and the results for the mutual information.

2.1. The mutual information. The protagonist of this paper, the teacher-student scheme [86], can be viewed as
a generalization of the LDGM problem from Section 1.4. We generalize the set {±1} to an arbitrary finite set Ω
of possible values that we call spins and the parity checks to an arbitrary finite collection Ψ of weight functions

Ω
k → (0,2) of some fixed arity k ≥ 2. The choice of the upper bound 2 is convenient but somewhat arbitrary as

(0,∞)-functions could just be rescaled to (0,2). But the assumption that all weight functions are strictly positive
is important to ensure that all the quantities that we introduce in the following are well-defined. There is a fixed
prior distribution p on Ψ and we write ψ for a random weight function chosen from p. We have a factor graph

G = (V ,F, (∂a)a∈F , (ψa)a∈F ) composed of a set V = {x1, . . . , xn } of variable nodes, a set F = {a1, . . . , am } of constraint
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SYM: For all σ,σ′ ∈Ω, i , i ′ ∈ [k] we have
∑

τ∈Ωk E[ψ(τ1, . . . ,τk )] · [1{τi =σ}−1{τi ′ =σ′}] = 0.
BAL: The function µ ∈P (Ω) 7→

∑

σ∈Ωk E[ψ(σ1, . . . ,σk )]
∏k

i=1 µ(σi ) is concave and attains its maximum at the
uniform distribution.

POS: For all π,π′ ∈ P
2
∗ (Ω) and for every l ≥ 2 the following is true. With µ(π)

1 ,µ(π)
2 , . . . chosen from π and

µ(π′)
1 ,µ(π′)

2 , . . . from π′ and ψ ∈Ψ chosen from p, all mutually independent, we have

E
[(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π)

j
(σ j )

)l

+ (k −1)
(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π′)

j
(σ j )

)l

−
k
∑

i=1

(

1−
∑

σ∈Ωk

ψ(σ)µ(π)
i

(σi )
∏

j∈[k]\{i}
µ(π′)

j
(σ j )

)l ]

≥ 0.

FIGURE 1. The assumptions SYM, BAL and POS.

nodes, and for each a ∈ F , an ordered k-tuple ∂a = (∂1a, . . . ,∂k a) ∈V k of neighbors and a weight function ψa ∈Ψ.
We may visualize G as a bipartite graph with edges going between variable and constraint nodes, although we keep
in mind that the neighborhoods of the constraint nodes are ordered.

Definition 2.1. Let n, m be integers and set V = {x1, . . . , xn } and F = {a1, . . . , am }. The teacher-student scheme is the

distribution on assignment/factor graph pairs induced by the following experiment.

TCH1: An assignment σ∗
n ∈Ω

V , the ground truth, is chosen uniformly at random.

TCH2: Then obtain the random factor graph G∗(n,m, p,σ∗
n ) with variable nodes V and constraint nodes F by

drawing independently for j = 1, . . . ,m the neighborhood and the weight function from the joint distribution

P
[

∂a j = (y1, . . . , yk ),ψa j
=ψ

]

= ξ−1p(ψ)ψ(σ∗
n(y1, . . . ,σ∗

n(yk )) for y1, . . . , yk ∈V , ψ ∈Ψ, where (2.1)

ξ= ξ(p) = |Ω|−k
∑

τ∈Ωk

E[ψ(τ)]. (2.2)

The idea is that a “teacher” chooses σ∗
n and sets up a random factor G∗(n,m, p,σ∗

n) such that for each constraint
node the weight function and the adjacent variable nodes are chosen from the joint distribution (2.1) induced by
the ground truth. Specifically, the probability of a weight function/variable node combination is proportional to
the prior p(ψ) times the weight ψ(σ∗

n(y1), . . . ,σ∗
n(yk )) of the corresponding spin combination under the ground

truth. The teacher hands the random factor graph G∗(n,m, p,σ∗
n), but not the ground truth itself, to an imaginary

“student”, whose task it is to infer as much information about σ∗
n as possible. Hence, the key quantity associated

with the model is the mutual information of the ground truth and the random factor graph defined as in (1.9). Let
us briefly write σ∗ =σ∗

n . Moreover, letting m = Po(dn/k) we use the shorthand G∗ =G∗(n,m, p,σ∗).
The cavity method predicts that the mutual information 1

n I (σ∗,G∗) converges to the solution of a certain sto-
chastic optimization problem. We are going to prove this conjecture under the three general conditions shown in
Figure 1. The first condition SYM requires that on the average the weight functions prefer all values σ ∈Ω the same.
Condition BAL requires that on average the weight functions do not prefer an imbalanced distribution of values
(e.g., that σ1, . . . ,σk all take the same value). The third condition POS can be viewed as a convexity assumption.
Crucially, all three assumptions can be checked solely in terms of the prior distribution p on weight functions. In
Section 4 we will see that the three assumptions hold in many important examples. These include LDGM codes
or variations thereof where the parity checks are replaced by k-SAT clauses or by graph or hypergraph q-coloring
constraints for any q ≥ 2, and thus in particular the Potts antiferromagnet.

Theorem 2.2. Assume that SYM, BAL and POS hold. With γ = Po(d), ψ1,ψ2, . . . ∈Ψ chosen from p, µ(π)
1 ,µ(π)

2 , . . .
chosen from π ∈P

2
∗(Ω) and h1,h2, . . . ∈ [k] chosen uniformly, all mutually independent, let

B(d ,π) = E

[

ξ−γ

|Ω|
Λ

(

∑

σ∈Ω

γ
∏

i=1

∑

τ∈Ωk

1{τhi
=σ}ψb(τ)

∏

j 6=hi

µ(π)
ki+ j

(τ j )

)

−
d(k −1)

kξ
Λ

(

∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ(π)

j
(τ j )

)]

. (2.3)

Then for all d > 0 we have

lim
n→∞

1

n
I (σ∗,G∗) = ln |Ω|+

d

kξ|Ω|k
∑

τ∈Ωk

E[Λ(ψ(τ))]− sup
π∈P

2
∗ (Ω)

B(d ,π).
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Theorem 1.4 follows immediately from Theorem 2.2 by verifying SYM, BAL and POS for the LDGM setup (see
Section 4.4).

Remark 2.3. The expression B(d ,π) is closely related to the “Bethe free energy” from physics [65], which is usually

written in terms of |Ω| different distributions (πω)ω∈Ω on P (Ω) rather than just a single π. But thanks to the ‘Nishi-

mori property’ (Proposition 3.2 below) we can rewrite the formula in the compact form displayed in Theorem 2.2.

2.2. Belief Propagation. We proceed to establish that the stochastic optimization problem (2.2) can be cast as the
problem of finding an optimal distribution of Belief Propagation messages on a random tree. To be precise, let
π ∈ P

2
∗ (Ω) and consider the following experiment that sets up a random tree of height two and uses π to calcu-

late a “message” emanating from the root. The construction ensures that the tree has asymptotically the same
distribution as the depth-two neighborhood of a random variable node in G∗.

BP1: The root is a variable node r that receives a uniformly random spin σ⋆(r ).
BP2: The root has a random number γ= Po(d) of constraint nodes a1, . . . , aγ as children, and independently

for each child ai the root picks a random index hi ∈ [k].
BP3: Each ai has k −1 variable nodes (xi j ) j∈[k]\{hi } as children and independently for each ai we choose a

weight function ψai
∈Ψ and spins σ⋆(xi j ) ∈Ω from the distribution

P
[

ψai
=ψ,σ⋆(xi j )=σi j

]

=
p(ψ)ψ(σi1, . . . ,σihi −1,σ⋆(r ),σihi +1, . . . ,σik )

∑

ψ′∈Ψ,τi j ∈Ω p(ψ′)ψ(τi1, . . . ,τihi −1,σ⋆(r ),τihi +1, . . . ,τik )
.

BP4: For each xi j independently choose µxi j
∈P (Ω) from the distribution |Ω|µ(σ⋆(xi j ))dπ(µ).

BP5: Finally, obtain µr via the Belief Propagation equations:

µai
(σhi

) =
∑

τ∈Ωk

1{τhi
=σhi

}ψai
(τ)

∏

j 6=hi

µxi j
(τ j ), µr (σ) =

∏γ

i=1 µai
(σ)

∑

τ∈Ω
∏γ

i=1 µai
(τ)

.

Let Td (π) be the distribution (over all the random choices in BP1–BP4) of µr and let

P
2
fix(d) = {π ∈P

2
∗(Ω) : Td (π) =π}.

The stochastic fixed point problem Td (π) =π is known as the density evolution equation in physics [65].

Theorem 2.4. If SYM, BAL and POS hold, then supπ∈P
2
∗ (Ω) B(d ,π) = supπ∈P

2
fix(d) B(d ,π).

Theorem 2.2 reduces a question about an infinite sequence of random factor graphs, one for each n, to a single sto-
chastic optimization problem, thereby verifying the key assertion of the replica symmetric cavity method. Further,
Theorem 2.4 shows that this optimization problem can be viewed as the task of finding the dominant Belief Prop-
agation fixed point on a Galton-Watson tree. Extracting further explicit information (say, an approximation of the
mutual information to seven decimal places or an asymptotic formula) will require application-specific consider-
ations. But there are standard techniques available for studying stochastic fixed point equations analytically (such
as the contraction method [78]) as well as the numerical ‘population dynamics’ heuristic [65]. Since B(d ,π) will
occur in Theorems 2.6 and 2.7 as well, Theorem 2.4 implies that those results can be phrased in terms of P

2
fix(d).

2.3. The information-theoretic threshold. The teacher-student scheme immediately gives rise to the following
question: does the factor graph G∗ reveal any discernible trace of the ground truth at all? To answer this question,
we should compare G∗ with a “purely random” null model. This model is easily defined.

Definition 2.5. With Ω, p,V = {x1, . . . , xn } and F = {a1, . . . , am} as before, obtain G(n,m, p) by performing the follow-

ing for every constraint a j independently: choose ∂a j ∈ V k uniformly and independently sample ψa j
∈Ψ from p.

With m = Po(dn/k) we abbreviate G =G(n,m, p).

But what corresponds to the ground truth in this null model? Any factor graph G induces a distribution on the
set of assignments called the Gibbs measure, defined by

µG (σ)=
ψG (σ)

Z (G)
where ψG (σ) =

∏

a∈F

ψa (σ(∂1a), . . . ,σ(∂k a)) for σ ∈Ω
V and Z (G)=

∑

τ∈ΩV

ψG (τ). (2.4)

Thus, the probability of σ is proportional to the product of the weights that the constraint nodes assign to σ.
Thinking of µG as the “posterior distribution” of the (actual or fictitious) ground truth given G and writing σ=σG
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for a sample from µG , we quantify the distance of the distributions (G∗,σ∗) and (G,σG ) by the Kullback-Leibler

divergence

DKL
(

G∗,σ∗‖G ,σG

)

=
∑

G ,σ
P

[

G∗ =G,σ∗ =σ
]

ln
P[G∗ =G,σ∗ =σ]

P[G =G,σG =σ]
.

While it might be possible that DKL (G∗,σ∗‖G,σG ) = o(n) for small d , G∗ should evince an imprint of σ∗ for large
enough d , and thus we should have DKL (G∗,σ∗‖G ,σG ) = Ω(n). The following theorem pinpoints the precise
information-theoretic threshold at which this occurs. Recall B(d ,π) from Theorem 2.2.

Theorem 2.6. Suppose that p,Ψ satisfy SYM, BAL and POS and let

dinf = inf
{

d > 0 : supπ∈P
2
∗ (Ω) B(d ,π) > (1−d) ln |Ω|+ d

k ln
∑

σ∈Ωk E[ψ(σ)]
}

.

Then

lim
n→∞

1

n
DKL

(

G∗,σ∗‖G ,σG

)

= 0 if d < dinf, (2.5)

liminf
n→∞

1

n
DKL

(

G∗,σ∗‖G ,σG

)

> 0 if d > dinf.

The first scenario (2.5) provides an extension of the “quiet planting” method from [3, 53] to the maximum possible
range of d . This argument has been used in order to investigate aspects such as the spatial mixing properties of
the “plain” random factor graph model G by way of the model G∗. Moreover, Theorem 2.6 casts light on statistical
inference problems, and in Section 4.2 we will see how Theorem 1.3 follows from Theorem 2.6.

2.4. The condensation phase transition. The “null model” G from Theorem 2.6 is actually a fairly general version
of random graph models that have been studied extensively in their own right in physics (as “diluted mean-field
models”) as well as in combinatorics. The key quantity associated with such a model is −E[ln Z (G)], the free energy.
Unfortunately, computing the free energy can be fiendishly difficult due to the log inside the expectation. By
contrast, calculating E[Z (G(n,m, p))] is straightforward: the assumption BAL and a simple application of Stirling’s
formula yield

ln E[Z (G(n,m, p))]= n ln |Ω|+m ln
∑

σ∈Ωk

E[ψ(σ)]

|Ω|k
+o(n+m).

As Jensen’s inequality implies E[ln Z (G(n,m, p))]≤ ln E[Z (G(n,m, p))], we obtain the first moment bound:

−
1

n
E[ln Z (G)]≥ (d −1) ln |Ω|−

d

k
ln

∑

σ∈Ωk

E[ψ(σ)]+o(1) for all d > 0. (2.6)

For many important examples (2.6) is satisfied with equality for small enough d > 0 (say, below the giant com-
ponent threshold; cf. Section 1.1). Indeed, a great amount of rigorous work effectively deals with estimating the
largest d for which (2.6) is tight in specific models (e.g., [5, 6, 8, 9, 19, 47]). The second moment method pro-
vides a sufficient condition: if d is such that E[Z (G)2] = O(E[Z (G)]2), then (2.6) holds with equality. However, this
condition is neither necessary nor easy to check. But the precise answer follows from Theorem 2.6.

Theorem 2.7. Suppose that p,Ψ satisfy SYM, BAL and POS. Then

lim
n→∞

−
1

n
E[ln Z (G)]= (d −1) ln |Ω|−

d

k
ln

∑

σ∈Ωk

E[ψ(σ)] for all d < dinf,

limsup
n→∞

−
1

n
E[ln Z (G)]< (d −1) ln |Ω|−

d

k
ln

∑

σ∈Ωk

E[ψ(σ)] for all d > dinf.

Clearly, the function

d ∈ (0,∞) 7→ (d −1) ln |Ω|−
d

k
ln

∑

σ∈Ωk

E[ψ(σ)]

is analytic. Thus, if dinf > 0, then either limn→∞− 1
n

E[ln Z (G)] does not exist in a neighborhood of dinf or the func-

tion d 7→ limn→∞− 1
n

E[ln Z (G)] is non-analytic at dinf. Hence, verifying an important prediction from [54], The-
orem 2.7 shows that if dinf > 0, then a phase transition occurs at dinf, called the condensation phase transition in
physics.
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In Sections 4.1 and 4.3 we will derive Theorems 1.1 and 1.2 from Theorem 2.7. While the proving Theorem 1.1
from Theorem 2.7 is fairly straightforward, Theorem 1.2 requires a bit of work. This is because Theorem 2.7 as-
sumes that all weight functions ψ ∈ Ψ are strictly positive, which precludes hard constraints like in the graph
coloring problem. Nonetheless, in Section 4.3 we show that these hard constraints, corresponding to β = ∞ in
(1.1), can be dealt with by considering the Potts antiferromagnet for finite values of β and taking the limit β→∞.
We expect that this argument will find other applications.

2.5. Discussion and related work. Theorems 2.2, 2.6 and 2.7 establish the physics predictions under modest as-
sumptions that only refer to the prior distribution of the weight functions, i.e., the ‘syntactic’ definition of the
model. The proofs provide a conceptual vindication of the replica symmetric version of the cavity method.

Previously the validity of the physics formulas was known in any generality only under the assumption that
the factor graph models satisfies the Gibbs uniqueness condition, a very strong spatial mixing assumption [17,
32, 35, 37]. Gibbs uniqueness typically only holds for very small values of d . Additionally, under weaker spatial
mixing conditions it was known that the free energy in random graph models is given by some Belief Propagation
fixed point [31, 37]. However, there may be infinitely many fixed points, and it was not generally known that the
correct one is the maximizer of the functional B(d , ·). In effect, it was not possible to derive the formula the free
energy or, equivalently, the mutual information, from such results. Specifically, in the case of the teacher-student
scheme Montanari [73] proved (under certain assumptions) that the Gibbs marginals of G∗ correspond to a Belief
Propagation fixed point as in Section 2.2, whereas Theorem 2.4 identifies the particular fixed point that maximizes
the functional B(d , ·) as the relevant one.

Yet the predictions of the replica symmetric cavity method have been verified in several specific examples. The
first ones were the ferromagnetic Ising/Potts model [36, 37], where the proofs exploit model-specific monotonic-
ity/contraction properties. More recently, the ingenious spatial coupling technique has been used to prove replica
symmetric predictions in several important cases, including low-density parity check codes [46]. Indeed, spa-
tial coupling provides an alternative probabilistic construction of, e.g., codes with excellent algorithmic proper-
ties [56]. Yet the method falls short of providing a wholesale justification of the cavity method as a potentially sub-
stantial amount of individual ingredients is required for each application (such as problem-specific algorithms [4]).

Subsequently to the posting of a first version of this paper on arXiv, and independently, Lelarge and Miolane [58]
posted a paper on recovering a low rank matrix under a perturbation with Gaussian noise. They use some simi-
lar ingredients as we do to prove an upper bound on the mutual information matching the lower bound of [55].
This setting is conceptually simpler as the infinite-dimensional stochastic optimization problem reduces to a one-
dimensional optimization problem due to central limit theorem-type behavior in the dense graph setting.

The random factor graph models that we consider in the present paper are of Erdős-Rényi type, i.e., the con-
straint nodes choose their adjacent variable nodes independently. In effect, the variable degrees are asymptotically
Poisson with mean d . While such models are very natural, models with given variable degree distributions are of
interest in some applications, such as error-correcting codes (e.g. [72]). Although we expect that the present meth-
ods extend to models with (reasonable) given degree distributions, here we confine ourselves to the Poisson case
for the sake of clarity. Similarly, the assumptions BAL, SYM and POS, and the strict positivity of the constraint
functions strike a balance between generality and convenience. While these conditions hold in many cases of in-
terest, BAL fails for the ferromagnetic Potts model, which is why Theorem 1.3 does not cover the assortative block
model. Anyhow BAL, SYM and POS are (probably) not strictly necessary for our results to hold and our methods
to go through, a point that we leave to future work.

A further open problem is to provide a rigorous justification of the more intricate ‘replica symmetry breaking’
(1RSB) version of the cavity method. The 1RSB version appears to be necessary to pinpoint, e.g., the k-SAT or q-
colorability thresholds for k ≥ 3, q ≥ 3 respectively. Currently there are but a very few examples where predictions
from the 1RSB cavity method have been established rigorously [39, 40, 83], the most prominent one being the proof
of the k-SAT conjecture for large k [41]. That said, the upshot of the present paper is that for teacher-student-type
problems as well as for the purpose of finding the condensation threshold, the replica symmetric cavity method is
provably sufficient.

Additionally, the “full replica symmetry breaking” prediction has been established rigorously in the Sherrington-
Kirkpatrick model on the complete graph [84]. Subsequently Panchenko [79] proposed a different proof that com-
bines the interpolation method with the so-called ‘Aizenman-Sims-Starr’ scheme, an approach that he attempted
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to extend to sparse random graph models [80]. We will apply the interpolation method and the Aizenman-Sims-
Starr scheme as well, but crucially exploit that the connection with the statistical inference formulation of random
factor graph models adds substantial power to these arguments.

2.6. Preliminaries and notation. Throughout the paper we let Ω be a finite set of ‘spins’ and fix an integer k ≥ 2.
Moreover, let V = Vn = {x1, . . . , xn } and Fm = {a1, . . . , am } be sets of variable and constraint nodes and we write σ∗

n

for a uniformly random map Vn → Ω. Further, m = md = md (n) denotes a random variable with distribution
Po(dn/k).

The O( ·)-notation refers to the limit n →∞ by default. In addition to the usual symbols O( ·), o( ·), Ω( ·), Θ( ·)
we use Õ( ·) to hide logarithmic factors. Thus, we write f (n) = Õ(g (n)) if there is c > 0 such that for large enough
n we have | f (n)| ≤ g (n) lnc n. Furthermore, if (En)n is a sequence of events, then (En)n holds with high probability

(‘w.h.p.’) if limn→∞ P[En] = 1.
Let (µn)n , (νn )n be sequences of probability distributions on measurable spaces (Xn)n . We call (µn)n contiguous

with respect to (νn)n if for any ε > 0 there exist δ > 0 and n0 > 0 such that for all n > n0 for every event En on Ωn

with νn(En ) < δ we have µn(En) < ε. The sequences (µn)n , (νn )n are mutually contiguous if (µn)n is contiguous
w.r.t. (νn)n and (νn )n is contiguous w.r.t. (µn)n .

If X ,Y are finite sets and σ : X → Y is a map, then we write λσ ∈P (Y ) for the empirical distribution of σ. That is,
for any y ∈ Y we let λσ(y) = |σ−1(y)|/|Y |. Moreover, for assignments σ,τ : X → Y we let σ△τ= {x ∈ X :σ(x) 6= τ(x)}.

When defining probability distributions we use the ∝-symbol to signify the required normalization. Thus, we
use P[X = x] ∝ qx for all x ∈ X as shorthand for P[X = x] = qx /

∑

y∈X qy for all x ∈ X , provided that
∑

y∈X qy > 0.
If

∑

y∈X qy = 0 the ∝-symbol defines the uniform distribution on X .
Suppose that X is a finite set. Given a probability distribution µ on X

n we write σµ,σ1,µ,σ2,µ, . . . for indepen-
dent samples fromµ. Where µ is apparent from the context we drop it from the notation. Further, we write 〈X (σ)〉µ
for the average of a random variable X : X n → R with respect to µ. Thus, 〈X (σ)〉µ =

∑

σ∈X n X (σ)µ(σ). Similarly, if

X : (X n)l →R, then

〈X (σ1, . . . ,σl )〉µ =
∑

σ1 ,...,σl ∈X n

X (σ1, . . . ,σl )
l

∏

j=1
µ(σ j ).

If µ=µG is the Gibbs measure induced by a factor graph G, then we use the abbreviation 〈· 〉G = 〈·〉µG
.

If X , I are finite sets, µ ∈ P (X I ) is a probability measure and i ∈ I , then we write µi for the marginal dis-
tribution of the i -coordinate. That is, µi (ω) =

∑

σ:I→X 1{σ(i ) = ω}µ(σ) for any ω ∈ X . Similarly, if J ⊂ I , then
µJ (ω) =

∑

σ:I→X 1{σ|J = ω}µ(σ) for any ω : J → X denotes the joint marginal distribution of the coordinates J . If
J = {i1, . . . , il } we briefly write µi1 ,...,il

rather than µ{i1 ,...,il }. Further, a measure ν ∈P (X I ) is ε-symmetric if
∑

i , j∈I

∥

∥νi , j −νi ⊗ν j

∥

∥

TV < ε|I |2 .

More generally, ν is (ε, l)-symmetric if
∑

i1 ,...,il ∈I

∥

∥µi1 ,...,il
−µi1 ⊗·· ·⊗µil

∥

∥

TV < ε|I |l .

Crucially, in the following lemma ε depends on δ, l ,X only, but not on µ or I .

Lemma 2.8 ([17]). For any X 6= ;, l ≥ 3, δ> 0 there is ε> 0 such that for all I of size |I | > 1/ε the following is true.

If µ ∈P (X I ) is ε-symmetric, then µ is (δ, l)-symmetric.

The total variation norm is denoted by ‖·‖TV. Furthermore, for a finite set X we identify the space P (X ) of
probability distributions on X with the standard simplex in R

X and endow P (X ) with the induced topology and
Borel algebra. The space P

2(X ) of probability measures on P (X ) carries the topology of weak convergence. Thus,
P

2(X ) is a compact Polish space. So is the closed subset P
2
∗(X ) of measures π ∈ P

2(X ) whose mean
∫

µdπ(µ)
is the uniform distribution on X . We use the W1 Wasserstein distance, denoted by W1( · , ·), to metrize the weak
topology on P

2
∗ (X ) [21, 85]. In particular, recalling B(d , ·) from (2.3) and Td ( ·) from Section 2.2, we observe

Lemma 2.9. The map π ∈P
2(Ω) 7→Td (π) and the functional π ∈P

2(Ω) 7→B(d ,π) are continuous.

Proof. We prove this for Td (π), the proof for B(d ,π) is similar. We need to show that for every ε> 0, there is δ> 0 so
that if W1(π1,π2) < δ, then W1(Td (π1),Td (π2)) < ε. Let Td ,γ≤M (π) be the output distribution of Td ( ·) conditioned
on the event that γ ≤ M . For any fixed M , Td ,γ≤M (π) is a continuous function of π in the weak topology as it
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is the composition of a continuous function and and a product distribution on at most M independent samples
from π. Now given ε, choose M large enough that P[γ> M] < ε/2, and δ small enough that W1(π1,π2) < δ implies
W1(Td ,γ≤M (π1),Td ,γ≤M (π2)) < ε/2. Then W1(Td (π1),Td (π2)) ≤W1(Td ,γ≤M (π1),Td ,γ≤M (π2))+P[γ> M] < ε. �

Furthermore, for a measure µ ∈P (X ) we denote by δµ ∈P
2(X ) the Dirac measure on µ.

Proposition 2.10 (Glivenko–Cantelli Theorem, e.g. [82, Chapter 11]). For any finite set Ω, there is a sequence εK → 0
as K →∞ so that the following is true. Let µ1,µ2, · · · ∈ P (Ω) be independent samples from π ∈P

2(Ω) and form the

empirical marginal distribution

µK =
1

K

K
∑

i=1
δµi

.

Then E[W1(π,µK )]≤ εK .

Suppose that (E ,µ) is a probability space and that X ,Y are random variables on (E ,µ) with values in a finite set
X . We recall that the mutual information of X ,Y is

I (X ,Y ) =
∑

x,y∈X

µ(X = x,Y = y) ln
µ(X = x,Y = y)

µ(X = x)µ(Y = y)
,

with the usual convention that 0ln 0
0 = 0, 0ln 0 = 0. Moreover, the mutual information of X ,Y given a third X -

valued random variable W is defined as

I (X ,Y |W ) =
∑

x,y,w∈X

µ(X = x,Y = y,W = w) ln
µ(X = x,Y = y |W = w)

µ(X = x|W = w)µ(Y = y |W = w)
.

Furthermore, we recall the entropy and the conditional entropy:

H(X ) =−
∑

x∈X

µ(X = x) lnµ(X = x), H(X |Y ) =−
∑

x,y∈X

µ(X = x,Y = y) lnµ(X = x|Y = y).

Viewing (X ,Y ) as a X ×X -valued random variable, we have the chain rule

H(X ,Y ) = H(X )+H(Y |X ).

Analogously, for µ ∈P (X ) we write H(µ) =−
∑

x∈X µ(x) lnµ(x).
The Kullback-Leibler divergence between two probability measures µ,ν on a finite set X is

DKL
(

µ‖ν
)

=
∑

σ∈X

µ(σ) ln
µ(σ)

ν(σ)
.

Finally, we recall Pinsker’s inequality: for any two probability measures µ,ν ∈P (X ) we have
∥

∥µ−ν
∥

∥

TV ≤
√

DKL
(

µ‖ν
)

/2 (2.7)

3. THE REPLICA SYMMETRIC SOLUTION

In this section we prove Theorems 2.2, 2.4, 2.6 and 2.7. The proofs of Theorems 1.1–1.4 follow in Section 4, along
with a few other applications.

3.1. Overview. To prove Theorem 2.2 we will provide a rigorous foundation for the “replica symmetric calcula-
tions” that physicists wanted to do (and have been doing) all along. To this end we adapt, extend and generalize
various ideas from prior work, some of them relatively simple, some of them quite recent and not simple at all,
and develop several new arguments. But in a sense the main achievement lies in the interplay of these compo-
nents, i.e., how the individual cogs assemble into a functioning clockwork. Putting most details off to the following
subsections, here we outline the proof strategy. We focus on Theorem 2.2, from which we subsequently derive
Theorem 2.6 and Theorem 2.7 in Section 3.5. Theorem 2.4 also follows from Theorem 2.2 but the proof requires
additional arguments, which can be found in Section 3.6.

The first main ingredient to the proof of Theorem 2.2 is a reweighted version of the teacher-student scheme that
enables us to identify the ground truth with a sample from the Gibbs measure of the factor graph; this identity is
an exact version of the “Nishimori property” from physics. The Nishimori property facilitates the use of a general
lemma (Lemma 3.5 below) that shows that a slight perturbation of the factor graph induces a correlation decay
property called “static replica symmetry” in physics without significantly altering the mutual information; due to

11



its great generality Lemma 3.5 should be of independent interest. Having thus paved the way, we derive a lower
bound on the mutual information via the so-called ‘Aizenman-Sims-Starr’ scheme. This comes down to estimating
the change in mutual information if we go from a model with n variable nodes to one with n +1 variable nodes.
The proof of the matching upper bound is based on a delicate application of the interpolation method.

3.1.1. The Nishimori property. The Gibbs measure µG of the factor graph G from (2.4) provides a proxy for the
“posterior distribution” of the ground truth given the graph G. While we will see that this is accurate in the asymp-
totic sense of mutual contiguity, the assumptions BAL, SYM and POS do not guarantee that the Gibbs measure µG∗

is the exact posterior distribution of the ground truth. This is an important point for us because the calculation of
the mutual information relies on subtle coupling arguments. Hence, in order to hit the nail on the head exactly, we
introduce a reweighted version of the teacher-student scheme in which the Gibbs measure coincides with the pos-
terior distribution for all n. Specifically, instead of the uniformly random ground truth σ∗

n we consider a random
assignment σ̂n,m,p chosen from the distribution

P
[

σ̂n,m,p =σ
]

=
E[ψG(n,m,p)(σ)]

E[Z (G(n,m, p))]
(σ ∈Ω

V ). (3.1)

Thus, the probability of an assignment is proportional to its average weight. Further, any specific “ground truth” σ
induces a random factor graph G∗(n,m, p,σ) with distribution

P
[

G∗(n,m, p,σ) ∈A
]

=
E

[

ψG(n,m,p)(σ)1{G(n,m, p) ∈A }
]

E[ψG(n,m,p)(σ)]
for any event A . (3.2)

In words, the probability that a specific graph G comes up is proportional to ψG (σ).

Fact 3.1. For any n,m, p,σ the distribution (3.2) coincides with the distribution from Definition 2.1 given σ∗ =σ.

Proof. Consider a specific factor graph G with constraint nodes a1, . . . , am . Since the constraint nodes of the ran-
dom factor graph G(n,m, p) are chosen independently (cf. Definition 2.5), we have

ψG (σ)

E[ψG(n,m,p)(σ)]
=

m
∏

j=1

ψa j
(σ(∂1a j ), . . . ,σ(∂k a j ))

∑

ψ∈Ψ
∑n

h1 ,...,hk=1 p(ψ)ψ(σ(xh1 ), . . . ,σ(xhk
))

. (3.3)

Since the experiment from Definition 2.1 generates the constraint nodes a1, . . . , am independently, the probability
of obtaining the specific graph G equals the r.h.s. of (3.3). �

Additionally, consider the random factor graph Ĝ(n,m, p) defined by

P
[

Ĝ(n,m, p) ∈A
]

=
E[Z (G(n,m, p))1{G(n,m, p) ∈A }]

E[Z (G(n,m, p))]
for any event A , (3.4)

which means that we reweigh G(n,m, p) according to the partition function. Finally, recalling that m = Po(dn/k),
we introduce the shorthand σ̂= σ̂n,m,p , G∗(σ̂)=G∗(n,m, p,σ̂n,m,p ) and Ĝ = Ĝ(n,m, p).

Proposition 3.2. For all factor graph/assignment pairs (G,σ) we have

P
[

σ̂=σ,G∗(σ̂) =G
]

= P
[

Ĝ =G
]

µG (σ). (3.5)

Moreover, BAL and SYM imply that σ̂ and the uniformly random assignment σ∗ are mutually contiguous.

In words, (3.5) provides that the distributions on assignment/factor graph pairs induced by the following two
experiments are identical.

(i) Choose σ̂, then choose G∗(σ̂).
(ii) Choose Ĝ , then choose σĜ from µĜ .

In particular, the conditional distribution of σ̂ given just the factor graph G∗(σ̂) coincides with the Gibbs mea-
sure of G∗(σ̂). This can be interpreted as an exact, non-asymptotic version of what physicists call the Nishimori
property (cf. [86]). Although (σ̂,G∗(σ̂)) and (σ∗,G∗) are not generally identical, the contiguity statement from
Proposition 3.2 ensures that both are equivalent as far as “with high probability”-statements are concerned. The
proof of Proposition 3.2 can be found in Section 3.2.

To proceed, we observe that the free energy of the random factor graph is tightly concentrated.
12



Lemma 3.3. There is C =C (d ,Ψ) > 0 such that

P
[

| ln Z (Ĝ)−Eln Z (Ĝ)| > tn
]

≤ 2exp(−t 2n/C ) for all t > 0. (3.6)

The same holds with Ĝ replaced by G∗(σ̂), G∗(σ∗) or G. Moreover,

E[ln Z (Ĝ)] = E[ln Z (G∗(σ∗))]+o(n). (3.7)

Proof. Because all weight functions ψ ∈Ψ are strictly positive, (3.6) is immediate from Azuma’s inequality. More-
over, since Ĝ and G∗(σ̂) are identically distributed and σ̂ and σ∗ are mutually contiguous by Proposition 3.2, Ĝ

and G∗(σ∗) are mutually contiguous as well. Therefore, (3.7) follows from (3.6). �

The following statement, which is an easy consequence of Proposition 3.2, reduces the task of computing I (σ∗,G∗)
to that of calculating the free energy −E[ln Z (Ĝ)] of the reweighted model Ĝ.

Lemma 3.4. We have

I (σ̂,G∗(σ̂)) =−E[ln Z (Ĝ)]+
dn

kξ|Ω|k
∑

τ∈Ωk

E[Λ(ψ(τ))]+n ln |Ω|+o(n), (3.8)

I (σ∗,G∗(σ∗)) =−E[ln Z (Ĝ)]+
dn

kξ|Ω|k
∑

τ∈Ωk

E[Λ(ψ(τ))]+n ln |Ω|+o(n). (3.9)

Proof. Proposition 3.2 implies that

I (σ̂,G∗(σ̂)) =
∑

Ĝ

P
[

Ĝ = Ĝ
]
∑

σ
µĜ (σ) ln

µĜ (σ)

P[σ̂=σ]
= H(σ̂)−E[H(µĜ )]. (3.10)

Further, since σ̂ and the uniformly random σ∗ are mutually contiguous, we have

H(σ̂) = n ln |Ω|+o(n). (3.11)

Moreover, for any factor graph G we have

H(µG ) =−
∑

σ
µG (σ) lnµG (σ)=−

∑

σ

ψG (σ)

Z (G)
ln

ψG (σ)

Z (G)
= ln Z (G)−

〈

lnψG (σG )
〉

G (3.12)

and Proposition 3.2 shows that E
〈

lnψĜ (σĜ )
〉

Ĝ
= E[lnψG∗(σ̂)(σ̂)]. Since σ̂ and σ∗ are mutually contiguous by

Proposition 3.2, we see that |σ̂(ω)| ∼ n/|Ω| for all ω ∈Ω w.h.p. In addition, the construction (2.1) of G∗(σ̂) is such
that the individual constraint nodes a1, . . . , am are chosen independently. Therefore, (2.1) yields

E
〈

lnψĜ (σĜ )
〉

Ĝ
=

dn

k
E

[

ψa1 (σ̂)
]

+o(n) =
dn

kξ|Ω|k
∑

τ∈Ωk ,ψ∈Ψ
p(ψ)ψ(τ) lnψ(τ) =

dn

kξ|Ω|k
∑

τ∈Ωk

E[Λ(ψ(τ))]. (3.13)

Combining (3.10)–(3.13) completes the proof of (3.8). Applying the same steps to (σ∗,G∗(σ∗)) yields (3.9). �

3.1.2. Symmetry and pinning. Hence, we are left to calculate −E[ln Z (Ĝ)]. Of course, computing ln Z (G) for a
given G is generally a daunting task. The plain reason is the existence of correlations between the spins assigned to
different variable nodes. To see this, write σG for a sample drawn from µG . If we fix two variable nodes xh , xi that
are adjacent to the same constraint node a j , then in all but the very simplest examples the spins σG (xh ),σG (xi )
will be correlated because ψa j

‘prefers’ certain spin combinations over others. By extension, correlations persists
if xh , xi are at any bounded distance. But what if we choose a pair of variable nodes (x , y) ∈ V ×V uniformly at
random? If G is of bounded average degree, then the distance of x , y will typically be as large as Ω(ln |V |). Hence,
we may hope that σG (x),σG (y) are ‘asymptotically independent’. Formally, let µG ,x be the marginal distribution of
σG (x) and µG ,x,y the distribution of (σG (x),σG (y)). Then we may hope that for a small ε> 0,

1

|V |2
∑

x,y∈V

∥

∥µG ,x,y −µG ,x ⊗µG ,y
∥

∥

TV < ε. (3.14)

In the terminology from Section 2.6, (3.14) expresses that µG is ε-symmetric.
The replica symmetric cavity method provides a heuristic for calculating the free energy of random factor graph

where (3.14) is satisfied w.h.p. for some ε= ε(n) that tends to 0 as n →∞. But from a rigorous viewpoint two chal-
lenges arise. First, for a given random factor graph model, how can we possibly verify that ε-symmetry holds w.h.p.?
Second, even granted ε-symmetry, how are we going to beat a rigorous path from the innocent-looking condition
(3.14) to the mildly awe-inspiring stochastic optimization problems predicted by the physics calculations?
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The following very general lemma is going to resolve the first challenge for us. Instead of providing a way of
checking, the lemma shows that a slight random perturbation likely precipitates ε-symmetry.

Lemma 3.5. For any ε> 0 there is T = T (ε,Ω) > 0 such that for every n > T and every probability measureµ ∈P (Ωn)
the following is true. Obtain a random probability measure µ̌ ∈P (Ωn) as follows.

Draw a sample σ̌ ∈Ω
n fromµ, independently choose a number θ ∈ (0,T ) uniformly at random, then

obtain a random set U ⊂ [n] by including each i ∈ [n] with probability θ/n independently and let

µ̌(σ) =
µ(σ)1{∀i ∈U :σi = σ̌i }

µ({τ ∈Ωn : ∀i ∈U : τi = σ̌i })
(σ ∈Ω

n ).

Then µ̌ is ε-symmetric with probability at least 1−ε.

In words, take any distribution µ on Ω
n that may or may not be ε-symmetric. Then, draw one single sample

σ̌ from µ and obtain µ̌ by “pinning” a typically bounded number of coordinates U to the particular spin values
observed under σ̌. Then the perturbed measure µ̌ is likely ε-symmetric. (Observe that µ̌ is well-defined because
µ({τ ∈Ω

n : ∀i ∈ U : τi = σ̌i }) ≥ µ(σ̌) > 0.) Lemma 3.5 is a generalization of a result of Montanari [73, Lemma 3.1]
and the proof is by extension of the ingenious information-theoretic argument from [73], parts of which go back
to [61, 63, 64]. The proof of Lemma 3.5 can be found in Section 3.7.

Proposition 3.2 and Lemma 3.5 fit together marvelously. Indeed, the apparent issue with Lemma 3.5 is that we
need access to a pristine sample σ̌. But Proposition 3.2 implies that we can replace σ̌ by the “ground truth” σ̂.

3.1.3. The free energy. The computation of the free energy proceeds in two steps. In Section 3.3 we prove that the
stochastic optimization problem yields a lower bound.

Proposition 3.6. If SYM and BAL hold, then liminfn→∞− 1
n

Eln Z (Ĝ) ≥−supπ∈P
2
∗ (Ω) B(d ,π).

To prove Proposition 3.6 we use the Aizenman-Sims-Starr scheme [10]. This is nothing but the elementary obser-
vation that we can compute −E[ln Z (Ĝ)] by calculating the difference between the free energy of a random factor
graph with n+1 variable nodes and one with n variable nodes. To this end we use a coupling argument. Roughly
speaking, the coupling is such that the bigger factor graph is obtained from the smaller one by adding one variable
node xn+1 along with a few adjacent random constraint nodes b1, . . . ,bγ. (Actually we also need to delete a few
constraint nodes from the smaller graph, see Section 3.3.) To track the impact of these changes, we apply pinning
to the smaller factor graph to ensure ε-symmetry. The variable nodes adjacent to b1, . . . ,bγ are “sufficiently ran-
dom” and γ is typically bounded. Therefore, we can use ε-symmetry in conjunction with Lemma 2.8 to express the
expected change in the free energy in terms of the empirical distribution ρn of the Gibbs marginals of the smaller
graph. By comparison to prior work such as [32, 80] that also used the Aizenman-Sims-Starr scheme, a delicate
point here is that we need to verify that ρn satisfies an invariance property that mirrors the Nishimori property
(Lemma 3.17 below). With Lemmas 2.8 and 3.5 and the invariance property in place, we obtain the change in the
free energy by following the steps of the previously non-rigorous Belief Propagation computations, unabridged.
The result works out to be −B(d ,ρn ), whence Proposition 3.6 follows. The details can be found in Section 3.3.

The third assumption POS is needed in the proof of the upper bound only.

Proposition 3.7. If SYM, BAL and POS hold, then limsupn→∞− 1
n

Eln Z (Ĝ) ≤−supπ∈P
2
∗ (Ω) B(d ,π).

We prove Proposition 3.7 via the interpolation method, originally developed by Guerra in order to investigate the
Sherrington-Kirkpatrick model [49]. Given π ∈P

2
∗ (Ω), the basic idea is to set up a family of factor graphs (Ĝ t )t∈[0,1]

such that Ĝ = Ĝ1 is the original model and such that Ĝ 0 decomposes into connected components that each contain
exactly one variable node. In effect, the free energy of Ĝ0 is computed easily. The result is −B(d ,π). Therefore, the
key task is to show that the derivative of the free energy is non-positive for all t ∈ (0,1). The interpolation scheme
that we use is an adaptation of the one of Panchenko and Talagrand [81] to the teacher-student scheme. A crucial
feature of the construction is that the distributional identity from Proposition 3.2 remains valid for all t ∈ [0,1].
Together with a coupling argument this enables us to apply pinning to the intermediate models for t ∈ (0,1) and
thus to deduce the negativity of the derivative from as modest an assumption as POS. The details are carried out
in Section 3.4.

Theorem 2.2 is immediate from Propositions 3.2, 3.6 and 3.7 and (3.9). We prove Propositions 3.2, 3.6 and 3.7 in
Section 3.2–3.4. Theorem 2.6 follows from Theorem 2.2 and a subtle (but brief) second moment argument that can
be found in Section 3.5. The proof of Theorem 2.7 is also contained in Section 3.5. Finally, the proof of Theorem 2.4
comes in Section 3.6.
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3.2. The Nishimori property. In this section we prove Proposition 3.2. Actually we will formulate and prove a gen-
eralized version to facilitate the interpolation argument in Section 3.4. To define the corresponding more general
factor graph model, let k ≥ 2 be an integer and let Ψ be a (possibly infinite) set of weight functions ψ : Ωkψ → (0,2)
where kψ ∈ [k] is an integer. Thus, the weight functions may have different arities, but all arities are bounded by
k. Since each function ψ can be viewed as a point in the |Ω|kψ-dimensional Euclidean space, the Borel algebra
induces a σ-algebra on Ψ. Let p be a probability measure defined on this σ-algebra and let ψ ∈ Ψ be a sample
from p. The conditions BAL and SYM extend without further ado.

Define the random factor graph model G(n,m, p) with variable nodes V = {x1, . . . , xn } and constraint nodes
F = {a1, . . . , am} by choosing for each i ∈ [m] independently a weight function ψai

from p and a neighborhood ∂ai

consisting of kψai
variable nodes chosen uniformly, mutually independently and independently of ψai

. Formally,
we view G(n,m, p) as consisting of a discrete neighborhood structure and an m-tuple of weight functions. Let
G (n,m, p) be the measurable space consisting of all possible outcomes endowed with the corresponding product
σ-algebra.

Any G ∈ G (n,m, p) induces a Gibbs measure µG defined via (2.4). Moreover, the model G(n,m, p) induces a
distribution σ̂n,m,p on assignments, a reweighted distribution Ĝ(n,m, p) on factor graphs and for each assignment
σ a distribution G∗(n,m, p,σ) on factor graphs via the formulas (3.1)–(3.4). In particular, we have the following
extension of Fact 3.1.

Fact 3.8. The graph G∗(n,m, p,σ) is distributed as follows. For all j ∈ [m], l ∈ [k], i1, . . . , ik ∈ [n] and any event

A ⊂Ψ we have

P
[

kψa j
= l ,ψa j

∈A ,∂a j = (xi1 , . . . , xil
)
]

=
E

[

1{kψ = l ,ψ ∈A }ψ(σ(xi1 ), . . . ,σ(xil
))

]

∑k
l=1

∑n
h1 ,...,hl =1 E

[

1{kψ = l}ψ(σ(xh1 ), . . . ,σ(xhl
))

]

and the m pairs (ψa j
,∂a j ) j∈[m] are mutually independent.

Additionally, we consider an enhanced version of these distributions where a few variables are pinned to specific
spins. More precisely, for a set U ⊂V = {x1, . . . , xn }, an assignment σ̌ ∈Ω

U and a factor graph G let GU ,σ̌ be the factor
graph obtained from G by adding unary constraint nodes αx with ∂αx = x and ψαx (σ) = 1{σ = σ̌(x)} for all x ∈U .
In contrast to all the weight functions from Ψ, the unary weight functions ψαx are {0,1}-valued. The total weight
function, partition function and Gibbs measure of GU ,σ̌ relate to those of the underlying G as follows:

ψGU ,σ̌ (σ) =ψG (σ)
∏

x∈U

1{σ(x) = σ̌(x)}, Z (GU ,σ̌) = Z (G)

〈

∏

x∈U

1{σ(x) = σ̌(x)}

〉

G

, (3.15)

µGU ,σ̌ (σ) =
µG (σ)

∏

x∈U 1{σ(x) = σ̌(x)}
〈
∏

x∈U 1{σ(x) = σ̌(x)}
〉

G

.

Thus, µGU ,σ is just the Gibbs measure of G given that σ(x) = σ̌(x) for all x ∈ U . (Because all ψ ∈ Ψ are strictly

positive, we have Z (GU ,σ) > 0 and thus µGU ,σ̌ is well-defined.) Let Ǧ (n,m, p) be the measurable space consisting of
all GU ,σ̌ with G ∈G (n,m, p), U ⊂V and σ̌ : U →Ω.

Further, let GU (n,m, p) be the outcome of the following experiment.

PIN1: choose a spin σ̌(x) ∈Ω uniformly and independently for each x ∈U ,
PIN2: independently choose Ǧ =G(n,m, p),
PIN3: let GU (n,m, p) = ǦU ,σ̌.

Thus, GU (n,m, p) is obtained from G(n,m, p) by pinning the variable nodes x ∈U to random spins σ̌(x). By exten-
sion of the formulas (3.1)–(3.4) we obtain the following associated distributions on assignments/factor graphs:

P
[

σ̂U ,n,m,p =σ
]

=
E[ψGU (n,m,p)(σ)]

E[Z (GU (n,m, p))]
for σ ∈Ω

n ,

P
[

ĜU (n,m, p) ∈A
]

=
E[Z (GU (n,m, p))1{GU (n,m, p) ∈A }]

E[Z (GU (n,m, p))]
for an event A ⊂ Ǧ (n,m, p),

P
[

G∗
U (n,m, p,σ) ∈A

]

=
E[ψGU (n,m,p)(σ)1{GU (n,m, p) ∈A }]

E[ψGU (n,m,p)(σ)]
for an event A ⊂ Ǧ (n,m, p) and σ ∈Ω

n .

Finally, mimicking the construction from Lemma 3.5 we introduce models where the set of pinned variables itself
is random.

15



Definition 3.9. For T ≥ 0 let U =U (T ) ⊂V be a random set generated via the following experiment.

U1: choose θ ∈ [0,T ] uniformly at random,

U2: obtain U ⊂V by including each variable node with probability θ/n independently.

Then we let

GT (n,m, p) =GU (n,m, p), ĜT (n,m, p) = ĜU (n,m, p) and G∗
T (n,m, p,σ) =G∗

U (n,m, p,σ).

Further, with m = Po(dn/k) chosen independently of U , we define

GT =GU (n,m, p), ĜT = ĜU (n,m, p), G∗
T (σ) =G∗

U (n,m, p,σ) and G∗
T =G∗

U (n,m, p,σ∗)

The following statement provides a Nishimori property for the models from Definition 3.9.

Proposition 3.10. The following two distributions on factor graph/assignment pairs are identical.

(i) Choose σ̂= σ̂n,m,p , then choose G∗
T (σ̂).

(ii) Choose ĜT , then choose σĜT
.

Moreover, (σ∗,G∗
T (σ∗)) and (σ̂,G∗

T (σ̂)) are mutually contiguous and σ̂U ,n,m ,p and σ̂n,m,p are identically distributed.

In formulas, (i), (ii) are the distributions defined by

P
[

σ̂=σ,G∗
T (σ̂) ∈A

]

= E
[

P[σ̂=σ|m] ·P
[

G∗
T (σ̂) ∈A |m

]]

, P
[

σĜT
=σ,ĜT ∈A

]

= E
[

µĜT
(σ)1{ĜT ∈A }

]

respectively, for σ ∈ Ω
n and events A ⊂ Ǧ (n,m, p). We prove Proposition 3.10 by way of the following lemma

regarding the model with a fixed pinned set U . Observe that in the first two experiments we first choose an as-
signment/factor graph pair without paying heed to the set U at all and subsequently pin the variables in U . By
contrast, in the other two experiments we choose a pair that incorporates pinning from the outset.

Lemma 3.11. For any fixed set U ⊂ V the distributions on assignment/factor graph pairs induced by the following

four experiments are identical.

(1) Choose σ(1) = σ̂n,m,p , then choose G(1) =G∗(n,m, p,σ̂n,m,p ) and output (σ(1),G (1)
U ,σ̂(1) ).

(2) Choose G(2) = Ĝ(n,m, p), then choose σ(2) =σG (2) and output (σ(2),G (2)
U ,σ(2) ).

(3) Choose G(3) = ĜU (n,m, p), then choose σ(3) =σĜU (n,m,p) and output (σ(3),G (3)).

(4) Choose σ(4) = σ̂U ,n,m,p , then choose G (4) =G∗
U

(n,m, p,σ̂(4)) and output (σ(4),G(4)).

Moreover, the distributions of σ̂U ,n,m,p and σ̂n,m,p coincide.

Proof. In order to show that (i) and (ii) are identical it suffices to prove that the pairs (σĜ(n,m,p),Ĝ(n,m, p)) and
(σ̂n,m,p ,G∗(n,m, p,σ̂n,m,p )) are identically distributed. Indeed, for any event A and any σ ∈Ω

n ,

P
[

Ĝ(n,m, p) ∈A ,σĜ =σ
]

=
E

[

Z (G(n,m, p))1{G(n,m, p) ∈A }µG(n,m,p)(σ)
]

E[Z (G(n,m, p))]

=
E[ψG(n,m,p)(σ)1{G(n,m, p) ∈A }]

E[Z (G(n,m, p))]

=
E[ψG(n,m,p)(σ)]

E[Z (G(n,m, p))]
·

E[ψG(n,m,p)(σ)1{G(n,m, p) ∈A }]

E[ψG(n,m,p)(σ)]

= P
[

σ̂n,m,p =σ
]

P
[

G∗(n,m, p,σ̂n,m,p ) ∈A |σ̂n,m,p =σ
]

= P
[

G∗(n,m, p,σ̂n,m,p ) ∈A ,σ̂n,m,p =σ
]

.

A very similar argument shows that (iii) and (iv) are identical: for any event A and any σ ∈Ω
n ,

P
[

ĜU (n,m, p) ∈A ,σĜU (n,m,p) =σ
]

=
E

[

Z (GU (n,m, p))1{GU (n,m, p) ∈A }µGU (n,m,p)(σ)
]

E[Z (GU (n,m, p))]

=
E

[

1{GU (n,m, p) ∈A }ψGU (n,m,p)(σ)
]

E[Z (GU (n,m, p))]

=
E[ψGU (n,m,p)(σ)]

E[Z (GU (n,m, p))]
·

E[ψGU (n,m,p)(σ)1{GU (n,m, p) ∈A }]

E[ψGU (n,m,p)(σ)]

= P
[

σ̂U ,n,m,p =σ,G∗
U (n,m, p,σ̂U ,n,m,p ) ∈A

]

.
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As a next step we show that σ̂n,m,p , σ̂U ,n,m,p are identically distributed. Indeed, because the random choices
performed in PIN1, PIN2 are independent, (3.15) implies

P
[

σ̂U ,n,m,p =σ
]

=
E[ψGU (n,m,p)(σ)]

E[Z (GU (n,m, p))]
=

E[ψG(n,m,p)(σ)] · |Ω|−|U |

E[Z (G(n,m, p))] · |Ω|−|U | = P
[

σ̂n,m,p =σ
]

. (3.16)

Finally, to prove that (i) and (iv) are identical, consider the map Ǧ (n,m, p) → G (n,m, p), G 7→ G◦, where G◦ is
obtained from G by deleting the unary factor nodes αx , x ∈ U , that implement the pinning. Then for any event
A ⊂G (n,m, p) and any σ ∈Ω

n , due to the independence of PIN1 and PIN2,

P
[

G(4)◦ ∈A |σ(4) =σ
]

=
E[ψGU (n,m,p)(σ)1{(GU (n,m, p))◦ ∈A }]

E[ψGU (n,m,p)(σ)]

=
E[ψG(n,m,p)(σ)1{G(n,m, p) ∈A }]|Ω|−|U |

E[ψG(n,m,p)(σ)]|Ω|−|U | = P
[

G(1) ∈A |σ(1) =σ
]

. (3.17)

Since U is fixed and the unary weight functions ψαx , x ∈ U , are determined by σ(4) resp. σ(1), (3.16) and (3.17)
imply that (ii) and (iii) are identical. �

Next, we make the following simple observation.

Lemma 3.12. Suppose that m = O(n). Under the assumption BAL the distribution σ̂n,m,p and the uniform distri-

bution are mutually contiguous.

Proof. Recall that λσ ∈ P (Ω) denotes the empirical distribution of the spins under the assignment σ ∈Ω
V . Since

the constraint nodes of G(n,m, p) are chosen independently,

E[ψG(n,m,p)(σ)]=
[

∑

τ∈Ωk

E[ψ(τ1, . . . ,τkψ
)]

k
∏

j=1
λσ(τ j )

]m

, (3.18)

E[Z (G(n,m, p))] =
∑

σ∈Ωn

[

∑

τ∈Ωk

E[ψ(τ1, . . . ,τkψ
)]

k
∏

j=1
λσ(τ j )

]m

. (3.19)

Further, since the entropy function is concave, (3.19), Stirling’s formula and BAL ensure that there exists a number
C =C (Ψ, p) such that

knξm/C ≤ E[Z (G(n,m, p))] ≤ knξm . (3.20)

Further, let u be the uniform distribution on Ω and let S (L) be the set of all σ ∈Ω
n such that ‖λσ−u‖TV ≤ L/

p
n.

Then BAL guarantees that there exists C ′ =C ′(Ψ, p)> 0 such that for large enough n

ξ−C ′L2/n ≤
∑

τ∈Ωk

E[ψ(τ1, . . . ,τkψ
)]

k
∏

j=1
λσ(τ j ) ≤ ξ for all σ ∈S (L).

Therefore, (3.18) shows that there exists C ′′ =C ′′(Ψ, p,L,m/n) such that

C ′′ξm ≤ E[ψG(n,m,p)(σ)]≤ ξm for all σ ∈S (L). (3.21)

Since for any ε > 0 we can choose L = L(ε) large enough such that for a uniformly random σ∗ ∈ Ω
n we have

P[σ∗ ∈S (L)] ≥ 1−ε, the assertion follows from (3.20) and (3.21). �

Proof of Proposition 3.10. We couple the experiments (i) and (ii) such that both experiments pin the same set U

and use the same number m of constraint nodes. Then Lemma 3.11 directly implies that the two distributions are
identical. Analogously, couple (σ∗,G∗

T
) and (σ̂,G∗

T
(σ̂)) such that both have the same U ,m. Then the contiguity

statement follows from Lemma 3.12 and the final assertion follows from Lemma 3.11. �

Proof of Proposition 3.2. The proposition follows from Proposition 3.10 by setting T = 0. �

Finally, we highlight the following immediate consequence of Proposition 3.10.

Corollary 3.13. For all T ≥ 0 and all ω ∈Ω we have

E
〈

||σ−1(ω)|−n/|Ω||
〉

Ĝ T
= o(1) and E

〈

||σ−1(ω)|−n/|Ω||
〉

G∗
T
= o(1).
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Proof. Since σ∗ assigns spins to vertices independently, Chebyshev’s inequality shows that

E
∑

ω∈Ω
||σ∗−1(ω)|−n/|Ω|| = o(1). (3.22)

Because by Proposition 3.2 the distribution of σ̂ is contiguous with respect to the uniform distribution, (3.22)
implies E

∑

ω∈Ω ||σ̂−1(ω)|−n/|Ω|| = o(1). Proposition 3.10 therefore implies that

E
∑

ω∈Ω

〈

||σ−1(ω)|−n/|Ω||
〉

ĜT
= o(1). (3.23)

Together with the contiguity statement from Proposition 3.10 equation (3.23) yields the assertion. �

3.3. The lower bound. In this section we prove Proposition 3.6 regarding the lower bound on the free energy of
Ĝ. The following lemma shows that we can tackle this problem by way of lower-bounding the free energy of the
random graph G∗

T from Definition 3.9. Throughout this section we assume BAL and SYM.

Lemma 3.14. For any T > 0 we have E[ln Z (Ĝ)]= E[ln Z (G∗
T )]+o(n).

Proof. By Proposition 3.2 we have E[ln Z (Ĝ)]= E[ln Z (G∗(σ̂))]. Moreover, since σ∗ and σ̂ are mutually contiguous,
so are G∗(σ̂) and G∗(σ∗). Since ln Z (G∗) and ln Z (G∗(σ̂)) are tightly concentrated around their expectations by
Lemma 3.3, we thus obtain

E[ln Z (Ĝ)]= E[ln Z (G∗)]+o(n). (3.24)

Further, a standard application of the Chernoff bound shows that with probability 1−O(n−2) the degrees of all
variable nodes of G∗ are upper-bounded by ln2 n. If so, then pinning a single variable node to a specific spin can
shift the free energy of G∗ by no more than O(ln2 n), because all weight functions ψ ∈Ψ are strictly positive. Since
the expected number of pinned variables is upper-bounded by T , we conclude that

E[ln Z (G∗
T )]= E[ln Z (G∗)]+O(ln2 n). (3.25)

The assertion follows from (3.24) and (3.25). �

Thus, we are left to calculate E[ln Z (G∗
T (σ∗))]. The key step is to establish the following estimate.

Lemma 3.15. Letting

∆T (n) = E[ln Z (G∗
T (n+1,m(n+1), p,σ∗

n+1)]−E[ln Z (G∗
T (n,m(n), p,σ∗

n)]

we have

limsup
T→∞

limsup
n→∞

∆T (n) ≤ sup
π∈P

2
∗ (Ω)

B(d ,π).

Hence, we take a double limit, first taking n to infinity and then T . Let us write f (n,T ) = oT (1) if

lim
T→∞

limsup
n→∞

| f (n,T )| = 0.

Then Lemma 3.15 yields

1

n
E[ln Z (G∗)]=

1

n
E[ln Z (G∗

T (1,m(1), p,σ∗
1 )]+

1

n

n−1
∑

N=1
∆T (N )≤ sup

π∈P
2
∗ (Ω)

B(d ,π)+oT (1).

Thus, applying Lemmas 3.14 and 3.15 and taking the lim sup, we obtain Proposition 3.6.
Hence, we are left to prove Lemma 3.15. To this end we highlight the following immediate consequence of

Lemma 3.5.

Fact 3.16. For any ε > 0 there is T0 > 0 such that for all T > T0 and all large enough n the random factor graph G∗
T

is ε-symmetric with probability at least 1−ε.

Proof. Lemma 3.5 implies that ĜT is ε-symmetric with probability at least 1−ε, provided T = T (ε) is sufficiently
large. Therefore, the assertion follows from the contiguity statement from Proposition 3.10. �
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Additionally, we need to investigate the empirical distribution of the Gibbs marginals of the random factor graph
G∗

T . Formally, for a factor graph G we define the empirical marginal distribution ρG as

ρG = |V |−1
∑

x∈V

δµG,x ∈P
2(Ω).

Thus, ρG is the distribution of the Gibbs marginal µG ,x of a uniformly random variable node x of G. If we are also
given an assignment σ ∈Ω

V , then we let

ρG ,σ,ω =
1

|σ−1(ω)|
∑

x∈V

1{σ(x) =ω}δµG,x ,

unless σ−1(ω) = ; (in which case, say, ρG ,σ,ω is the uniform distribution on P (Ω)). Thus, ρG ,σ,ω is the empirical
distribution of the Gibbs marginals of the variables with spin ω under σ. Further, write ρ̂G ,ω for the reweighted
probability distribution

ρ̂G ,ω(µ) =
µ(ω)

∫

ν(ω)dρG (ν)
dρG (µ), (3.26)

unless
∫

µ(ω)dρG (µ) = 0, in which case ρ̂G ,ω is the uniform distribution.

Lemma 3.17. We have
∑

ω∈Ω E|
∫

µ(ω)dρG∗
T

(µ)−|Ω|−1| = o(1).

Proof. Corollary 3.13 yields
∑

ω∈Ω E
〈

||σ−1(ω)|−n/|Ω||
〉

G∗
T
= o(1). Hence, by the triangle inequality, for all ω ∈Ω

E

∣

∣

∣

∣

∫

µ(ω)dρG∗
T

(µ)−|Ω|−1
∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

1

n

∑

x∈V

〈

1{σ(x) =ω}−|Ω|−1〉

G∗
T

∣

∣

∣

∣

∣

≤ E
〈∣

∣n−1|σ−1(ω)|− |Ω|−1
∣

∣

〉

G∗
T
= o(1),

as desired. �

Recall that W1 denotes the L1-Wasserstein metric on P
2(Ω).

Lemma 3.18. We have
∑

ω∈Ω E[W1(ρG∗
T

,σ∗,ω, ρ̂G∗
T

,ω)]= oT (1).

Proof. By Proposition 3.10 it suffices to prove that
∑

ω∈Ω
E[W1(ρĜT ,σĜT

,ω, ρ̂Ĝ T ,ω)] = oT (1). (3.27)

Let σ = σĜT
for brevity. Since W1 metrises weak convergence, in order to prove (3.27) it suffices to show that for

any continuous function f : P (Ω)→ [0,1] and for any ε> 0 for large enough n,T we have

E

〈∣

∣

∣

∣

∫

P (Ω)
f (µ)dρ̂ĜT ,ω(µ)−

∫

P (Ω)
f (µ)dρĜT ,σ,ω(µ)

∣

∣

∣

∣

〉

ĜT

< 3ε for all ω ∈Ω. (3.28)

To prove (3.28) pick δ= δ( f ,ε) > 0 small enough. The compact set P (Ω) admits a partition into pairwise disjoint
measurable subsets S1, . . . ,SK such that any two distributions that belong to the same set Si have total variation
distance less than δ for some K = K (δ,Ω) > 0 that depends on δ,Ω only. Pick a small enough η = η(δ,K ,Ω). Then
by Fact 3.16 there is T0(η,Ω) such that for all T > T0 for large enough n we have

P
[

µĜ T
is η4-symmetric

]

> 1−η. (3.29)

Let Vi = Vi (ĜT ) be the set of variable nodes of ĜT whose Gibbs marginal µĜ T ,x lies in Si and let ni = |Vi |. Let
Xi ,ω(σ) be the set of x ∈ Vi such that σ(x) =ω and let Xi ,ω(σ) = |Xi ,ω(σ)|. By the linearity of expectation we have

〈

Xi ,ω(σ)
〉

ĜT
=

∑

x∈Vi

µĜT ,x (ω) for all ω ∈Ω. (3.30)

Furthermore, if µĜT
is η4-symmetric, then the variance of Xi ,ω(σ) works out to be

〈

X 2
i ,ω(σ)

〉

Ĝ T

−
〈

Xi ,ω(σ)
〉2

Ĝ T
=

∑

x,y∈Vi

(

µĜ T ,x,y (ω,ω)−µĜT ,x (ω)µĜT ,y (ω)
)

≤ 2η4n2 for all ω ∈Ω. (3.31)

Combining (3.30) and (3.31) with Chebyshev’s inequality, we obtain
〈

1{|Xi ,ω(σ)−
∑

x∈Vi

µĜT ,x (ω)| > ηn}

〉

Ĝ T

≤ 2η2 for all i ∈ [K ].
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Hence, by the union bound and Corollary 3.13,
〈

1{
∑

i∈[K ],ω∈[Ω] |Xi ,ω(σ)−
∑

x∈Vi
µĜT ,x (ω)| ≤p

ηn,
∑

ω∈Ω ||σ−1(ω)|−n/|Ω|| ≤ ηn}
〉

ĜT

≥ 1−η, (3.32)

provided η was chosen small enough.
Now, suppose that ĜT , σ=σĜT

are such that

∑

i∈[K ],ω∈[Ω]
|Xi ,ω(σ)−

∑

x∈Vi

µĜT ,x (ω)| ≤p
ηn,

∑

ω∈Ω
||σ−1

ĜT
(ω)|−n/|Ω|| ≤ ηn,

∑

ω∈Ω

∣

∣

∣

∣

∫

µ(ω)dρG∗
T

(µ)−|Ω|−1
∣

∣

∣

∣

≤ η. (3.33)

Because f : P (Ω)→ [0,1] is uniformly continuous, we can pick δ,η small enough so that (3.33) implies that
∫

P (Ω)
f (µ)dρ̂ĜT ,ω(µ) =

∑K
i=1

∑

x∈Vi
µĜT ,x (ω) f (µĜT ,x (ω))

n
∑K

i=1

∑

x∈Vi
µĜT ,x (ω)

≤
ε+p

η+
∑

i∈[K ]
∑

x∈Xi ,ω(σ) f (µĜT ,x )

|Ω|−1 −η
≤ 2ε+

∫

P (Ω)
f (µ)dρĜT ,σ,ω(µ).

A similar chain of inequalities yields a corresponding lower bound. Thus,

(3.33) ⇒
∣

∣

∣

∣

∫

P (Ω)
f (µ)dρ̂ĜT ,ω(µ)−

∫

P (Ω)
f (µ)dρĜT ,σ,ω(µ)

∣

∣

∣

∣

≤ 2ε. (3.34)

Finally, since (3.29), (3.32) and Lemma 3.17 show that (3.33) holds with probability at least 1−3η and since f takes
values in [0,1], (3.34) implies (3.28). �

We proceed to prove Lemma 3.15. To calculate ∆T (n) we set up a coupling of G∗
T (n +1,m(n +1), p,σ∗

n+1) and
G∗

T (n,m(n), p,σ∗
n). Specifically, we are going to view both these factor graphs as supergraphs of one factor graph

G̃ on n variable nodes. To obtain G̃ first choose a ground truth σ∗
n : {x1, . . . , xn } → Ω uniformly and let σ∗

n+1 be a
random extension obtained by choosing σ∗

n+1(xn+1) uniformly. Let

D = D(σ∗
n+1) =

∑

i1 ,...,ik∈[n+1],ψ∈Ψ 1{n+1 ∈ {i1, . . . , ik }}p(ψ)ψ(σ∗
n+1(xi1 ), . . . ,σ∗

n+1(xik
))

∑

i1 ,...,ik∈[n+1],ψ∈Ψ p(ψ)ψ(σ∗
n+1(xi1 ), . . . ,σ∗

n+1(xik
))

·
d(n+1)

k
(3.35)

Unravelling the construction (2.1), we see that D is the expected degree of xn+1 in G∗(n + 1,m(n + 1), p,σ∗
n+1).

Additionally, let

D = E[D |σ∗
n], D(ω) = E[D |σ∗

n ,σ∗
n+1(xn+1) =ω], Dmax = max{Dω :ω ∈Ω}.

Further, define

λ̃= max{0,min{d(n+1)/k −Dmax,dn/k}}, λ′ = dn/k − λ̃, λ′′ = max{0,d(n+1)/k − λ̃−D}.

Additionally, choose θ ∈ [0,T ] uniformly and suppose that n > n0(T ) is sufficiently large. Now, let G̃ be the random
factor graph with variable nodes Vn = {x1, . . . , xn } obtained by

CPL1: generating m̃ = Po(λ̃) independent random constraint nodes a1, . . . , am̃ according to the distribution
(2.1) with respect to the ground truth ground truth σ∗

n , and
CPL2: inserting a unary constraint node that pins xi to σ∗

n(xi ) with probability θ/(n + 1) for each i ∈ [n]
independently.

Further, obtain G ′ from G̃ by

CPL1′: adding m′ = Po(λ′) independent random constraint nodes drawn according to (2.1) w.r.t. σ∗
n , and

CPL2′: pinning each as yet unpinned variable node to σ∗
n independently with probability θ/(n(n+1−θ)).

Finally, obtain G ′′ from G̃ by adding the single variable node xn+1 and

CPL1′′: adding γ∗ = Po(D) independent constraint nodes b1, . . . ,bγ∗ such that for each j ∈ [γ∗],

P
[

ψb j
=ψ,∂b j = (xi1 , . . . , xik

)
]

∝ 1{n+1 ∈ {i1, . . . , ik }}p(ψ)ψ(σ∗
n+1(xi1 ), . . . ,σ∗

n+1(xik
)).

in words, b1, . . . ,bγ∗ are chosen from (2.1) w.r.t. σ∗
n+1 subject to the condition that each is adjacent to xn+1.

CPL2′′: adding m′′ = Po(λ′′) independent random constraint nodes c1, . . . ,cm′′ such that for each j ∈ [m′′],

P
[

ψb j
=ψ,∂b j = (xi1 , . . . , xik

)
]

∝ 1{n+1 6∈ {i1, . . . , ik }}p(ψ)ψ(σ∗
n(xi1 ), . . . ,σ∗

n(xik
));

thus, b1, . . . ,bγ∗ are chosen from (2.1) subject to the condition that none is adjacent to xn+1.
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CPL3′′: pinning xn+1 to σ∗(xn+1) with probability θ/(n+1) independently of everything else.

We observe that this construction produces the correct distribution.

Fact 3.19. For sufficiently large n the random factor graph G ′ is distributed as G∗
T (n,m(n), p,σ∗

n) and G ′′ is dis-

tributed as G∗
T (n+1,m(n+1), p,σ∗

n+1).

Proof. Because all ψ ∈Ψ are strictly positive D is bounded by some number depending on Ψ,d only. Therefore,
λ̃> 0 for large enough n and λ̃+λ′ = dn/k. Consequently, since a sum of independent Poisson variables is Poisson,
CPL1 and CPL1′ ensure that G ′ has m(n) = Po(dn/k) independent constraint nodes drawn from (2.1). Moreover,
by CPL2 and CPL2′ each variable node of G ′ gets pinned with probability θ/n independently. Hence, G ′ has the
desired distribution.

Analogously, by CPL2 and CPL3′′ each variable node of G ′′ gets pinned with probability θ/(n+1) independently.
Further, by CPL1, CPL1′′ and CPL2′′ the total expected number of constraint nodes of G ′′ equals λ̃+D +λ′′ =
d(n +1)/k for large enough n. Moreover, Definition 2.1 and (3.35) guarantee that D equals the expected number
of constraint nodes adjacent to xn+1 in G∗

T
(n + 1,m(n + 1), p,σ∗

n+1). Thus, G ′′ has distribution G∗
T

(n + 1,m(n +
1), p,σ∗

n+1). �

Fact (3.19) implies that for large enough n,

∆T (n) = E

[

ln
Z (G′′)

Z (G′)

]

= E

[

ln
Z (G ′′)

Z (G̃)

]

−E

[

ln
Z (G′)

Z (G̃)

]

. (3.36)

Actually the following slightly modified version of (3.36) is more convenient to work with.

Claim 3.20. The event

E = {∀ω ∈Ω : |σ∗−1
n (ω)−n/|Ω|| ≤

p
n ln n}

has probability 1−O(n−2) and

∆T (n) = E

[

1{E } ln
Z (G ′′)

Z (G̃)

]

−E

[

1{E } ln
Z (G′)

Z (G̃)

]

+o(1). (3.37)

Moreover, on E we have

D = d +o(1), λ̃= d(n+1)/k −d +o(1), λ′ = d(k −1)/k +o(1), λ′′ = o(1). (3.38)

Proof. Because σ∗ is chosen uniformly, the Chernoff bound shows that P[E ] ≥ 1−O(n−2). Moreover, because all
ψ ∈Ψ are strictly positive, there exists constant CΨ > 0 depending on Ψ only such that ln Z (G)≤CΨm for all factor
graphs G with m constraint nodes. Since the Poisson distribution has sub-exponential tails and P[E ] ≥ 1−O(n−2),
(3.36) therefore yields (3.37). Further, SYM guarantees that given E we have Dω = d +o(1) for all ω ∈ Ω, whence
(3.38) follows. �

Claim 3.21. The random factor graphs G̃ and G∗
T have total variation distance o(1).

Proof. Let Ũ be the set of variables of G̃ that got pinned. Then CPL1–CPL2 ensures that given m̃ = m and given
Ũ =U , G̃ has distribution G∗

U (n,m, p,σ∗
n ). By comparison, G∗

T is defined as G∗
U (n,m, p,σ∗

n), where m = Po(dn/k)
and, as in Definition 3.9, U is obtained by including every variable node with probability θ/n independently. Since
T /n−T /(n+1) = o(1) for every fixed T , the total variation distance of U and Ũ is o(1). Similarly, since E[m̃]−E[m]=
λ̃−dn/k =O(1) while Var(m) =Θ(n), the total variation distance of m̃, m is o(1). �

Let π= ρG̃ be the empirical distribution of the Gibbs marginals of G̃ and recall the notation of Theorem 2.2. We are
going to show that the two expressions on the r.h.s. of (3.36) are equal to the the formulas from Theorem 2.2, up to
an oT (1) error term.

Claim 3.22. With probability 1−oT (1) over the choice of σ∗
n and G̃ we have

1{E }E[ln(Z (G′)/Z (G̃))|G̃,σ∗
n] = oT (1)+

d(k −1)

kξ
E

[

Λ

(

∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ(π)

j
(τ j )

)]

.
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Proof. We may assume that σ∗
n ∈ E and also, since m̃ = Po(λ̃) and the Poisson distribution has sub-exponential

tails, that m̃ ≤ 2dn. Let U be the event that CPL2′ did not pin any variable node at all. Then for all G̃,σ∗
n for large

enough n we have P[U |G̃,σ∗
n] ≥ 1−2T /n. Consequently, since all weight functions are strictly positive and the

average number of constraint nodes adjacent to any one variable node is bounded by km̃/n = O(1), we conclude
that

1{E }E[ln(Z (G ′)/Z (G̃))|G̃,σ∗
n ]= oT (1)+E[1{U } ln(Z (G′)/Z (G̃))|G̃ ,σ∗

n]. (3.39)

Moreover, let b1, . . . ,bm′ be the constraint nodes added by CPL1′ and let Y be the set of adjacent variable nodes.
Because on the event U the factor graph G ′ is obtained from G̃ by just adding b1, . . . ,bm′ , (2.4) yields

ln(Z (G′)/Z (G̃)) = ln

〈

m′
∏

i=1
ψbi

(σ(∂1bi ), . . . ,σ(∂k bi ))

〉

G̃

= ln
∑

τ∈ΩY

µG̃ ,Y (τ)
m′
∏

i=1
ψbi

(τ). (3.40)

To make sense of the r.h.s. of (3.40) we need to take a closer look at the distribution of Y . Since b1, . . . ,bm′ are
chosen from (2.1), Y is not generally uniformly distributed. Nonetheless, since all constraint functions ψ ∈Ψ are
strictly positive and σ∗

n ∈ E , there is a number c = c(Ψ) > 0 such that for any set Y0 ⊂ {x1, . . . , xn } of size |Y0| =
(k −1)m ′ we have

P
[

|Y | = (k −1)m ′|G̃ ,σ∗
n

]

= 1−o(1) and cm′
≤ n(k−1)m′

P
[

Y = Y0|G̃ ,σ∗
n ,m′]≤ c−m′

(3.41)

Hence, for any given value of m ′, Y is contiguous with respect to a uniformly random set of size (k −1)m′. Con-
sequently, because (3.38) shows that on E the mean λ′ of the Poisson variable m′ is bounded independently of T ,
Lemma 2.8, Fact 3.16 and Claim 3.21 yield εT = oT (1) such that the event

Y =
{∥

∥

∥

∥

∥

µG̃ ,Y −
⊗

y∈Y

µG̃ ,y

∥

∥

∥

∥

∥

TV

≤ εT and |Y | = km ′
}

satisfies

P
[

Y |G̃,σ∗
n

]

≥ 1−εT . (3.42)

Further, on the event U ∩Y equation (3.40) becomes

ln(Z (G′)/Z (G̃))= oT (1)+
m′
∑

i=1
ln

∑

τ∈Ωk

ψbi
(τ)

k
∏

h=1
µG̃ ,∂h bi

(τh). (3.43)

Since the mean of the Poisson random variable m′ is bounded independently of of T , the Poisson distribution has
sub-exponential tails and all weight functions are strictly positive, (3.39), (3.42) and (3.43) yield

E[ln(Z (G′)/Z (G̃))|G̃,σ∗
n] = oT (1)+E

[

m′
∑

i=1
ln

∑

τ∈Ωk

ψbi
(τ)

k
∏

h=1
µG̃ ,∂h bi

(τh )
∣

∣

∣G̃ ,σ∗
n

]

. (3.44)

Indeed, because the new constraint nodes b1, . . . ,bm′ are chosen independently given G̃ ,σ∗
n , (3.44) yields

E[ln(Z (G′)/Z (G̃))|G̃,σ∗
n]= oT (1)+λ′E

[

ln
∑

τ∈Ωk

ψb1 (τ)
k
∏

h=1
µG̃ ,∂h b1

(τh)
∣

∣

∣G̃,σ∗
n

]

. (3.45)

Let i 1, . . . ,i k ∈ [n] be chosen uniformly and independently and choose ψ from p independently of everything else.
Since |σ∗−1

n (ω)| ∼ n/|Ω| for all ω ∈Ω we have E[ψ(σ∗
n(xi 1 ), . . . ,σ∗

n (xi k
))] ∼ ξ. Hence, recalling the distribution (2.1)

from which b1 is chosen, we can write (3.45) as

E[ln(Z (G′)/Z (G̃))|G̃ ,σ∗
n]= oT (1)+

λ′

ξ
E

[

Λ

(

∑

τ∈Ωk

ψ(τ)
k
∏

h=1
µG̃ ,xi h

(τh)

)

∣

∣

∣G̃ ,σ∗
n

]

. (3.46)

Since π is the empirical distribution of the Gibbs marginals of G̃, the assertion follows from (3.38) and (3.46). �

Claim 3.23. With probability 1−oT (1) over the choice of σ∗
n and G̃ we have

1{E }E[ln(Z (G ′′)/Z (G̃))|G̃,σ∗
n ]= oT (1)+E

[

ξ−γ

|Ω|
Λ

(

∑

σ∈Ω

γ
∏

i=1

∑

τ∈Ωk

1{τhi
=σ}ψi (τ)

∏

j 6=hi

µ(π)
ki+ j

(τ j )

)]

.
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Proof. Once more we may assume that σ∗
n ∈ E and m̃ ≤ 2dn. Additionally, by Claim 3.21, Lemma 3.17 and

Lemma 3.18 we may assume that G̃ ,σ∗
n satisfy

∑

ω∈Ω

∣

∣

∣

∣

∫

µ(ω)dρG̃ (µ)−|Ω|−1
∣

∣

∣

∣

= o(1) and
∑

ω∈Ω
W1(ρG̃ ,σ∗

n ,ω, ρ̂G̃ ,ω) = oT (1). (3.47)

Moreover, let U be the event that CPL3′′ does not pin xn+1 and that m ′′ = 0. Since P
[

U |G̃,σ∗
n

]

= 1−o(1), since by
CPL1′′ the expected number of constraint nodes adjacent to xn+1 is bounded and because λ′′ = o(1) by (3.38), we
have

E[ln(Z (G′′)/Z (G̃))|G̃,σ∗
n ]= o(1)+E[1{U } ln(Z (G′′)/Z (G̃))|G̃,σ∗

n]. (3.48)

Hence, with b1 . . . ,bγ∗ ∈ ∂xn+1 the new constraint nodes that CPL1′′ attaches to xn+1, on U we have

ln
Z (G ′′)

Z (G̃)
= ln

∑

τ∈ΩY ∪{xn+1}

µG̃ ,Y (τ|Y )
γ∗
∏

i=1
ψbi

(τ(∂1bi ), . . . ,τ(∂k bi )). (3.49)

We need to get a handle on the distribution of b1, . . . ,bγ∗ . With h1,h2, . . . mutually independent and uniformly
distributed on [k], the assumptions SYM and σ∗

n ∈ E show that for every j ∈ [γ∗] and every (i1, . . . , ik ) ∈ [n+1]k with
ih j

= n+1 we have

P
[

∂b j = (xi1 , . . . , xik
),ψb j

=ψ|G̃ ,σ∗
n+1

]

= o(1)+ξ−1p(ψ)ψ(σ∗
n+1(xi1 ), . . . ,σ∗

n+1(xik
)). (3.50)

In particular, given their spins the variables ∂b j \ {xn+1} are chosen asymptotically uniformly and independently.
Hence, we can characterize the distribution of b1, . . . ,bγ∗ as follows. Independently for each b j ,

(i) choose ω j = (ω j ,1, . . . ,ω j ,k ) ∈Ω
k and ψ̂ j from the distribution

P
[

ω j = (ω1, . . . ,ωk ),ψ̂ j =ψ
]

∝ 1{ω j ,h j
=σ∗

n+1(xn+1)}ξ−1p(ψ)ψ(ω1, . . . ,ωk ),

(ii) and subsequently choose variable nodes y j = (y j ,1, . . . , y j ,k ) such that y j ,h j
= xn+1 and y j ,h ∈ {x1, . . . , xn } for

all h 6= h j such that σ∗
n+1(y j ,h) =ω j ,h for all h ∈ [k] uniformly at random.

Then (3.50) becomes

P
[

∂b j = (xi1 , . . . , xik
),ψb j

=ψ|G̃ ,σ∗
n+1

]

= o(1)+P
[

y j ,1 = xi1 , . . . , y j ,k = xik
,ψ̂ j =ψ

]

. (3.51)

Let Y = {y j ,h : j ≤γ∗,h ∈ [k]} \ {xn+1}. Since all weight functions ψ ∈Ψ are strictly positive and since σ∗
n ∈ E , the

construction (i)–(ii) has the following property, we have

P
[

|Y | = (k −1)γ∗|G̃,σ∗
n+1

]

= 1−o(1) (3.52)

and there exists c > 0 such that

cγ
∗
≤ n(k−1)γ∗

P
[

Y = Y0|G̃ ,σ∗
n+1,γ∗]

≤ c−γ
∗

for any Y0 ⊂ {x1, . . . , xn }, |Y0| = (k −1)γ∗. (3.53)

Hence, for any given value of γ∗ the distribution of Y and the uniform distribution are mutually contiguous. Since
by (3.38) the mean D = d + o(1) of γ∗ is bounded independently of T , (3.52), (3.53), Lemma 2.8, Fact 3.16 and
Claim 3.21 yield εT = oT (1) such that the event Y = {‖µG̃ ,Y −

⊗

y∈Y µG̃ ,y‖TV ≤ εT and |Y | = (k −1)γ∗} satisfies

P
[

Y |G̃,σ∗
n

]

≥ 1−εT . (3.54)

Thus, let

E = E

[

ln
∑

σ∈Ω

γ∗
∏

j=1

∑

τ∈Ωk

1{τh j
=σ}ψ̂ j (τ)

∏

h∈[k]\{h j }
µG̃ ,y j ,h

(τh)
∣

∣

∣G̃ ,σ∗
n

]

.

Then (3.48), (3.49), (3.51) and (3.54) yield

E[ln(Z (G′′)/Z (G̃))|G̃,σ∗
n ]= oT (1)+E[1{U ∩Y } ln(Z (G′′)/Z (G̃))|G̃,σ∗

n] = E +oT (1).

Further, let (ν̂h,ω)h≥1,ω∈Ω be a family of independent random distributions on Ω such that ν̂ j ,h,ω has distribution
ρ̂G̃ ,ω. Since by (i)–(ii) above µG̃ ,y j ,h

(τ(y j ,h )) are independent samples from ρG̃ ,σ∗
n ,ω, (3.47) yields

E = oT (1)+E

[

ln
∑

σ∈Ω

γ∗
∏

j=1

∑

τ∈Ωk

1{τh j
=σ}ψ̂ j (τ)

∏

h∈[k]\{h j }
ν̂h+ j k ,ω j ,h (τh)

∣

∣

∣G̃ ,σ∗
n

]

. (3.55)
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As a next step we plug in the definition (3.26) of ρ̂G̃ ,ω. Due to (3.47) the denominator of (3.26) is |Ω|+o(1). Hence,
(3.55) becomes

E = oT (1)+E

[

|Ω|γ
∗(k−1)

[

γ∗
∏

j=1

∏

h 6=h j

µ(π)
h+ j k

(ω j ,h )

]

ln
∑

σ∈Ω

γ∗
∏

j=1

∑

τ∈Ωk

1{τh j
=σ}ψ̂ j (τ)

∏

h 6=h j

µ(π)
h+ j k

(τh )
∣

∣

∣G̃,σ∗
n

]

. (3.56)

Finally, writing out the distribution of (ω j ,ψ̂ j ) from (i) above, we obtain from (3.56) that

E = oT (1)+E

[

ξ−γ
∗
Λ

(

∑

σ∈Ω

γ∗
∏

j=1

∑

τ∈Ωk

1{τh j
=σ}ψ̂ j (τ)

∏

h 6=h j

µ(π)
h+ j k

(τh)

)

∣

∣

∣G̃ ,σ∗
n

]

.

This last equation yields the assertion because σ∗
n+1(xn+1) is chosen uniformly and D = d +o(1) on E by (3.38). �

Proof of Lemma 3.15. The coupling CPL1–CPL2, CPL1′–CPL2′, CPL1′′–CPL3′′ is such that G ′, G ′′ are obtained
from G̃ by adding a Poisson number of constraint nodes such that the mean of the Poisson distribution is bounded
independently of T . Therefore, we obtain from Claims 3.22 and 3.23 that

∆T (n) ≤ oT (1)+E[B(d ,ρG̃ )]. (3.57)

The assertion would be immediate from (3.57) if M(G̃) =
∫

µdρG̃ (µ) were equal to the uniform distribution u =
|Ω|−11 on Ω. While this is generally not the case, Lemma 3.17 shows that E

∥

∥M(G̃)−u
∥

∥

TV = o(1). Therefore, w.h.p.
there exists α(G̃) ≥ 0 and ν(G̃) ∈P (Ω) such that

E[α(G̃)]= o(1) and (1−α(G̃))ρG̃ +α(G̃)δν(G̃) ∈P
2
∗ (Ω). (3.58)

Finally, since Lemma 2.9 shows that B(d , ·) is weakly continuous, the assertion follows from (3.57) and (3.58). �

3.4. The upper bound. To prove Proposition 3.7 we will show that for any distribution π ∈P
2
∗ (Ω),

−
1

n
E[ln Z (Ĝ)]≤ o(1)−B(d ,π). (3.59)

The proof of (3.59) is based on the interpolation method. That is, for a given π ∈ P
2
∗ (Ω) we are going to set up a

family of random factor graph models parametrized by t ∈ [0,1] such that the free energy of the t = 0 model is easily
seen to be −nB(d ,π)+o(n) and such that the t = 1 model is identical to Ĝ. Finally, we will show that the derivative
of the free energy with respect to t is non-positive, whence (3.59) follows. Throughout this section we assume that

BAL, SYM and POS hold.

3.4.1. The interpolation scheme. To construct the intermediate models let γ= (γv )v∈[n] be a sequence of integers.
Fix π ∈P

2
∗(Ω). We define a random factor graph model G =G(n,m,γ,π) as follows.

G1: the variable nodes are V = {x1, . . . , xn }.
G2: there are k-ary constraint nodes a1, . . . , am ; for each i ∈ [m] independently choose ∂ai ∈ V k uniformly

and pick an independent ψai
∈Ψ from the prior p (cf. Definition 2.5).

G3: for each x ∈ V there are unary constraint nodes bx,1, . . . ,bx,γx adjacent to x whose weight functions are
generated as follows: for each j ∈ [γx ] independently,

• choose ψx, j ∈Ψ from the prior distribution p,
• pick ix, j ∈ [k] uniformly,
• with (µx, j ,h )h∈[k] chosen independently from π, let

ψbx, j
:σ ∈Ω 7→

∑

τ1 ,...,τk∈Ω
ψx, j (τ1, . . . ,τk )1{τix, j

=σ}
∏

h 6=ix, j

µx, j ,h (τh ).

Let G (n,m,γ,π) be the set of all possible outcomes of this experiment. Depending on π the set Ψ′ of possible
weight functions resulting from G3 may be infinite and thus we turn G (n,m,γ,π) into a measurable space as in
Section 3.2. The fact that the given prior distribution p on Ψ satisfies SYM immediately implies that the distribu-
tion p ′ that G3 induces on Ψ

′ satisfies BAL and SYM. Therefore, so does any convex combination of p, p ′.
We recall that the random factor graph model induces a few further distributions. First, the Gibbs measure of

G ∈G (n,m,γ,π) is

µG (σ) =
ψG (σ)

Z (G)
with ψG :σ ∈Ω

V 7→
m
∏

i=1
ψai

(σ(∂1ai , . . . ,∂k ai ))
∏

x∈V

γv
∏

j=1
ψbx, j

(σ(v)), Z (G)=
∑

σ∈ΩV

ψG (σ).
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We also obtain a reweighted version Ĝ(n,m,γ,π) of the model by letting

P
[

Ĝ(n,m,γ,π) ∈A
]

=
E[Z (G(n,m,γ,π))1{G(n,m,γ,π) ∈A }]

E[Z (G(n,m,γ,π))]
for any event A .

Further, there is an induced distribution σ̂n,m,γ,π on assignments defined by

P
[

σ̂n,m,γ,π =σ
]

= E[ψG(n,m,γ,π)(σ)]/E[Z (G(n,m,γ,π))]. (3.60)

Finally, each assignment σ induces a distribution G∗(n,m,γ,π,σ) on factor graphs by letting

P
[

G∗(n,m,γ,π,σ) ∈A
]

=
E

[

ψG(n,m,γ,π)(σ)1{G(n,m,γ,π) ∈A }
]

E[ψG(n,m,γ,π)(σ)]
for any event A .

We are ready to set up the interpolation scheme. Given d > 0, t ∈ [0,1] we let mt = Po(tdn/k). Moreover, for
each x ∈V independently we let γt ,x = Po((1− t)d). Let γt = (γt ,x )x∈V . Finally, let

Ĝ t = Ĝ(n,m t ,γt ,π).

Then Ĝ1 is identical to our original factor graph model. Moreover, all constraint nodes of Ĝ0 are unary; in other
words, each connected component of Ĝ0 contains just a single variable node. Since γt ,x and mt are independent

Poisson variables, the Ĝ t model fits the general random factor graph model from Section 3.2 with Po(dn(1− (1−
1/k)t)) random constraint nodes chosen with weight functions from Ψ∪Ψ

′ chosen from the prior distribution

pt =
t

k − t(k −1)
p +

k(1− t)

k − t(k −1)
p ′.

The construction of Ĝ t is an adaptation of the interpolation schemes from [45, 81]. But we need to apply one
more twist. Namely, we are going to use Lemma 3.5 to perturb the intermediate factor graphs Ĝ t to make them
‘replica symmetric’. Thus, for a number T > 0 consider the following experiment.

INT1: choose an assignment σ̌ from the distribution σ̂n,m t ,γt ,π.
INT2: generate a factor graph G∗(σ̌,n,m t ,γt ,π).
INT3: pick θ ∈ [0,T ] uniformly.
INT4: obtain U by including each x ∈ V independently with probability θ/n. For each x ∈ U add a unary

constraint node αx with probability θ/n whose sole adjacent variable node is x and whose weight function
is ψαx (σ) = 1{σ= σ̌(x)}.

Write ĜT,t = ĜT,t (n,m t ,γt ,π) for the resulting factor graph. Then Proposition 3.10 shows that ĜT,t is identical to
the model from Definition 3.9. Critically, the number T > 0 in the following lemma is independent of t .

Lemma 3.24. For any ε > 0 there is T > 0 such that for all t ∈ [0,1] the Gibbs measure of ĜT,t is ε-symmetric with

probability at least 1−ε.

Proof. This is immediate from Fact 3.16, where T depends on ε and Ω only. �

Finally, we need a correction term. Let

Γt =
td(k −1)

kξ
E

[

Λ

(

∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ(π)

j
(τ j )

)]

.

The following is the centerpiece of the interpolation argument.

Proposition 3.25. For every ε> 0 there is T > 0 such that for all large enough n the following is true. Let

φT : t ∈ [0,1] 7→ (E[ln Z (ĜT,t )]+Γt )/n.

Then φ′
T (t) >−ε for all t ∈ [0,1].

We prove Proposition 3.25 in Section 3.4.3. But in preparation we first need to construct couplings of the assign-
ments σ̂n,mt ,γ,π for different values of mt ,γ in Section 3.4.2. In Section 3.4.4 we show how the lemma implies
Proposition 3.7.
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3.4.2. Coupling assignments. As (3.60) shows, to study the distribution of the assignment σ̂ we need to get a handle
on the expectations E[ψG(n,m,γ,π)(σ)]. Recall that ξ= |Ω|−k ∑

τ∈Ωk E[ψ(τ)].

Lemma 3.26. For any σ ∈Ω
V we have E[ψG(n,m,γ,π)(σ)]= ξ

∑

v∈V γv

[

n−k ∑

τ1 ,...,τk
E[ψ(τ1, . . . ,τk )]

∏k
j=1 |σ

−1(τ j )|
]m

.

Proof. In step G2 the weight functions of the k-ary constraint nodes a1, . . . , am are chosen from ψ and the neigh-
borhoods ∂ai are chosen uniformly. Due to independence their overall contribution to the expectation is just the
term in the square brackets. Further, G3 ensures that the constraint nodes bx, j are set up independently by choos-
ing a weight function ψ from the prior distribution and independent µx, j ,h from π. Since π ∈P

2
∗(Ω), assumption

SYM implies that each bx, j contributes a factor ξ to the expectation. �

Corollary 3.27. For any γ and m =O(n) the distribution of σ̂n,m,γ,π and the uniform distribution on Ω
V are mutu-

ally contiguous. Moreover,

P
[∥

∥

∥λσ̂n,m,γ,π −|Ω|−11
∥

∥

∥

2
>
p

n ln2/3 n
]

≤O(n− lnln n).

Proof. By Lemma 3.26 we have

P
[

σ̂n,m,γ,π =σ
]

∝
[

∑

τ1,...,τk

E[ψ(τ1, . . . ,τk )]
k
∏

j=1
λσ

(

τ j

)

]m

.

Moreover, by BAL the expression on the r.h.s attains its maximum if λσ is uniform. At the same time, the uniform
distribution maximizes the entropy H(λσ). Therefore, the assertion follows immediately from Stirling’s formula
and the fact that the entropy is strictly concave. �

Corollary 3.28. For any γ,γ′ the colorings σ̂n,m,γ,π, σ̂n,m,γ′,π are identically distributed.

Proof. This is immediate from Lemma 3.26 and the definition of σ̂n,m,γ,π, σ̂n,m,γ′,π. �

Corollary 3.29. Suppose m =O(n). There is a coupling of σ̂n,m,γ,π, σ̂n,m+1,γ,π such that

P[σ̂m 6= σ̂m+1] = Õ(n−1) and P
[

|σ̂m△σ̂m+1| >
p

n ln n
]

=O(n−2).

Proof. The second assertion is immediate from Corollary 3.27. To prove the first assertion, we need to show that
σ̂m , σ̂m+1 have total variation distance Õ(1/n). To this end, assume that ‖λσ−|Ω|−11‖2 = Õ(n−1/2); the probability
mass of σ that do not satisfy this condition is negligible under either measure by Corollary 3.27. We expand

F : λ ∈P (Ω) 7→
∑

τ∈Ωk

E[ψ(τ1, . . . ,τk )]
k
∏

j=1
λ

(

τ j

)

to the second order. Due to BAL the uniform distribution λ̄ maximizes
∑

τ∈Ωk E[ψ(τ1, . . . ,τk )]
∏k

j=1λ
(

τ j

)

. Hence,

F (λ) = F (λ̄)+
1

2

〈

D2F |λ̄(λ− λ̄), (λ− λ̄)
〉

+O(‖λ− λ̄‖3
2) = ξ+O(‖λ− λ̄‖2

2). (3.61)

(In fact, since the entropy is strictly concave, condition BAL ensures that all eigenvalues of the Hessian D2F |λ̄
on the space {x ∈ R

Ω : x ⊥ 1} are strictly negative.) Consequently, we obtain from Lemma 3.26 that in the case
‖λσ−|Ω|−11‖2 = Õ(n−1/2),

E[ψG(n,m+1,γ,π)(σ)]

E[ψG(n,m,γ,π)(σ)]
=

∑

τ1,...,τk

E[ψ(τ1, . . . ,τk )]
k
∏

j=1
λσ(τ j ) = exp(Õ(1/n))ξ,

whence σ̂m , σ̂m+1 have total variation distance Õ(1/n). �
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3.4.3. Proof of Proposition 3.25. The proof requires several steps. The first, summarized in the following proposi-
tion, is to derive an expression for the derivative of φT (t). We write 〈· 〉T,t for the expectation with respect to the
Gibbs measure of ĜT,t . Unless specified otherwise σ1,σ2, . . . denote independent samples from µĜT,t

.

Proposition 3.30. With ψ chosen from p, y 1, . . . , y k chosen uniformly from the set of variable nodes, and µ1, . . . ,µk

chosen from π, all mutually independent and independent of ĜT,t , let

Ξt ,l = E
[

〈

1−ψ(σ(y1), . . . ,σ(yk ))
〉l

T,t

]

−
k
∑

i=1
E





〈

1−
∑

τ∈Ωk

ψ(τ)1{τi =σ(y i )}
∏

j 6=i

µ j (τ j )

〉l

T,t





+ (k −1)E

[(

1−
∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ j (τ j )

)l ]

.

Then uniformly for all t ∈ (0,1) and all T ≥ 0,

∂

∂t
φT (t)= o(1)+

d

kξ

∑

l≥2

Ξt ,l

l(l −1)
.

We proceed to prove Proposition 3.30. Let

∆t = E
[

ln Z (ĜT,t (mt +1,γt ))
]

−E
[

ln Z (ĜT,t (mt ,γt ))
]

,

∆
′
t =

1

n

∑

x∈V

E
[

ln Z (ĜT,t (mt ,γt +1x ))
]

−E
[

ln Z (ĜT,t (mt ,γt ))
]

.

Lemma 3.31. We have 1
n

∂
∂t

E[ln Z (ĜT,t )]= d
k
∆t −d∆′

t .

Proof. The computation is similar to the one performed in [81]. Let Pλ( j ) = λ j exp(−λ)/ j !. By the construction
of the random graph model, the parameter t only enters into the distribution of m t ,γt . Explicitly, with the sum
ranging over all possible outcomes m,γ,

E[ln Z (ĜT,t )]=
∑

m,γ
E[ln Z (ĜT,t )|mt = m,γt = γ]Ptdn/k (m)

∏

x∈V

P(1−t )d (γx ).

We recall that
∂

∂t
Ptdn/k (m) =

1

m!

∂

∂t

(

tdn

k

)m

exp(−tdn/k) =
dn

k
[1{m ≥ 1}Ptdn/k (m −1)−Ptdn/k (m)] ,

∂

∂t
P(1−t )d (γv ) =

1

γv !

∂

∂t
((1− t)d )γv exp(−(1− t)d) =−d

[

1{γv ≥ 1}P(1−t )d (γv −1)−P(1−t )d (γv )
]

.

Hence, by the product rule

1

n

∂

∂t
E[ln Z (ĜT,t )]=

1

n

∑

m,γ
E[ln Z (ĜT,t )|mt = m,γt = γ]

∂

∂t
Ptdn/k (m)

∏

v∈[n]
P(1−t )d (γv )

=
d

k

∑

m

[

E
[

ln Z (ĜT,t )|mt = m +1
]

−E
[

ln Z (ĜT,t )|mt = m
]]

Ptdn/k (m)

−
d

n

∑

x∈V

∑

γx

[

E
[

ln Z (ĜT,t )|γt ,x = γx +1
]

−E
[

ln Z (ĜT,t )|γt ,x = γt ,x
]]

P(1−t )d (γt ,x )

=
d

k

[

E
[

ln Z (ĜT,t (mt +1,γt )
]

−E
[

ln Z (ĜT,t (n,m t ,γt )
]]

−
d

n

∑

x

[

E
[

ln Z (ĜT,t (mt ,γt +1x )
]

−E
[

ln Z (ĜT,t (mt ,γt )
]]

,

as claimed. �

To calculate∆t ,∆′
t we continue to denote byψ a weight function chosen from the prior distribution, independently

of everything else.

Lemma 3.32. We have ∆t = o(1)−
1−ξ

ξ
+

1

nkξ

∑

y1,...,yk∈V

∑

l≥2

1

l(l −1)
E

〈

l
∏

h=1
1−ψ(σh (y1), . . . ,σh (yk ))

〉

T,t

.
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Proof. Because the tails of the Poisson distribution decay sub-exponentially and since

ln Z (ĜT,t (mt ,γt )) =O

(

n+m t +
∑

x∈V

γt ,x

)

,

we may safely assume that
mt +

∑

x∈V

γt ,x ≤ (d +1)n. (3.62)

By Corollary 3.29 we can couple the two assignments σ̂′ = σ̂n,m,γt ,m t ,σ̂′′ = σ̂n,m,γt ,m t+1 such that

P
[

σ̂′ = σ̂′′]= 1−Õ(n−1), P
[

|σ̂′△σ̂′′| >
p

n ln n
]

=O(n−2). (3.63)

We are going to extend this to a coupling of ĜT,t (n,m t ,γt ,π), ĜT,t (n, vecmt +1,γt ,π). Specifically, given σ̂′,σ̂′′ we
construct a pair (G ′,G ′′) of factor graphs as follows.

Case 1: σ̂′ = σ̂′′: then we define G ′ as the outcome of INT1–INT4 with σ̌ = σ̂′ = σ̂′′. Further, G ′′ is obtained
from G ′ by adding one single k-ary constraint node a such that ∂a, ψa have distribution

P
[

∂a = (xi1 , . . . , xik
),ψa =ψ

]

∝ p(ψ)ψ(σ̂′(xi1 ), . . . ,σ̂′(xik
)) (i1, . . . , ik ∈ [n],ψ ∈Ψ). (3.64)

Case 2: |σ̂′△σ̂′′| ≤
p

n lnn: consider the probability distributions q ′, q ′′ on V k ×Ψ defined by

q ′(y1, . . . , yk ,ψ) ∝ p(ψ)ψ(σ̂′(y1), . . . ,σ̂′(yk )),

q ′′(y1, . . . , yk ,ψ) ∝ p(ψ)ψ(σ̂′′(y1), . . . ,σ̂′′(yk )).

Since |σ̂′△σ̂′′| ≤
p

n ln n these two distributions have total variation distance Õ(n−1/2). Consequently,
we can couple G∗(n,mt ,γt ,π,σ̂′) and G∗(n,mt + 1,γt ,π,σ̂′′) such that with probability 1 −O(n−2) no
more than Õ(

p
n) constraint nodes either have different neighborhoods or different weight functions. Let

(G ′,G ′′) be the outcome of this coupling subjected to pinning the same set U of variable nodes to σ̂′, σ̂′′,
respectively.

Case 3: |σ̂′△σ̂′′| >
p

n lnn: choose G∗(n,m t ,γt ,π,σ̂′) and G∗(n,m t +1,γt ,π,σ̂′′) independently and obtain
G ′,G ′′ by pinning.

The construction ensures that (G ′,G ′′) is a coupling of ĜT,t (n,m t ,γt ,π), ĜT,t (n,m t +1,γt ,π). Hence,

E
[

ln Z (ĜT,t (n,m t +1,γt ,π))
]

−E
[

ln Z (ĜT,t (n,mt ,γt ,π))
]

= E

[

ln
Z (G′′)

Z (G′)

]

. (3.65)

Further, (3.62) and (3.63) and the construction in case 2 ensure that

E

[

ln
Z (G′′)

Z (G′)

]

= E

[

ln
Z (G′′)

Z (G′)

∣

∣

∣σ̂′ = σ̂′′
]

+E

[

ln
Z (G′′)

Z (G′)

∣

∣

∣|σ̂′△σ̂′′| ≤
p

n lnn

]

+E

[

ln
Z (G′′)

Z (G′)

∣

∣

∣|σ̂′△σ̂′′| >
p

n lnn

]

= E

[

ln
Z (G′′)

Z (G′)

∣

∣

∣σ̂′ = σ̂′′
]

+Õ(n−1/2). (3.66)

Thus, if we denote by a an additional random factor node drawn from the distribution (3.64), regardless whether
or not σ̂′ = σ̂′′, then (3.63), (3.65) and (3.66) yield

E
[

ln Z (ĜT,t (mt +1,γt ))
]

−E
[

Z (ĜT,t (mt ,γt ))
]

= E
[

ln
〈

ψa (σG ′ )
〉

G ′

∣

∣

∣σ̂′ = σ̂′′
]

+Õ(n−1/2)

= E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

+Õ(n−1/2). (3.67)

Hence, we are left to compute E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

. Writing σ,σ1,σ2, . . . for independent samples from µG ′ and
plugging in the definition (3.64) of a, we find

E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

=
∑

y1 ,...,yk∈V E
[

ψ(σ̂′(y1), . . . ,σ̂′(yk )) ln
〈

ψ(σ(y1), . . . ,σ(yk ))
〉

G ′
]

∑

y1,...,yk∈V E
[

ψ(σ̂′(y1), . . . ,σ̂′(yk ))
] .

Since by Corollary 3.27 the empirical distribution λσ̂′ is asymptotically uniform with very high probability, the
denominator in the above expression equals nk (ξ+o(1)) with probability 1−O(n−2). Thus,

E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

= o(1)+
1

nkξ

∑

y1,...,yk∈V

E
[

ψ(σ̂′(y1), . . . ,σ̂′(yk )) ln
〈

ψ(σ(y1), . . . ,σ(yk ))
〉

G ′
]

. (3.68)
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Further, because all weight functions ψ ∈Ψ take values in (0,2), expanding the logarithm gives

ln
〈

ψ(σ(y1), . . . ,σ(yk ))
〉

G ′ =−
∑

l≥1

1

l

〈

1−ψ(σ(y1), . . . ,σ(yk ))
〉l

G ′ =−
∑

l≥1

1

l

〈

l
∏

h=1
1−ψ(σh(y1), . . . ,σh(yk ))

〉

G ′
;

the second equality sign holds because σ1,σ2, . . . are mutually independent. Combining the last two equations, we
obtain

E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

= o(1)−
∑

l≥1

∑

y1,...,yk

E

[

ψ(σ̂′(y1), . . . ,σ̂′(yk ))

lnkξ

〈

l
∏

h=1
1−ψ(σh(y1), . . . ,σh(yk ))

〉

G ′

]

= o(1)+
∑

l≥1

1

lnkξ

∑

y1 ,...,yk

E

[

(1−ψ(σ̂′(y1), . . . ,σ̂′(yk )))

〈

l
∏

h=1
1−ψ(σh(y1), . . . ,σh(yk ))

〉

G ′

]

−
∑

l≥1

1

lnkξ

∑

y1 ,...,yk

E

〈

l
∏

h=1
1−ψ(σh (y1), . . . ,σh (yk ))

〉

G ′
. (3.69)

Since Proposition 3.10 implies that given G ′ the assignment σ̂′ is distributed as a sample from the Gibbs measure
µG ′ , we obtain

E

[

1−ψ(σ̂′(y1), . . . ,σ̂′(yk ))

lnkξ

〈

l
∏

h=1
1−ψ(σh(y1), . . . ,σh(yk ))

〉

G ′

]

= E

〈

l+1
∏

h=1
1−ψ(σh(y1), . . . ,σh (yk ))

〉

G ′

for l ≥ 1. Moreover, by Corollary 3.27

1

nk

∑

y1 ,...,yk

E
〈

1−ψ(σ(y1), . . . ,σ(yk ))
〉

G ′ = 1−
∑

y1 ,...,yk

E
[

ψ(σ′(y1), . . . ,σ′(yk ))
]

nk
= 1−ξ+o(1).

Plugging these two into (3.69) and simplifying, we finally obtain

E
[

ln
〈

ψa (σG ′ )
〉

G ′
]

= o(1)−
1−ξ

ξ
+

∑

l≥2

∑

y1 ,...,yk

1

l(l −1)nkξ
E

〈

l
∏

h=1
1−ψ(σh(y1), . . . ,σh (yk ))

〉

G ′

and the assertion follows from (3.67). �

The steps that we just followed from (3.68) onward to calculate Eln
〈

ψa (σG ′ )
〉

G ′ are similar to the manipulations
from the interpolation argument of Abbe and Montanari [1]. Similar manipulations will be used in the proof of the
next two lemmas.

Lemma 3.33. With µ1,µ2, . . . chosen from π mutually independently and independently of everything else,

∆
′
t =−

ξ

1−ξ
+

∑

l≥2

1

l(l −1)knξ
E

〈

∑

x∈V ,i∈[k]

l
∏

h=1
1−

∑

τ∈Ωk

ψ(τ)1{τi =σh(x)}
∏

j 6=i

µ j (τ j )

〉

T,t

.

Proof. By Corollary 3.28, σ̂n,m,γt ,m t ,σ̂n,m,γt+1x ,m t are identically distributed. Hence, let σ̂= σ̂n,m,γt ,m t for brevity
and write x for a uniformly random element of V . Starting from σ̂ we can easily construct a coupling (G ′,G ′′) of
ĜT,t (n,m t ,γt ,π) and ĜT,t (n,m t ,γt +1x ,π). Namely, let G ′ =G∗

T (n,m t ,γt ,π,σ̂). Then obtain G ′′ by choosing x ∈V

(independently of G ′) and add a unary constraint node b adjacent to x whose weight function is distributed as
follows. Pick an index i ∈ [k], a weight function ψb,∗ ∈Ψ and µ̂1, . . . ,µ̂k from the distribution

P
[

i = i , (µ̂1, . . . ,µ̂k )∈A ,ψb,∗ =ψ
]

=
∑

τ∈Ωk 1{τi = σ̂(x)}ψ(τ)
∫

A

∏

j 6=i µ̂(τ j )dπ⊗k(µ̂1, . . . , µ̂k )
∑

τ∈Ωk

∑k
i=1 1{τi = σ̂(x)}E[ψ(τ)

∏

j 6=i µ j (τ j )]
. (3.70)

Then the weight function associated with b is

ψb (σ) =
∑

τ∈Ωk

1{τi =σ}ψb,∗(τ)
∏

j 6=i

µ̂ j (τ j ).

Proposition 3.10 implies that G ′ is distributed as ĜT,t (n,mt ,γt ,π) and that G ′′ is distributed as ĜT,t (n,m t ,γt +
1x ,π).

Therefore, with σ,σ1, . . . denoting independent samples from µG ′ ,

E[ln Z (ĜT,t (mt ,γt +1x ))]−E[ln Z (ĜT,t (mt ,γt ))]= Eln(Z (G′′)/Z (G′)) = Eln
〈

ψb (σ(x))
〉

G ′ . (3.71)
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Because
∫

µdπ(µ) is the uniform distribution, assumption SYM ensures that the denominator on the r.h.s. of (3.70)
equals kξ. Therefore,

Eln
〈

ψb (σ(x))
〉

G ′ =
1

knξ

∑

x∈V

k
∑

i=1
E

[

∑

τ∈Ωk

1{τi = σ̂(x)}ψ(τ)
∏

j 6=i

µj (τ j ) ln

〈

∑

σ∈Ωk

1{σi =σ(x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

]

.

Further, since the weight functions take values in (0,2), expanding the logarithm yields

Eln
〈

ψb (σ(x))
〉

G ′ =−
∑

x∈V

k
∑

i=1

∑

l≥1

1

klnξ
E

[

∑

τ∈Ωk

1{τi = σ̂(x)}ψ(τ)
∏

j 6=i

µ j (τ j )

〈

l
∏

h=1
1−

∑

σ∈Ωk

1{σi =σh (x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

]

=
∑

x∈V

k
∑

i=1

∑

l≥1

1

klnξ
E

[

(

1−
∑

τ∈Ωk

1{τi = σ̂(x)}ψ(τ)
∏

j 6=i

µ j (τ j )

)〈

l
∏

h=1
1−

∑

σ∈Ωk

1{σi =σh (x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

−
〈

l
∏

h=1
1−

∑

σ∈Ωk

1{σi =σh(x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

]

. (3.72)

Since by Proposition 3.10 the conditional distribution of σ̂ given G ′ coincides with the Gibbs measure µG ′ , we find

E

[(

1−
∑

τ∈Ωk

1{τi = σ̂(x)}ψ(τ)
∏

j 6=i

µj (τ j )

)〈

l
∏

h=1
1−

∑

σ∈Ωk

1{σi =σh(x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

]

= E

〈

l+1
∏

h=1
1−

∑

σ∈Ωk

1{σi =σh(x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

. (3.73)

Moreover, since
∫

µdπ(µ) ∈P (Ω) is the uniform distribution, SYM implies

E

〈

1−
∑

σ∈Ωk

1{σi =σ(x)}ψ(σ)
∏

j 6=i

µ j (τ j )

〉

G ′

= 1−ξ. (3.74)

Plugging (3.73) and (3.74) into (3.72), we obtain

Eln
〈

ψb (σ(x))
〉

G ′ =−
ξ

1−ξ
+

∑

l≥2

1

l(l −1)knξ
E

〈

∑

x∈V ,i∈[k]

l
∏

h=1
1−

∑

τ∈Ωk

ψ(τ)1{τi =σh (x)}
∏

j 6=i

µ j (τ j )

〉

G ′

and the assertion follows from (3.71). �

Lemma 3.34. With µ1,µ2 chosen independently from π we have

∆
′′
t =

1

d(k −1)n

∂

∂t
Γt =−

ξ

1−ξ
+

1

ξ

∑

l≥2

1

l(l −1)
E

[(

1−
∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µj (τ j )

)l ]

Proof. This follows by expanding the logarithm in the expression that defines Γt . �

Proposition 3.30 is now immediate from Lemmas 3.31–3.34.

Proof of Proposition 3.25. Let ρĜ T,t
be the empirical distribution of the marginals of µĜ T,t ,x ; in symbols,

ρĜT,t
=

1

n

∑

x∈V

δµĜT,t ,x
∈P

2(Ω).

Write ν1,ν2, . . . for independent samples drawn from ρĜ T,t
and define

Ξ
′
t ,l = E

[(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
ν j (σ j )

)l

−
k
∑

i=1

(

1−
∑

τ∈Ωk

ψ(τ)ν1(τi )
∏

j 6=i

µ j (τ j )

)l

+ (k −1)

[

1−
∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ j (τ j )

]l ]

.
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Lemma 2.8 implies that for any ε > 0, l ≥ 1 there is δ > 0 such that in the case that ĜT,t is δ-symmetric for any
ψ ∈Ψ, i ∈ [k] we have

∣

∣

∣

∣

∣

1

nk

∑

y1,...,yk∈V

〈

1−ψ(σ(y1), . . . ,σ(yk ))
〉l

ĜT,t
−E

[(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
ν j (σ j )

)l
∣

∣

∣ĜT,t

]∣

∣

∣

∣

∣

< ε,

∣

∣

∣

∣

∣

∣

1

n

∑

y∈V

〈

1−
∑

τ∈Ωk

ψ(τ)1{τi =σh (y)}
∏

j 6=i

µ j (τ j )

〉l

ĜT,t

−E

[(

1−
∑

τ∈Ωk

ψ(τ)ν1(τi )
∏

j 6=i

µ j (τ j )

)l
∣

∣

∣ĜT,t

]

∣

∣

∣

∣

∣

∣

< ε.

Since ĜT,t is oT (1)-symmetric with probability 1−oT (1) by Lemma 3.5, we therefore conclude that
∣

∣

∣Ξt ,l −Ξ
′
t ,l

∣

∣

∣= oT (1). (3.75)

Furthermore, Lemma 3.11 implies together with Corollary 3.27 that
∫

µdρǦ T,t
(µ) is within total variation distance

o(1) of the uniform distribution w.h.p. Therefore, POS implies that Ξ′
t ,l ≥ o(1). Finally, the assertion follows from

Proposition 3.30 and (3.75). �

3.4.4. Proof of Proposition 3.7. Let us recap what we learned from Proposition 3.25.

Lemma 3.35. For any distribution π ∈P
2
∗ (Ω) we have

liminf
n→∞

1

n
E[ln Z (Ĝ)]≥ liminf

n→∞
1

n
E[ln Z (Ĝ0,0)]−Γ1.

Proof. Together with the fundamental theorem of calculus Proposition 3.25 implies that for any ε > 0 there is
T = T (ε) > 0 (independent of n) such that for large enough n,

1

n
E[ln Z (ĜT,1)] ≥

1

n
E[ln Z (ĜT,0)]−Γ1 −ε. (3.76)

Furthermore, by Lemma 3.11 ĜT,1 results from Ĝ simply by attaching a random number of constraint nodes with
{0,1}-valued weight functions. Therefore, E[ln Z (ĜT,1)] ≤ E[ln Z (Ĝ)]. Similarly, by Lemma 3.11 we can think of
ĜT,0 as being obtained from Ĝ0,0 by adding a few constraint nodes with {0,1}-weights. The expected number of
these constraint nodes does not exceed T , which remains fixed as n →∞, and each connected component of Ĝ0,T

contains only a single variable node and a Po(d) number of unary constraint nodes. Consequently, E[ln Z (Ĝ0,T )]=
E[ln Z (Ĝ0,0)]+o(n) and the assertion follows from (3.76). �

Thus, we are left to calculate E[ln Z (Ĝ0,0)]. That is straightforward because every connected component of Ĝ0,0

contains just a single variable node.

Lemma 3.36. With independent γ= Po(d), ψi from p, µi j chosen from π and uniform hi ∈ [k] we have

1

n
E[ln Z (Ĝ0,0)]=

1

|Ω|
E

[

ξ−γΛ

(

∑

σ∈Ω

γ
∏

b=1

∑

τ∈Ωk

1{τhb
=σ}ψb(τ)

∏

j 6=hb

µb j (τ j )

)]

.

Proof. Because the random graph model is symmetric under permutations of the variable nodes, we can view
1
n

E[ln Z (Ĝ0,0)] as the contribution to E[ln Z (Ĝ0,0)] of the connected component of x1. The partition function of the
component of x1 is nothing but

z =
∑

σ∈Ω

γx1
∏

j=1
ψbx1 , j

(σ).

Furthermore, by construction at t = 0 the degree γx1
is chosen from the Poisson distribution Po(d). Hence, recall-

ing the distribution of the weight functions ψbx1, j
, j ≤γx1

from G3 in Section 3.4.1, we find

1

n
E[ln Z (Ĝ0,0)] = E[z] =

1

|Ω|
E

[

ξ
−γx1 Λ

(

∑

σ∈Ω

γx1
∏

j=1

∑

τ∈Ωk

1{τh j
=σ}ψb(τ)

∏

i 6=h j

µi j (τi )

)]

,

as desired. �

Finally, Proposition 3.7 is immediate from Lemmas 3.35 and 3.36.
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3.5. Proof of Theorems 2.6 and 2.7. We derive Theorems 2.6 and 2.7 from Theorem 2.2. Recall that the Kullback-
Leibler divergence is defined as

DKL
(

Ĝ(n,m, p)‖G(n,m, p)
)

=
∑

G

P
[

Ĝ(n,m, p) =G
]

ln
P

[

Ĝ(n,m, p) =G
]

P
[

G(n,m, p) =G
] ,

with the sum ranging over all possible factor graphs. Let us begin with the following humble observation.

Fact 3.37. For any n,m, p we have

E[ln Z (Ĝ(n,m, p))]= ln E[Z (G(n,m, p))]+DKL
(

Ĝ(n,m, p)‖G(n,m, p)
)

(3.77)

≥ ln E[Z (G(n,m, p))]−DKL
(

G(n,m, p)‖Ĝ(n,m, p)
)

= E[ln Z (G(n,m, p))].

Proof. Plugging in the definition (3.4) of Ĝ and using (2.6), we obtain

DKL
(

Ĝ(n,m, p)‖G(n,m, p)
)

=
∑

G

Z (G)P
[

G(n,m, p) =G
]

E[Z (G(n,m, p))]
ln

Z (G)P
[

G(n,m, p) =G
]

/E[Z (G(n,m, p))]

P
[

G(n,m, p) =G
]

= E[ln Z (Ĝ(n,m, p))]− ln E[Z (G(n,m, p))],

DKL
(

G(n,m, p)‖Ĝ(n,m, p)
)

=
∑

G

P
[

G(n,m, p) =G
]

ln
P

[

G(n,m, p) =G
]

Z (G)P
[

G(n,m, p) =G
]

/E[Z (G(n,m, p))]

= lnE[Z (G(n,m, p))]−E[ln Z (G(n,m, p))].

The middle inequality follow from the fact that the Kullback-Leibler divergence is non-negative. �

Lemma 3.38. Assume that m = m(n) is such that E[ln Z (G(n,m, p))] = lnE[Z (G(n,m, p))]+o(n). Then for any event

E on graph/assignment pairs,

E
〈

1{(Ĝ(n,m, p),σ) ∈ E }
〉

Ĝ(n,m,p) ≤ exp(−Ω(n)) ⇒ E
〈

1{(G(n,m, p),σ) ∈ E }
〉

G(n,m,p) ≤ exp(−Ω(n)).

Proof. The argument is similar to the one behind the “planting trick” from [3]. Suppose that

E
〈

1{(Ĝ(n,m, p),σ) ∈ E }
〉

Ĝ(n,m,p) ≤ exp(−2εn) (3.78)

for some ε > 0. By Lemma 3.3 and the assumption E[ln Z (G(n,m, p))] = ln E[Z (G(n,m, p))]+ o(n) there is δ =
δ(ε,Ψ) > 0 such that for large enough n,

P
[

ln Z (G(n,m, p)) ≤ lnE[Z (G(n,m, p))]−εn
]

≤ exp(−δn). (3.79)

Consider the event Z = {ln Z (G(n,m, p)) ≥ ln E[Z (G(n,m, p))]−εn}. Then (3.79) implies

E
〈

1{(G(n,m, p),σ) ∈ E }
〉

G(n,m,p) ≤ exp(−δn)+E
[

〈

1{(G(n,m, p),σ) ∈ E }
〉

G(n,m,p)

∣

∣Z

]

. (3.80)

Further, by (2.4) and (3.4) and (3.78), with the sum ranging over all possible factor graphs and assignments,

E
[

〈

1{(G(n,m, p),σ) ∈ E }
〉

G(n,m,p) 1{Z }
]

=
∑

G ,σ
1{G ∈Z }1{(G,σ) ∈ E }P

[

G(n,m, p) =G
]

µG (σ)

=
∑

G ,σ
1{G ∈Z }1{(G,σ) ∈ E }P

[

G(n,m, p) =G
] ψG (σ)

Z (G)

≤ exp(εn)
∑

G ,σ
1{(G,σ) ∈ E }

ψG (σ)P
[

G(n,m, p) =G
]

E[Z (G(n,m, p))]

= exp(εn)E
〈

1{(Ĝ(n,m, p),σ) ∈ E }
〉

Ĝ(n,m,p) ≤ exp(−εn). (3.81)

Finally, the assertion follows from (3.79), (3.80) and (3.81). �

Corollary 3.39. We have

E[ln Z (Ĝ(n,m, p))]= lnE[Z (G(n,m, p))]+o(n) ⇔ E[ln Z (G(n,m, p))]= ln E[Z (G(n,m, p))]+o(n).
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Proof. Assume that E[ln Z (Ĝ(n,m, p))] = ln E[Z (G(n,m, p))]+ o(n). Then there is a sequence Ω(1/ln n) ≤ ε(n) =
o(1) such that E[ln Z (Ĝ(n,m, p))] ≤ ln E[Z (G(n,m, p))]+nε(n). Because ε(n) =Ω(1/ln n), Lemma 3.3 implies that
the event

E =
{

ln Z (G(n,m, p)) ≤ E[ln Z (Ĝ(n,m, p))] ≤ lnE[Z (G(n,m, p))]+2nε(n)
}

satisfies P
[

Ĝ(n,m, p) ∈ E
]

= 1 − o(1). As a consequence, recalling (3.4), we conclude that the random variable
Z (G(n,m, p)) = Z (G(n,m, p))1{E } satisfies

E
[

Z (G(n,m, p))
]

= E
[

Z (G(n,m, p))1{E }
]

= E[Z (G(n,m, p))]P
[

Ĝ(n,m, p) ∈ E
]

= (1+o(1))E[Z (G(n,m, p))]. (3.82)

On the other hand, the definition of Z (G(n,m, p)) guarantees that

E[Z (G(n,m, p))2]= E[Z (G(n,m, p))21{E }]≤ exp(4nε(n))E[Z (G(n,m, p))]2 = exp(o(n))E[Z (G(n,m, p))]2. (3.83)

Combining (3.82) and (3.83) with the Paley-Zygmund inequality, we obtain

P
[

Z (G(n,m, p)) ≥ E[Z (G(n,m, p))]/4
]

≥ P
[

Z (G(n,m, p)) ≥ E[Z (G(n,m, p))]/2
]

≥
E[Z (G(n,m, p))]2

4E[Z (G(n,m, p))2]
≥ exp(o(n)). (3.84)

Since ln Z (G(n,m, p)) is tightly concentrated by Lemma 3.3, (3.84) implies that

E[ln Z (G(n,m, p))]= ln E[Z (G(n,m, p))]+o(n).

Conversely, assume that E[ln Z (Ĝ(n,m, p))] = ln E[Z (G(n,m, p))]+Ω(n). Then there is δ > 0 such that for large
enough n, E[ln Z (Ĝ(n,m, p))]≥ ln E[Z (G(n,m, p))]+δn. Therefore, by Lemma 3.3 the event

E = {G : E[ln Z (G)]≥ ln E[Z (G(n,m, p))]+δn/2}

satisfies P
[

Ĝ(n,m, p) ∈ E
]

= 1− exp(−Ω(n)). Applying Lemma 3.38 to E and recalling that E[ln Z (G(n,m, p))] ≤
ln E[Z (G(n,m, p))] by Jensen, we conclude that E[ln Z (G(n,m, p))]≤ ln E[Z (G(n,m, p))]−Ω(n). �

We recall from (2.6) that for any sequence m = m(n) =O(n),

ln E[Z (G(n,m, p))]= (1−d)n ln |Ω|+m ln
∑

σ∈Ωk

E[ψ(σ)]+o(n). (3.85)

Moreover, Theorem 2.2, Proposition 3.2 and Lemma 3.4 imply that

lim
n→∞

1

n
E[ln Z (Ĝ)]= sup

π∈P
2
∗ (Ω)

B(d ,π). (3.86)

Corollary 3.40. Assume that d > 0 is such that

sup
π∈P

2
∗ (Ω)

B(d ,π) > (1−d) ln |Ω|+
d

k
ln

∑

σ∈Ωk

E[ψ(σ)]. (3.87)

Then

limsup
n→∞

1

n
E[ln Z (G)] < (1−d) ln |Ω|+

d

k
ln

∑

σ∈Ωk

E[ψ(σ)].

Proof. If (3.87) holds, then (3.86) shows that there is δ> 0 such that for large enough n,

1

n
E[ln Z (Ĝ)]≥ (1−d) ln |Ω|+

d

k
ln

∑

σ∈Ωk

E[ψ(σ)]+2δ.

Hence, there exists a sequence m = m(n)= dn/k +O(
p

n) such that for large n,

1

n
E[ln Z (Ĝ(n,m, p))]≥ (1−d) ln |Ω|+

d

k
ln

∑

σ∈Ωk

E[ψ(σ)]+δ.

Consequently, (3.77), (3.85) and Corollary 3.39 imply that E[ln Z (G(n,m, p))] ≤ ln E[Z (G(n,m, p))]−Ω(n) and the
assertion follows from Lemma 3.3. �
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Proof of Theorem 2.7. Assume that d < dinf. Then

sup
π∈P

2
∗ (Ω)

B(d ,π) ≤ (1−d) ln |Ω|+
d

k
ln

∑

σ∈Ωk

E[ψ(σ)] (3.88)

and (3.85) and (3.86) yield

1

n
E[ln Z (Ĝ)]= o(1)+ sup

π∈P
2
∗ (Ω)

B(d ,π) ≤ (1−d) ln |Ω|+
d

k
ln

∑

σ∈Ωk

E[ψ(σ)]+o(1).

Hence, (3.77) and (3.85) imply that there exists m = m(n) = dn/k +O(
p

n) such that

E[ln Z (Ĝ(n,m, p))]= ln E[Z (G(n,m, p))]+o(n).

Therefore, Corollary 3.39 shows that E[ln Z (G(n,m, p))] = ln E[Z (G(n,m, p))] + o(n). Consequently, (3.85) and
Lemma 3.3 yield E[ln Z (G)]= (1−d) ln |Ω|+ d

k
ln

∑

σ∈Ωk E[ψ(σ)]+o(1).
Conversely, suppose that d > dcond. Then there exist d ′ < d and δ> 0 such that

sup
π∈P

2
∗ (Ω)

B(d ′,π) > (1−d ′) ln |Ω|+
d ′

k
ln

∑

σ∈Ωk

E[ψ(σ)]+δ.

Therefore, letting m′ = Po(d ′n/k), we obtain from Theorem 2.2 and (3.85)

1

n
E[ln Z (Ĝ(n,m ′, p))]> (1−d ′) ln |Ω|+

d ′

k
ln

∑

σ∈Ωk

E[ψ(σ)]+δ.

Thus, Lemma 3.3, (3.77) and (3.85) imply that the event

E
′ =

{

G : ln Z (G)≤ (1−d ′) ln |Ω|+
d ′

k
ln

∑

σ∈Ωk

E[ψ(σ)]+δ/2

}

satisfies

P
[

Ĝ(n,m ′, p) ∈ E
′]= exp(−Ω(n)), P

[

G(n,m ′, p) ∈ E
′]= 1−exp(−Ω(n)). (3.89)

Now, for a factor graph G let G ′ be the random factor graph obtained from G by removing each constraint node with
probability 1−d ′/d independently. Moreover, consider the event E =

{

G : P
[

G ′ ∈ E
′]≥ 1/2

}

, where, of course, the
probability is over the coin tosses of the removal process only. Then the distribution of G(n,m, p)′ coincides with
the distribution of G(n,m ′, p). Furthermore, Proposition 3.2 implies that Ĝ(n,m, p)′ and Ĝ(n,m′, p) are mutually
contiguous. Therefore, (3.89) entails that

P
[

Ĝ(n,m, p)∈ E
]

≤ exp(−Ω(n)) while P
[

G(n,m, p) ∈ E
]

= 1−exp(−Ω(n)).

Consequently, Lemma 3.38 yields E[ln Z (G(n,m, p))] ≤ E[ln Z (Ĝ(n,m, p))]−Ω(n), whence the assertion follows
from Corollary 3.39 and (3.77). �

Finally, to derive Theorem 2.6 from Theorem 2.7 we need the following lemma.

Lemma 3.41. Under SYM and BAL we have

DKL
(

G∗,σ∗‖G ,σG

)

= o(n) ⇔
1

n
E[ln Z (G)]= (1−d) ln |Ω|+

d

k
ln

∑

σ∈Ωk

E[ψ(σ)]+o(1).

Proof. We have

DKL
(

G∗,σ∗‖G ,σ
)

=
∑

G ,σ
P

[

G∗ =G,σ∗ =σ
]

ln
P[G∗ =G,σ∗ =σ]

P[G =G,σ=σ]

= DKL
(

G∗,σ∗‖Ĝ ,σ̂
)

+
∑

G ,σ
P

[

G∗ =G,σ∗ =σ
]

ln
P

[

Ĝ =G
]

P
[

σ̂=σ|Ĝ =G
]

P[G =G]µG (σ)

= DKL
(

G∗,σ∗‖Ĝ ,σ̂
)

+
∑

G ,σ
P

[

G∗ =G,σ∗ =σ
]

ln
Z (G)P[G =G]µG (σ)

E[Z (G)]P[G =G]µG (σ)
[by (3.4)]

= DKL
(

G∗,σ∗‖Ĝ ,σ̂
)

+E[ln Z (G∗)]−E[ln E[Z (G)|m]]. (3.90)
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Further, because σ∗,σ̂ are asymptotically balanced with overwhelming probability by Lemma 3.12,

DKL
(

G∗,σ∗‖Ĝ ,σ̂
)

=
∑

σ
P

[

σ∗ =σ
]∑

H

P
[

G∗ = H |σ∗ =σ
]

ln
P[G∗ = H |σ∗ =σ]P[σ∗ =σ]

P[G∗ = H |σ∗ =σ]P[σ̂=σ]

=
∑

σ
P

[

σ∗ =σ
]

ln
P[σ∗ =σ]

P[σ̂=σ]
= DKL

(

σ∗‖σ̂
)

= o(n).

Hence, (3.90) yields

DKL
(

G∗,σ∗‖G ,σ
)

⇔E[ln Z (G∗)]= E[ln E[Z (G)|m]]+o(n). (3.91)

Further, by Proposition 3.2 and Lemma 3.3 we have E[ln Z (G∗)] = E[ln Z (Ĝ)]+ o(n). Thus, the assertion follows
from (3.85), (3.91) and Corollary 3.39. �

Proof of Theorem 2.6. The theorem is immediate from Theorem 2.7 and Lemma 3.41. �

3.6. Proof of Theorem 2.4. Here we prove that under the assumptions SYM, BAL and POS,

sup
π∈P

2
∗ (Ω)

B(d ,π) = sup
π∈P

2
fix(d)

B(d ,π),

where
P

2
fix(d) = {π ∈P

2
∗(Ω) : Td (π) =π}.

Since P
2
fix(d) ⊆P

2
∗(Ω), we have immediately supπ∈P

2
∗ (Ω) B(d ,π) ≥ supπ∈P

2
fix(d) B(d ,π). The other direction follows

from the following bound

limsup
n→∞

1

n
Eln Z (Ĝ) ≤ sup

π∈P
2
fix(d)

B(d ,π), (3.92)

since Proposition 3.7 gives

sup
π∈P

2
∗ (Ω)

B(d ,π) ≤ liminf
n→∞

1

n
Eln Z (Ĝ) ≤ limsup

n→∞

1

n
Eln Z (Ĝ).

To show (3.92), we show that the random factor graph G∗
T (n,m(n), p,σ∗

n) (from Definition 3.9) and its empirical
marginal distribution ρG∗

T
satisfy an approximate distributional Belief Propagation fixed point property.

Lemma 3.42. For n large enough,

E[W1(Td (ρG∗
T

),ρG∗
T

)]= oT (1). (3.93)

We prove Lemma 3.42 below, but first we derive (3.92) from it. We first define a set of approximate distributional
BP fixed points. Let P

2
fix(d ,ε) be the set of all π ∈P

2(Ω) so that

FIX1: W1(T (d ,π),π) < ε.
FIX2: ‖

∫

µdπ(µ)−1/|Ω|‖T V < ε.

Recall the random factor graph G̃ defined by CPL1 and CPL2 in Section 3.3, and ∆T (n) = E[ln Z (G∗
T (n+1,m(n+

1), p,σ∗
n+1)]−E[ln Z (G∗

T (n,m(n), p,σ∗
n)] from Lemma 3.15. Lemmas 3.42 and 3.17 and Claim 3.21 show that for any

ε> 0, with probability 1−oT (1), ρG̃ ∈P
2
fix(d ,ε), and so Claims 3.22 and 3.23 give that for any ε> 0,

limsup
n→∞

1

n
E[ln Z (Ĝ)]≤ limsup

T→∞
limsup

n→∞
∆T (n) ≤ sup

π∈P
2
fix(d ,ε)

B(d ,π).

Now we take ε→ 0 and must show that

limsup
ε→0

sup
π∈P

2
fix(d ,ε)

B(d ,π) ≤ sup
π∈P

2
fix(d)

B(d ,π). (3.94)

Let (εk ,πk ) be a sequence so that εk → 0, πk ∈P
2
fix(d ,εk ), and

lim
k→∞

B(d ,πk ) = limsup
ε→0

sup
π∈P

2
fix(d ,ε)

B(d ,π).

Since the space P
2(Ω) is compact under the weak topology, there is a convergent subsequence πk j

with

lim
j→∞

W1

(

πk j
,π∞

)

= 0,
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for some π∞ ∈P
2(Ω). Now from Lemma 2.9, B(d , ·) and Td ( ·) are continuous in the W1 metric, and so we have

π∞ ∈P
2
fix(d) and B(d ,π∞) = limsup

ε→0
sup

π∈P
2
fix(d ,ε)

B(d ,π),

which gives (3.94) and in turn (3.92).
Before turning to the proof Lemma 3.42, we introduce an additional tool, based on [31, Lemma 3.1], that shows

that the empirical distribution of an ε-symmetric factor graph is stable under a bounded number of perturbations.

Lemma 3.43. For every finite set Ω, finite set Ψ of k-ary constraint functions ψ : Ωk → (0,2), ε> 0 and K > 0, there

exists δ> 0,n0 > 0 so that the following is true. Let G0 be a factor graph on n > n0 variable nodes V0 taking values in

Ω, with a set F0 of m1 constraint functions from the set Ψ and m2 ‘hard’ fields of the form 1{σ(xi ) =ωi } for arbitrary

values ω∗
i
∈Ω. Let G1 be formed by adding a set V1 of at most K new variable nodes, each attached to at most K new

constraint nodes, with the other attached variables chosen arbitrarily from V0, and constraint functions chosen from

the set Ψ. Then if G0 is (δ,2)-symmetric,

W1(ρ(G0),ρ(G1)) < ε.

The proof of Lemma 3.43 requires the following ‘Regularity Lemma’ for probability measures from [17]. For
µ ∈P (Ωn), and U ⊆V , let µ[ · |U ] ∈P (Ω) be the measure defined by

µ[ω|U ] =
1

|U |
∑

u∈U

1{σ(u) =ω}.

We say a measure µ on Ω
n is ε-regular with respect to U ⊆V if for every S ⊂U , |S| ≥ ε|U |,

〈σ[ · |S]−σ[ · |U ]〉µ < ε.

We say a measure µ on Ω
n is ε-regular with respect to a partition V of V if there is a set J ∈ [#V ] such that

∑

j∈J |V j | > (1−ε)n and µ is ε-regular with respect to V j for all j ∈ J . For S ⊆Ω
n , let µ[ · |S] be the measure defined

by

µ[σ|S] =
1{σ ∈ S}

µ(S)
.

Theorem 3.44 ([17], Theorem 2.1). Given any ε> 0 and Ω, there exists N (ε,Ω so that for any n > N and µ ∈P (Ωn)
the following is true. There exists a partition V of [n] and a partition S of Ωn so that #S+#V ≤ N and there is a subset

I ⊂ [#S] such that the following conditions hold.

REG1: µ(S j ) > 0 for all i ∈ I , and
∑

i∈I µ(Si ) ≥ 1−ε.

REG2: For all i ∈ I and j ∈ [#V ], and all σ,σ′ ∈ Si we have
∥

∥σ[ · |Vi ]−σ′[ · |Vi ]
∥

∥

TV < ε.

REG3: For all i ∈ I , µ[ · |Si ] is ε-regular with respect to V .

REG4: µ is ε-regular with respect to V .

Proof of Lemma 3.43. The proof follows along the lines of that of Lemma 3.1 of [31], but here we must take into
account the hard external fields of G0. Recall V0,F0 are the set of variable nodes and constraint nodes of G0, and
let U0 be the indices of variable nodes with hard fields in V0. Let V1,F1 be the set of variable and constraint nodes
respectively added to G0 to form G1. Let V =V0 ∪V1 and F = F0 ∪F1.

Let Σ0 = {σ ∈Ω
V0 : σ(x j ) = ω∗

j
∀ j ∈ U0}. Then we claim that there exists M = M(K ,Ψ) > 0 so that for all σ ∈ Σ0

and all τ ∈Ω
V1 ,

1

M
≤

µG0 (σ)
∑

τ∈ΩV1 µG1 (σ,τ)
≤ M . (3.95)

For all σ ∉Σ0, both µG0 (σ),µG1 (σ,τ) are 0 on account of the hard fields.
For σ ∈Σ0 and τ ∈Ω

V1 , we write:

µG0 (σ)=
∏

a∈F0 ψa(σ(∂a))
∑

σ′∈Σ0

∏

a∈F0 ψa (σ′(∂a))

and

µG1 (σ,τ) =
∏

a∈F1 ψa ((σ,τ)(∂a)) ·
∏

a∈F0 ψa (σ(∂a))
∑

σ′∈Σ1

∑

τ′∈ΩV1

∏

a∈F1 ψa ((σ′,τ′)(∂a)) ·
∏

a∈F0 ψa (σ′(∂a))
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Now because for some η> 0, η<ψ(σ) < 2 for all σ ∈Ω
k and ψ ∈Ψ, we have

ηK 2
≤

∏

a∈F1

ψa ((σ,τ)(∂a))≤ 2K 2
,

and for all σ′ ∈Σ0,

|Ω|kηK 2
≤

∑

τ′∈ΩV1

∏

a∈F1

ψa ((σ′,τ′)(∂a))≤ |Ω|k 2K 2
.

Taking M = (2/η)K 2 |Ω|K proves the claim.
Now consider the measure µ̃ that G1 induces on V0. That is, for σ ∈Ω

V0 ,

µ̃(σ) =
∑

τ∈ΩV1

µG1 ((σ,τ)).

Note that for x ∈ V0, µG1 ,x = µ̃x . We will show that for every ε > 0, there is δ > 0 small enough and n0 > 0 large
enough so that if µG0 is δ-symmetric and |V0| = n ≥ n0, then

∑

x∈V0

‖µG0 ,x − µ̃x‖T V ≤ εn. (3.96)

Let V ,S be partitions of V0 and Ω
V0 guaranteed by Theorem 3.44 so that µ̃ is ε′-homogeneous with respect to

V ,S, and let N = N (ε′) be such that #V +#S ≤ N .
Let J be the set of all j ∈ [#S] so that µ̃(S j ) ≥ ε′/N and µ̃[·|S j ] is ε-regular with respect to V . Then REG1 and

REG3 ensure that
∑

j 6∈J

µ̃(S j ) < 2ε′. (3.97)

Now we claim that (3.95) and (3.97) imply that µG0 [·|S j ] is M2ε′-regular with respect to V for all j ∈ J . Let Vi be
such that µ̃ is ε′-regular on Vi and let U ⊂Vi be such that |U | ≥ ε′|Vi |. Then

〈‖σ[ · |Vi ]−σ[ · |U ]‖TV〉µG0 [ · |S j ] =
∑

σ∈ΩV0

µG0 (σ|S j )‖σ[ · |Vi ]−σ[ · |U ]‖TV

≤ M2 〈‖σ[ · |Vi ]−σ[ · |U ]‖TV〉µ̃[ · |S j ] < M2ε′,

and so µG0 [ · |S j ] is M2ε′-regular.
Next, using REG2 we have

∑

i∈[#V ]

|Vi |
n

〈∥

∥

∥σ[ · |Vi ]−〈τ[ · |Vi ]〉µG0 [ · |S j ]

∥

∥

∥

TV

〉

µG0 [ · |S j ]
< 3ε′. (3.98)

for any j ∈ J . [31, Lemma 2.4], the M2ε′-regularity of µG0 [ · |S j ], and (3.98) imply that S j is an (ε′′,2)-state of µG0 for
every j ∈ J , provided that ε′ = ε′(ε′′) was chosen small enough. The bound (3.95) implies that µG0 (S j ) ≥ ε′/(M2N )
for all j ∈ J . Therefore, if we choose δ small enough, Corollary 2.3 of [31] and the δ-symmetry of µG0 give that for
each j ∈ J ,

∑

x∈V

∥

∥µG0 ,x −µG0 ,x [ · |S j ]
∥

∥

TV < εn/4, (3.99)

provided ε′′ = ε′′(ε) is chosen small enough and n is large enough. Further, by [31, Lemma 2.5] and M2ε′-regularity,
∑

i∈[#V ]

∑

x∈Vi

∥

∥µG0 ,x [ · |S j ]−σ[ · |Vi ]
∥

∥

TV < εn/4 for all j ∈ J , σ ∈ S j ,

and by (3.99),
∑

i∈[#V ]

∑

x∈Vi

∥

∥µG0 ,x −σ[ · |Vi ]
∥

∥

TV < 2εn/4 for all j ∈ J , σ ∈ S j . (3.100)

Similarly,
∑

i∈[#V ]

∑

x∈Vi

∥

∥µ̃x [ · |S j ]−σ[ · |Vi ]
∥

∥

TV < ε′′′n for all j ∈ J , σ ∈ S j . (3.101)

Combining (3.100) and (3.101) and using the triangle inequality, we obtain
∑

x∈V0

∥

∥µG0 ,x − µ̃x [ · |S j ]
∥

∥

TV ≤ 3εn/4 for all j ∈ J .
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Therefore,
∑

x∈V0

∥

∥µG0 ,x − µ̃x

∥

∥

TV ≤ 2εn+
∑

j∈J

∑

i∈[#V ]

∑

x∈Vi

µ̃(S j )
∥

∥µG0 ,x − µ̃x [ · |S j ]
∥

∥

TV < εn,

which proves (3.96).
Now consider sampling a variable node x uniformly from V0 and V and outputting µG0 ,x and µG1 ,x respectively.

The distributions of µG0 ,x and µG1 ,x are exactly ρ(G0) and ρ(G1). Since the probability we choose x ∈ V1 in the
second experiment is O(1/n) we can couple the choice of x to coincide with probability 1−O(1/n). On the event
they coincide the expected total variation distance between µG0 ,x and µG1 ,x = µ̃x is at most ε by (3.96), and so
W1(ρ(G0),ρ(G1)) ≤ ε−o(1), completing the proof of Lemma 3.43. �

With this tool we now prove Lemma 3.42.

Proof of Lemma 3.42. Let G∗
T = G∗

T (n,m(n), p,σ∗
n) and ρG∗

T
be its empirical marginal distribution. We must show

that for n large enough,
E[W1(Td (ρG∗

T
),ρG∗

T
)]= oT (1).

More precisely we will show that for any ε> 0, there is T large enough so that

E[W1(Td (ρG∗
n,T

),ρG∗
n,T

)]< ε. (3.102)

Fix ε > 0. For L = L(ε) large enough, we will couple the factor graph G∗
T = G∗

T (n,m(n), p,σ∗
n) on n variable

nodes with a factor graph G ′ on n + L variable nodes as follows. Form G∗
T (n,m(n), p,σ∗

n) as usual by choos-
ing m ∼ Po(dn/k), θ uniformly from [0,T ], and a ground truth σ∗

n uniformly at random from Ω
n . Then add m

random constraint nodes with weight functions from Ψ and pin each variable node independently with prob-
ability θ/n. To obtain G ′ we add L additional variable nodes xn+1, . . . xn+L , extending σ∗

n to σ∗
n+L by choosing

σ∗
n+L

(xn+1), . . .σ∗
n+L

(xn+L) uniformly at random, then we add Po(d) constraint nodes with weight functions from
Ψ adjacent to each new variable node xn+1, . . . xn+L with respect to σ∗

n+L , and finally pin each new variable node
independently with probability θ/n.

Up to total variation distance o(1), the distribution of G ′ with the L distinguished variable nodes xn+1, . . . xn+L

is identical to the distribution of G ′ with L uniformly chosen distinguished variable nodes from x1, . . . xn+L . Let ρL

denote the empirical marginal distribution of xn+1, . . . xn+L , that is

ρL =
1

L

L
∑

j=1
δµG′,xn+ j

.

By Proposition 2.10, for L = L(ε) chosen large enough we have

E[W1(ρL ,ρG ′ )]< ε/3. (3.103)

Next we claim that the empirical marginal distributions of G∗
T and G ′ are close: for n,T large enough,

E[W1(ρG∗
T

,ρG ′)] < ε/3. (3.104)

To prove this we use Lemma 3.43. Take K > L large enough so that with probability at least 1− ε/10, each vari-
able node xn+1, . . . xn+L in G ′ is joined to at most K constraint nodes. With probability 1−o(1), none of these L

variable nodes are pinned, and no two are joined to the same constraint node. Since µG∗ is oT (1)-symmetric with
probability 1−oT (1), we apply Lemma 3.43 with G0 =G∗

T and G1 =G ′ to obtain (3.104).
Now it remains to show that

E[W1(Td (ρG∗
T

),ρL )]< ε/3. (3.105)

The Gibbs measure µG∗
T

is oT (1)-symmetric with probability 1−oT (1), and so by Proposition 2.10 and repeated
applications of Lemma 3.43 and the triangle inequality, it suffices to show that

E[W1(Td (ρG∗
T

),µG∗
n+1,T ,xn+1

)]< ε/4 (3.106)

where µG∗
n+1,T ,xn+1

is the distribution of the marginal of xn+1 over the randomness in adding a single variable node

xn+1 to G∗
T

with a uniformly chosen σn+1(xn+1), and attaching Po(d) random constraint nodes from Ψ to it. We
may assume that xn+1 is not pinned, as this occurs with probability O(1/n).

With γ∼ Po(d), let b1 . . . ,bγ ∈ ∂xn+1 be the factor nodes adjoining xn+1. With probability 1−oT (1), µG∗
T

is oT (1)-

symmetric, and so the random set Y =
⋃γ

i=1 ∂bi of variable nodes satisfies ‖µG∗
T

,Y −
⊗

y∈Y µG∗
T

,y‖TV = oT (1) with
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probability 1−oT (1), again using the contiguity of Y with a uniformly chosen set, as in (3.41), (3.42). Under this
condition we can compute

µG∗
n+1,T ,xn+1

(ω) = oT (1)+
∏γ

i=1

∑

τ∈Ω∂bi 1{τ(xn+1) =ω}ψbi
(τ)

∏

y∈∂bi \{xn+1}µG∗
T

,y (τ(y))
∑

σ∈Ω
∏γ

i=1

∑

τ∈Ω∂bi 1{τ(xn+1) =σ}ψbi
(τ)

∏

y∈∂bi \{xn+1}µG∗
T

,y (τ(y))
(3.107)

= oT (1)+
∏γ

i=1 µbi
(ω)

∑

σ∈Ω
∏γ

i=1 µbi
(σ)

, (3.108)

where

µbi
(ω)=

∑

τ∈Ωk

1{τhi
=ω}ψbi

(τ)
∏

j 6=hi

µG∗
T

,y i j
(τ j ),

hi is the position at which xn+1 is attached to the constraint node bi , and y i j is the variable node attached to
constraint node bi at position j . As before, the neighborhoods ∂bi and weight functions ψbi

are chosen according
to the teacher-student scheme with respect to σ∗

n+1, and so by assumption SYM and Lemma 3.17, we have

P
[

∂bi = (y1, . . . , yk ),ψ̂=ψ
]

∝ o(1)+1{yhi
= xn+1}E[ψ(σ∗

n(y1), . . . ,σ∗
n(yk ))], (3.109)

where h1, . . . are independent and uniform on [k]. Conditioned on their spins, the variables in ∂bi are uniformly
chosen and independent, and so their marginals are independent samples from the corresponding empirical dis-
tributionsρG∗

T
,σ∗

n ,σ. Combining the definition of Td (·), the weak continuity of Td (·), (3.107), (3.109), and Lemma 3.18,
we obtain (3.106) and thus (3.105).

The bound (3.102) follows from (3.103), (3.104), (3.105), and the triangle inequality. �

3.7. Proof of Lemma 3.5. As a first step we establish the following lemma.

Lemma 3.45. Let Ω 6= ; be a finite set, let n > 0 be an integer and let µ ∈P (Ωn ). Given θ1, . . . ,θn ∈ (0,1), consider the

following experiment.

(1) choose U ⊂ [n] by including each i ∈U with probability θi independently.

(2) independently choose σ ∈Ω
n from µ.

Then for any i , j ∈ [n], i 6= j , we have

EU [I (σi ,σ j |(σu)u∈U )]= (1−θi )(1−θ j )
∂2

∂θi∂θ j
EU [H(σ|(σu)u∈U )].

Lemma 3.45 and Corollary 3.48 below are generalized version of [73, Lemma 3.1]. The proofs are based on very
similar calculations, parts of which go back to [61, 63, 64]. We proceed to prove Lemma 3.45. We begin with the
following claim.

Claim 3.46. We have ∂
∂θi

EU [H(σ|(σu )u∈U )]=−EU [H(σi |(σu)u∈U )|i 6∈U ].

Proof. By the chain rule, for any i ∈ [n] we have

EU [H(σ|(σu)u∈U )]= EU [H(σi |(σu )u∈U )+H(σ|(σu)u∈U∪{i})].

Hence,

∂

∂θi
EU [H(σ|(σu)u∈U )]=

∂

∂θi
EU [H(σi |(σu )u∈U )]+

∂

∂θi
EU [H(σ|(σu)u∈U∪{i})].

We claim that
∂

∂θi
EU [H(σ|(σu)u∈U∪{i}) = 0].

To show this define for U ⊂ [n] and j ∈ [n]

p(U )= P[U =U ]=
n
∏

i=1
θ1{i∈U }

i
(1−θi )1{i 6∈U }, p j (U )= P

[

U \
{

j
}

=U \
{

j
}]

=
∏

i 6= j

θ1{i∈U }
i

(1−θi )1{i 6∈U }.
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Then

∂

∂θi
EU [H(σ|(σu)u∈U∪{i})] =

∑

U⊂[n]

[

∂

∂θi
p(U )

]

∑

σ∈Ωn

µ(σ)H(σ|(σu)u∈U∪{i} = (σu)u∈U∪{i})

=
∑

σ∈Ωn

µ(σ)
[

∑

U⊂[n]:i∈U

pi (U )H(σ|(σu)u∈U∪{i} = (σu)u∈U∪{i})

−
∑

U⊂[n]:i 6∈U

pi (U )H(σ|(σu)u∈U∪{i} = (σu)u∈U∪{i})
]

= 0.

Moreover,

∂

∂θi
EU [H(σi |(σu)u∈U )]=

∑

U⊂[n]

[

∂

∂θi
p(U )

]

∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U )

=
∑

U⊂[n]:i 6∈U

[

∂

∂θi
p(U )

]

∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U )

because H(σi |(σu )u∈U = (σu)u∈U ) = 0 if i ∈U . Hence,

∂

∂θi
EU [H(σi |(σu )u∈U )]=−

∑

U⊂[n]\{i}
pi (U )

∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U )

=−EU [H(σi |(σu)u∈U )|i 6∈U ],

as claimed. �

Claim 3.47. If i 6= j , then ∂2

∂θi ∂θ j
EU [H(σ|(σu)u∈U )]= EU [I (σi ,σ j |(σu)u∈U )|i , j 6∈U ].

Proof. By Claim 3.46

∂

∂θi
EU [H(σ|(σu )u∈U )]=−EU [H(σi |(σu)u∈U )|i 6∈U ]

=−
∑

U⊂[n]\{i}
pi (U )

∑

σ
µ(σ)H(σi |(σu )u∈U = (σu)u∈U ).

Hence,

∂2

∂θi∂θ j
EU [H(σi |(σu)u∈U )]=−

∑

U⊂[n]\{i}

[

∂

∂θ j
pi (U )

]

∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U ).

Letting

pi j (U )= P
[

U \ {i , j } =U \ {i , j }
]

=
∏

h 6=i , j

θ1{h∈U }
h

(1−θh )1{h 6∈U },

we get

∂2

∂θi∂θ j
EU [H(σi |(σu)u∈U )]=

∑

U⊂[n]\{i , j }
pi j (U )

∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U )

−
∑

U⊂[n]\{i}, j∈U

pi j (U )
∑

σ
µ(σ)H(σi |(σu)u∈U = (σu)u∈U )

=
∑

U ′⊂[n]\{i , j }
pi j (U ′)

∑

σ
µ(σ)

[

H(σi |(σu)u∈U ′ = (σu)u∈U ′)

−H(σi |(σu )u∈U ′∪{ j } = (σu)u∈U ′∪{ j })
]

=
∑

U ′⊂[n]\{i , j }
pi j (U ′)

∑

σ
µ(σ)I (σi ,σ j |(σu)u∈U ′ = (σu)u∈U ′).

The last line follows from the general formula I (X ,Y ) = H(X )−H(X |Y ). �
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Proof of Lemma 3.45. The mutual information I (σi ,σ j |(σu)u∈U ) vanishes if i ∈U or j ∈U . Therefore, Claim 3.47
yields

EU

[

I (σi ,σ j |(σu)u∈U )
]

= (1−θi )(1−θ j )EU

[

I (σi ,σ j |(σu)u∈U )|i , j 6∈U
]

= (1−θi )(1−θ j )
∂2

∂θi∂θ j
EU [H(σ|(σu)u∈U )],

as desired. �

Corollary 3.48. Suppose in the experiment from Lemma 3.45 we set θi = θ for all i ∈ [n]. Then

n
∑

i , j=1

∫t

0
EU [I (σi ,σ j |(σu)u∈U )]dθ ≤ n ln |Ω| for all 0< t < 1.

Proof. By the chain rule and Lemma 3.45, for θ ∈ (0,1),
n
∑

i , j=1
EU [I (σi ,σ j |(σu)u∈U )]≤

n
∑

i , j=1

EU [I (σi ,σ j |(σu )u∈U )]

(1−θi )(1−θ j )

=
n
∑

i , j=1

∂2

∂θi∂θ j
EU [H(σ|(σu)u∈U )]=

∂2

∂θ2
EU [H(σ|(σu)u∈U )].

Hence,
∫t

0

n
∑

i , j=1
EU [I (σi ,σ j |(σu)u∈U )]dθ =

∫t

0

∂2

∂θ2
EU [H(σ|(σu )u∈U )]=

∂

∂θ
EU [H(σ|(σu)u∈U )]

∣

∣

∣

θ=t

θ=0
.

Once more by the chain rule and Claim 3.46,

∂

∂θ
EU [H(σ|(σu)u∈U )]

∣

∣

∣

θ=t

θ=0
=

n
∑

i=1
EU [H(σi |(σu )u∈U )|i 6∈U ]

∣

∣

∣

θ=0
−EU [H(σi |(σu)u∈U )|i 6∈U ]

∣

∣

∣

θ=t
≤ n ln |Ω|,

whence the assertion follows. �

Corollary 3.49. For the random measure µ̌ from Lemma 3.5 we have

n
∑

i , j=1
E

[

DKL

(

µ̌i j ‖µ̌i ⊗ µ̌ j

)]

≤
n2 ln |Ω|

T
.

Proof. We claim that

EU ,σ̌

[

DKL

(

µ̌i j ‖µ̌i ⊗ µ̌ j

)]

= EU

[

I (σ̌i ,σ̌ j |(σ̌v )v∈U )
]

.

Indeed, since σ̌ is chosen from µ, given U such that i , j 6∈U we have

I (σ̌i ,σ̌ j |(σ̌v )v∈U ) =
∑

σ̌∈Ωn

µ(σ̌)
∑

σi ,σ j ∈Ω
µ(σi =σi ,σ j =σ j |∀u ∈U :σu = σ̌u)

ln
µ(σi =σi ,σ j =σ j |∀u ∈U : σu = σ̌u)

µ(σi =σi |∀u ∈U : σu = σ̌u)µ(σ j =σ j |∀u ∈U :σu = σ̂u)

= Eσ̌

[

DKL

(

µ̌i j ‖µ̌i ⊗ µ̌ j

)

∣

∣U
]

.

Moreover, both the mutual information and the Kullback-Leibler divergence vanish if i ∈ U or j ∈ U . Therefore,
Corollary 3.48 implies

E
[

DKL

(

µ̌i j ‖µ̌i ⊗ µ̌ j

)]

=
n

T

∫T /n

0
E[I (σ̌i ,σ̌ j |(σ̌u)u∈U )]dθ ≤

n2 ln |Ω|
T

,

as desired. �

Proof of Lemma 3.5. By Lemma 3.49 and Markov’s inequality for large enough T = T (ε,Ω) we get

P
[∣

∣

∣

{

(i , j )∈ [n]× [n] : DKL

(

µ̌i j ‖µ̌i ⊗ µ̌ j

)

> ε2
}∣

∣

∣< εn2
]

> 1−ε.

Therefore, the assertion follows from Pinsker’s inequality (2.7). �
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4. APPLICATIONS

In this section we derive the results stated in Section 1 from those in Section 2. We begin with the proof of Theo-
rem 1.1 in Section 4.1. Section 4.2 contains the proof of Theorem 1.3, parts of which we will reuse in Section 4.3
to prove Theorem 1.2. Then in Section 4.4 we prove Theorem 1.4. Finally, Section 4.5 deals with a few further
examples.

4.1. Proof of Theorem 1.1. The Potts antiferromagnet can easily be cast as a random factor graph model. Indeed,
for q ≥ 2, let Ω= [q] be the set of spins and set cβ = 1−exp(−β). There is just a single weight function of arity two,
namely

ψβ : Ω2 → (0,1], (σ,τ) 7→ 1−cβ1{σ= τ}. (4.1)

Thus, Ψ = {ψβ} and pβ(ψβ) = 1. With m = m(d ,n) = Po(dn/2) let G = G(n,m, pβ) be the resulting random factor
graph model.

Lemma 4.1. Let S be the event that every constraint node is adjacent to two distinct variable nodes and that for all

1 ≤ i < i ′ ≤ m the set of neighbors of ai is distinct from the set of neighbors of ai ′ . For any d > 0 there is ζ(d) > 0 such

that for all q ≥ 2, β> 0 we have P[S]≥ ζ(d)+o(1).

Proof. Given m, the number X1(G) of constraint nodes that hit the same variable node twice has mean (1 +
o(1))m/n and a standard argument shows that X1(G) is asymptotically Poisson. Similarly, the number X2(G) of
pairs of constraint nodes that have the same neighbors has mean (1+o(1))2m2/n2. Since m = Po(dn/2), a stan-
dard argument shows that (X1(G), X2(G)) is within total variation distance o(1) of a pair of independent Poisson
variables with means d/2 and d2/2. Hence, P[S]≥ exp(−d/2−d2/2+o(1)). �

We remember that G(n,d/n) denotes the Erdős-Rényi random graph.

Corollary 4.2. For all d > 0, β> 0 we have E
[

ln Zβ(G(n,d/n))
]

= E[ln Z (G)]+o(n).

Proof. The number of edges of the random graph G(n,d/n) has distribution Bin(
(n

2

)

,d/n), which is at total varia-
tion distance o(1) from the Poisson distribution Po(dn/2). Therefore,

E
[

ln Zβ(G(n,d/n))
]

= E[ln Z (G)|S]+o(n). (4.2)

Further, since P[S] = Ω(1) by Lemma 4.1 and since ln Z (G) is tightly concentrated by Lemma 3.3, we see that
E[ln Z (G)|S]= E[ln Z (G)]+o(n). Hence, the assertion follows from (4.2). �

Thus, we can prove Theorem 1.1 by applying Corollary 2.7 to G. We just need to verify the assumptions BAL, SYM

and POS.

Lemma 4.3. The Potts antiferromagnet satisfies the assumptions BAL, SYM and POS for all q ≥ 2,β≥ 0.

Proof. Condition SYM is immediate from the symmetry amongst the colors. Then
∑

σ,τ∈Ω
ψ(σ,τ)µ(σ)µ(τ) = 1−cβ

∑

σ∈Ω
µ(σ)2 for any µ ∈P (Ω).

BAL follows because the uniform distribution is the (unique) minimizer of
∑

σ∈Ωµ(σ)2. With respect to POS, fix
π,π′ ∈ P

2
∗ (Ω). Plugging in the single weight function ψ = ψcβ and simplifying, we see that the condition comes

down to

0 ≤ E
[(

∑

σ1 ,σ2∈Ω
1{σ1 =σ2}

2
∏

j=1
µ(π)

j
(σ j )

)l

+
(

∑

σ1,σ2∈Ω
1{σ1 =σ2}

2
∏

j=1
µ(π′)

j
(σ j )

)l

−2
(

∑

σ1 ,σ2∈Ω
1{σ1 =σ2}µ(π)

1 (σ1)µ(π′)
2 (σ2)

)l ]

.

Since µ(π)
1 ,µ(π)

2 ,µ(π′)
1 ,µ(π′)

2 are mutually independent, the expression on the right hand side can be rewritten as

∑

σ1 ,...,σl ∈Ω
E

[(

l
∏

j=1
µ(π)

1 (σ j )

)(

l
∏

j=1
µ(π)

2 (σ j )

)

−2

(

l
∏

j=1
µ(π)

1 (σ j )

)(

l
∏

j=1
µ(π′)

2 (σ j )

)

+
(

l
∏

j=1
µ(π′)

1 (σ j )

)(

l
∏

j=1
µ(π′)

2 (σ j )

)]

=
∑

σ1 ,...,σl ∈Ω

(

E

[

l
∏

j=1
µ(π)

1 (σ j )

]

−E

[

l
∏

j=1
µ(π′)

1 (σ j )

])2

.
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Clearly the last expression is non-negative, whence POS follows. �

Proof of Theorem 1.1. A straightforward calculation reveals that in the case of the Potts model the formula from
Theorem 1.2 boils down to the expression BPotts(q,d ,1−exp(−β)) from (1.2). Therefore, the assertion follows from
Corollaries 2.7 and 4.2. �

4.2. Proof of Theorem 1.3. To derive Theorem 1.3 from Theorem 2.2 a bit of work is required because the to-
tal number of edges that are present in the stochastic block model contains a small bit of information about the
ground truth. Specifically, the total number of edges contains a hint as to how “balanced” the ground truth σ∗

is. Yet we will show that the disassortative stochastic block model is mutually contiguous with the planted Potts
antiferromagnet. We tacitly condition on the event S that neither graph features multiple edges; this has a negligi-
ble effect on the mutual information as the number of multiple edges is well known to be Poisson with a constant
mean (cf. Lemma 4.1).

Lemma 4.4. The random graphs G∗
sbm(σ∗) and G∗

Potts(σ∗) are mutually contiguous for all q ≥ 2, d > 0, β> 0.

Proof. We identify G∗
sbm(σ∗) with a factor graph model in the obvious way by identifying the edges of the origi-

nal graph correspond to the constraint nodes of the factor graph. Let G be any possible outcome of G∗
sbm(σ∗).

Let m(G,σ∗) the number of monochromatic edges under σ∗, and M(σ∗) the number of monochromatic pairs of
vertices under σ∗. Then

P[G∗
sbm(σ∗) =G]= e−βm(G ,σ∗)

(

d

n(q −1+e−β)

)|E | (

1−
d

n(q −1+e−β)

)

(n
2

)

−M(σ∗)−|E |+m(G ,σ∗)

·
(

1−
de−β

n(q −1+e−β)

)M(σ∗)−m(G ,σ∗)

.

For the planted Potts model, each edge is added independently with probability of the form P[Po(λ) ≥ 1] where
λ=Θ(1/n) and depends whether the edge is monochromatic under σ∗:

λin =
d qne−β

2((e−β−1)M(σ∗)+
(n

2

)

)
λout =

d qn

2((e−β−1)M(σ∗)+
(n

2

)

)

and we can write

P[G∗
Potts(σ∗) =G]= e−βm(G ,σ∗)(λout +O(n−2))|E |

·
(

1−λout +O(n−2)
)

(n
2

)

−M(σ∗)−|E |+m(G ,σ∗) ·
(

1−λin +O(n−2)
)M(σ∗)−m(G ,σ∗)

Now suppose for some large C ,
∣

∣

∣M(σ∗)− n2

2q

∣

∣

∣≤Cn, then

d qn

2((e−β−1)M(σ∗)+
(n

2

)

)
=

d qn

2((e−β−1)n2/2q +n2/2+O(Cn))
=

d

n(q −1+e−β)
(1+O(C/n)),

and so

P[G∗
Potts(σ∗) =G] = e−βm(G ,σ∗)

(

d

n(q −1+e−β)
(1+O(C/n))

)|E |

·
(

1−
d

n(q −1+e−β)
(1+O(C/n))

)

(n
2

)

−M(σ∗)−|E |+m(G ,σ∗)

·
(

1−
de−β

n(q −1+e−β)
(1+O(C/n))

)M(σ∗)−m(G ,σ∗)

.

And so if we have
∣

∣

∣M(σ∗)− n2

2q

∣

∣

∣≤Cn, |E | ≤Cn and m(G,σ∗)≤Cn, then for some C ′,

1

C ′ ≤
P[G∗

sbm(σ∗) =G|σ∗]

P[G∗
Potts(σ∗) =G|σ∗]

≤C ′.

Moreover, these conditions all occur with probability tending to 1 as C →∞, which proves mutual contiguity. �

43



We also recall from Proposition 3.2 that G∗
Potts(σ∗) and ĜPotts are mutually contiguous. Write ρ(σ,τ) for the q × q-

overlap matrix of two colorings σ,τ, defined by

ρi j (σ,τ) =
1

n
|σ−1(i )∩τ−1( j )|.

Accordingly we write ρ(σ1, . . . ,σl ) ∈P (Ωl ) for the l-wise overlaps, i.e.,

ρi1 ,...,il
(σ1, . . . ,σl ) =

1

n

∣

∣

∣

∣

∣

l
⋂

j=1
σ−1

j (i j )

∣

∣

∣

∣

∣

.

Let ρ̄ ∈ P (Ωl ) be the uniform distribution (for any l). The following proposition marks the main step toward
deriving Theorem 1.3 from Theorem 2.6. In the following we write Ĝ = ĜPotts and G∗ =G∗

Potts for brevity.

Proposition 4.5. With dinf(q,β) as in Theorem 1.3 the following is true.

(1) For all d < dinf(q,β) we have

E
〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ = o(1). (4.3)

(2) For every dinf(q,β) < d≤ ((q −cβ)/cβ)2 there is ε> 0 such that

E
〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ > ε. (4.4)

To prove Proposition 4.5 we need a few preparations.

Lemma 4.6. Fix β and suppose that for some d > 0, the average overlap is non-trivial. That is, for some ε> 0,

P
[

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ(n,md (n),pβ) > ε
]

> ε. (4.5)

Then there exists δ> 0 so that for all d < d ′ < d +δ, the overlap is non-trivial as well, i.e.,

P
[

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ(n,md ′ (n),pβ) > δ
]

> δ.

Call a vector σ ∈ Ω
n nearly balanced if for all ω ∈ Ω,

∣

∣|σ−1(ω)|−n/|Ω|
∣

∣ < n3/5. To prove Lemma 4.6 we need the
following fact.

Lemma 4.7. For all ε > 0 there exists δ > 0 so that for large enough n for any probability measure µ ∈ P (Ωn) the

following is true. If
〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

µ
< δ (4.6)

then for any nearly balanced vector σ̃ ∈Ω
n ,

〈∥

∥ρ(σ,σ̃)− ρ̄
∥

∥

2

〉

µ
< ε, (4.7)

and for any vector τ ∈Ω
n ,

〈A(σ,τ)〉µ < ε. (4.8)

Proof. Given ε > 0 choose a small enough η = η(ε,Ω) > 0 and a smaller δ = δ(η,Ω) > 0 and assume n = n(δ) is
sufficiently large. By [17, Corollary 2.2 and Proposition 2.5] there exists K = K (η,Ω) > 0 and pairwise disjoint
S0, . . . ,SK ⊂Ω

n such that

(i) µ[ · |Si ]⊗µ[ · |Si ] is η-symmetric for all i ∈ [K ],
(ii)

∑

i∈[K ] µ(Si ) ≥ 1−η and
(iii) µ(Si ) ≥ η/K for all i ∈ [K ].

Let us write 〈 · 〉i = 〈·〉µ[ · |Si ] for the average w.r.t. the conditional distribution µ[ · |Si ]. Due to (iii) we can choose δ

small enough so that (4.6) implies
〈

∥

∥ρ(σ,τ)− ρ̄
∥

∥

2
2

〉

i
<
p
δ for all i ∈ [K ]. (4.9)

Further, define a random variable Rst (v)= 1{σ(v)= s,τ(v) = t }. Then

〈

∥

∥ρ(σ,τ)− ρ̄
∥

∥

2
2

〉

i
=

∑

s,t∈[q]

〈

(ρst (σ,τ)−q−2)2〉

i =
∑

s,t∈[q]

〈(

1

n

∑

v∈[n]
Rst (v)−q−2

)2〉

i

=
∑

s,t∈[q]

[

1

n2

∑

v,w∈[n]
〈Rst (v)Rst (w)〉i −

2q−2

n

∑

v∈[n]
〈Rst (v)〉i +q−4

]

.
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Hence, (4.9) and (i) imply that for all i ∈ [K ],

p
δ≥O(η)+

[

∑

s,t∈[q]

(

1

n

∑

v∈[n]
〈Rst (v)〉i

)2

−q−2

]

=O(η)+
1

n2

[

∑

s,t∈[q]

(

1

n

∑

v∈[n]
µv (s|Si )µv (t |Si )

)2

−q−2

]

.

Consequently, for all s, t ∈Ω we have
∣

∣q−2 − 1
n

∑

v∈[n] µv (s|Si )µv (t |Si )
∣

∣≤O(
p
η). Therefore, for all s ∈Ω

∣

∣

∣

∣

∣

q−1 −
1

n

∑

v∈[n]
µv (s|Si )

∣

∣

∣

∣

∣

≤O(
p
η),

∣

∣

∣

∣

∣

q−2 −
1

n

∑

v∈[n]
µv (s|Si )2

∣

∣

∣

∣

∣

≤O(
p
η). (4.10)

Since a sum of squares is minimized by a uniform distribution, (4.10) implies that for all i ∈ [K ],

1

n

∑

v∈[n]

∥

∥µv ( · |Si )−q−11
∥

∥

TV ≤ η1/8. (4.11)

Together with (ii) and [17, Lemma 2.8] equation (4.11) implies that µ is ε3-symmetric and

1

n

∑

v∈[n]

∥

∥µv −q−11
∥

∥

TV ≤ ε3. (4.12)

To prove (4.7), let U = σ̃−1(i ) for some i ∈ [q]. Since σ̃ is nearly balanced, we have |U | ≥ n/(2q). For s ∈ [q] let Xs

be the number of u ∈U such that σ(u) = s. Then (4.12) implies that 〈Xs〉µ = (q−1 +O(ε3))|U |. Moreover, because µ

is ε3-symmetric we have
〈

X 2
s

〉

µ =
∑

u,v∈U

〈1{σ(u) = s}1{σ(v)= s}〉µ = |U |2(q−2 +O(ε3)).

Therefore, Chebyshev’s inequality implies that
〈

1{|Xs −q−1|U |} > ε|U |}
〉

µ =O(ε). Hence,
〈

‖ρ(σ,σ̃)‖2
〉

µ =O(ε), giv-
ing (4.7).

Proving (4.8) is similar. Let κ ∈ Sq be a fixed permutation. Let Ui = τ−1(i ). Summing over all i ∈ [q], either
|τ−1(i )| < εn or as above we have

〈

1{|Xκ(i) −q−1|U |} > ε|U |}
〉

µ =O(ε), and so
〈

q

(q −1)n

∑

x∈V

(1{τ(x) =κ(σ(x))−1/q)

〉

µ

=O(ε).

Then summing over all κ ∈ Sq gives (4.8). �

We now make a connection between the normalized agreement with the planted partition and the overlap.

Lemma 4.8. Suppose E
〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ
> ε. Then there is an algorithm that given G∗(σ̂) outputs a nearly balanced

τ(G∗(σ̂)) so that

E[A(σ̂,τ(G∗(σ̂))]>
ε3

8q3
. (4.13)

Proof. By Proposition 3.2 (Ĝ,σĜ ) and (G∗(σ̂),σ̂) are identically distributed. Given Ĝ , the “obvious” (deterministic)
algorithm is to output a coloring τ= τ(Ĝ) that maximizes

〈

A(σĜ ,τ)
〉

Ĝ
, with ties broken arbitrarily. To establish that

this algorithm delivers (4.13) it suffices to show that

E
〈

A(σĜ ,τĜ )
〉

Ĝ
>

ε2

8q3
. (4.14)

To show (4.14) observe that if E
〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ
> ε then

P
[〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ
> ε

]

> ε. (4.15)

Further, assuming that Ĝ is such that
〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

Ĝ
> ε, we obtain

〈

1{
∥

∥ρ(σ,τ)− ρ̄
∥

∥

2 > ε}
〉

Ĝ
> ε. (4.16)

In addition, since by Lemma 4.3 the Potts model satisfied BAL, Lemma 3.12 shows that σ=σĜ ,τ = τĜ are nearly
balanced w.h.p. and we are going to show momentarily that

σ,τ are nearly balanced and
∥

∥ρ(σ,τ)− ρ̄
∥

∥

2 > ε ⇒ A(σ,τ) ≥
ε

4q3
(4.17)

so that (4.14) follows from (4.15) and (4.16).
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Thus, we are left to prove (4.17). Consider the q × q matrix M where Mi j = ρi j (σ,τ)−1/q2. Then all row and
columns sums are O(n−1/3) since σ and τ are nearly balanced. The condition

∥

∥ρ(σ,τ)− ρ̄
∥

∥

2 > ε/2 implies that
∑

i , j M2
i j

> ε2/4. If so, then
∑

i , j |Mi j | ≥ ε/2, and so
∑

i , j (Mi , j )+ ≥ ε/4. This implies that there is some entry Mi j

with Mi j ≥ ε/4q2. Let M ′ be the (q −1)× (q −1) matrix obtained by removing row i and column j from M . We
claim there is some permutation κ′ ∈ Sq−1 so that

∑

i ′ M ′
i ′ ,κ′(i ′) ≥ 0. This is because the nearly 0 row and column

sums mean that the sum of all entries of M ′ is Mi j +o(1) ≥ ε/4q2. If we pick a random permutation κ′, then in
expectation the sum

∑

i ′ M ′
i ′ ,κ′(i ′) ≥ ε/2q2 and so there exists some κ′ with a non-negative sum. Adjoining κ′ with

i 7→ j gives a permutation κ ∈ Sq so that
∑

i

ρiκ(i) −1/q2 > ε/4q2.

Now

A(σ,τ) = max
κ∈Sq

q

(q −1)n

∑

x∈V

(1{σ(x) =κ(τ(x))−1/q) = max
κ∈Sq

−
1

q −1
+

q

q −1

∑

i

ρiκ(i) (σ,τ)

=
1

q −1
max
κ∈Sq

∑

i

(ρiκ(i) (σ,τ)−1/q2) ≥
ε

4q3
,

as desired. �

Proof of Lemma 4.6. Pick a small enough η = η(d ,ε) > 0 and a smaller δ = δ(η) > 0. Let d < d ′ < d +δ. We claim
that σ̂= σ̂n,md ,pβ

and σ̂′ = σ̂n,md ′ ,pβ
have total variation distance less than η. Indeed, for any coloring σ and any

m,m′ we find

ln
E[ψG(n,m′ ,pβ)(σ)]

E[ψG(n,m,pβ)(σ)]
= (m′−m) ln

(

1−cβ
∑

ω∈Ω
λσ(ω)2

)

.

Hence, if σ is nearly balanced, then there is a constant C =C (q)> 0 such that
∣

∣

∣

∣

∣

ln
E[ψG(n,m′ ,pβ)(σ)]

E[ψG(n,m,pβ)(σ)]
− (m′−m) ln

(

1−cβ/q
)

∣

∣

∣

∣

∣

≤C (m′−m)
∑

ω∈Ω
(λσ(ω)−1/q)2.

Therefore, the desired bound on the total variation distance follows from (3.1). In effect, we can couple σ̂, σ̂′ such
that both coincide with probability at least 1−η. If indeed σ̂ = σ̂′, then we obtain G ′′ from G ′ = G∗(σ̂) by adding
a random number ∆ = Po((d ′ −d)n/k) of further constraint nodes according to (2.1) and otherwise G ′′ contains
md ′ random constraint nodes chosen independently of the constraint nodes of G ′ so that G ′′ is distributed as
G∗(n,md ′ , pβ,σ̂′). Thus, we have got a coupling of G ′ and G ′′ such that with probability at least 1−η the former is
obtained from the latter by omitting ∆ random constraint nodes.

Using Proposition 3.2, Lemma 3.12 and Lemma 4.8, (4.5) implies that there is an algorithm that given G ′, finds a
nearly balanced partition τ(G ′) with A(τ(G ′,σ̂)) > η with probability at least 3η. Hence, by applying this algorithm
to the factor graph obtained from G ′′ by deleting ∆ random constraint nodes we conclude that with probability at
least η we can identify a nearly balanced τ′(G ′′) such that A(τ′(G ′′),σ̂)) > η. Consequently, Proposition 3.2 yields

E
〈

A(τ′(Ĝ(n,md ′ , pβ)),σ)
〉

Ĝ(n,md ′ ,pβ) ≥ η2.

Thus, Lemma 4.7 shows that two samples from µĜ must have non-trivial expected overlap. �

Lemma 4.9. For all β,d , q we have E[ln Z (Ĝ)]≥ n ln q +dn ln(1−cβ/q)/2+o(n).

Proof. Since E[Z (G(n,m, pβ))]= n ln q +dn ln(1−cβ/q)/2+o(n), the assertion follows from (3.4). �

Lemma 4.10. For all d > 0 we have 1
n

∂
∂d

Eln Z (Ĝ) ≥ ln(1− cβ/q)+o(1) and if (4.3) is violated, then 1
n

∂
∂d

Eln Z (Ĝ) ≥
ln(1−cβ/q)+Ω(1).

Proof. The same calculation as in Lemma 3.31 shows that

1

n

∂

∂d
Eln Z (Ĝ) = E[ln Z (Ĝ(n,m +1, pβ))]−E[ln Z (Ĝ(n,m, pβ))].

Furthermore, with σ̂= σ̂n,m,pβ
and σ̂′ = σ̂n,m+1,pβ

, Propositions 3.2 we can identify Ĝ(n,m +1, pβ) with G∗(n,m +
1, pβ,σ̂′) and Ĝ(n,m, pβ) with G∗(n,m, pβ,σ̂) Moreover, Corollary 3.29 shows that we can couple σ̂,σ̂′ such that
both coincide with probability 1−O(1/n) and such that |σ̂△σ̂′| = Õ(n−1/2) with probability 1−O(n−2). Further, as
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in the proof of Lemma 3.32 this coupling extends to a coupling of G ′ =G∗(n,m+1, pβ,σ̂′) and G ′′ =G∗(n,m, pβ,σ̂′)
such that in the case σ̂= σ̂′ we obtain G ′′ from G ′ by adding one additional random constraint node e chosen from
(2.1) and such that E[ln(Z (G′′)/Z (G ′))|σ̂ 6= σ̂′]= Õ(n1/2). Hence, letting 〈 ·〉 = 〈· 〉G ′ , we find

1

n

∂

∂d
Eln Z (Ĝ) = E[ln(Z (G′′)/Z (G ′))|σ̂= σ̂′]+Õ(n−1/2) = Eln

〈

ψe (σ)
〉

G ′ +o(1). (4.18)

Further, writing v , w for the two variable nodes adjacent to e and expanding the logarithm, we obtain

ln
〈

ψe (σ)
〉

G ′ = ln(1−
〈

cβ1{σ(v) =σ(w)}
〉

G ′ =−
∞
∑

l=1

cl
β

l
〈1{σ(v) =σ(w )}〉l

G ′

=−
∞
∑

l=1

cl
β

l

〈

l
∏

j=1
1{σ j (v) =σ j (w)}

〉

G ′

. (4.19)

Since v , w are chosen from (2.1), (4.18) and (4.19) yield

1

n

∂

∂d
Eln Z (Ĝ) = o(1)−

∑

v,w∈V

∑

l≥1

cl
β

l
E

[

1−cβ1{σ̂(v) = σ̂(w)}
∑

s,t∈V 1−cβ1{σ̂(s) = σ̂(t)}

〈

l
∏

j=1
1{σ j (v)=σj (w)}

〉

G ′

]

.

Hence, Corollary 3.27 and Proposition 3.2 yield

1

n

∂

∂d
Eln Z (Ĝ) = o(1)−

1

1−cβ/q

∑

v,w∈V

∑

l≥1

cl
β

ln2
E

[

(

1−cβ1{σ̂(v)= σ̂(w)}
)

〈

l
∏

j=1
1{σ j (v) =σ j (w)}

〉

G ′

]

= o(1)−
1

1−cβ/q

∑

v,w∈V

∑

l≥1

cl
β

ln2

[

E

〈

l
∏

j=1
1{σ j (v)=σj (w)}

〉

G ′

−cβE

〈

l+1
∏

j=1
1{σ j (v) =σ j (w)}

〉

G ′

]

= o(1)−
cβ

q −cβ
+

∑

l≥2

cl
β

l(l −1)
E

〈

1

n2

∑

v,w∈V

l
∏

j=1
1{σ j (v)=σj (w)}

〉

G ′

.

The last expression can be rewritten nicely in terms of l-wise overlaps: we obtain

1

n

∂

∂d
Eln Z (Ĝ) = o(1)−

cβ

q −cβ
+

1

1−cβ/q

∑

l≥2

cl
β

l(l −1)
E

〈

‖ρ(σ1, . . . ,σl )‖2
2

〉

G ′ . (4.20)

Since ‖ρ(σ1, . . . ,σl )‖2
2 ≥ q−l for all σ1, . . . ,σl , (4.20) yields the first assertion. Moreover, if E

〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ is
bounded away from 0, then E

〈

‖ρ(σ1,σ2)‖2
2

〉

G ′ is bounded away from q−2 and the second assertion follows. �

Lemma 4.11. If β,d ,k are such that Eln Z (Ĝ) = n ln q +dn ln(1−cβ/q)/2+o(n), then the same holds for all d ′ < d.

Proof. This is immediate from Lemmas 4.9 and 4.10. �

Proof of Proposition 4.5. If (4.3) is violated, then Lemma 4.10 shows that 1
n

∂
∂d

Eln Z (Ĝ) > ln(1−cβ/q)+Ω(1). More-
over, by Lemma 4.6 the set of all d for which (4.3) is violated contains an interval (d0,d0 +δ). Therefore, if (4.3) is
violated for some d0 < dinf(q,β), then Lemma 4.9 gives

E[ln Z (Ĝ(n,m(d1)))]= E[ln Z (Ĝ(n,m(d0)))]+
∫d1

d0

∂

∂d
Eln Z (Ĝ)dd = n ln q +

d1n

2
ln(1−cβ/q)+Ω(n),

in contradiction to Corollary 2.7, Lemma 4.3 and the definition of dinf(q,β). Thus the first assertion follows.
With respect to the second assertion, pick ε= ε(q,d) small enough and assume that

P
[〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ < ε
]

> ε. (4.21)

Then a second moment argument shows that Eln Z (G) ∼ ln E[Z (G)], because d ≤ ((q − cβ)/cβ)2. Indeed, define
Z (G) = Z (G)1{

〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ < ε}. Then (3.4) and (4.21) imply that E[Z (G)] = Ω(E[Z (G)]). Further, for a
given overlap matrix ρ let

Z⊗
ρ (G) = Z (G)2 〈

1{ρ(σ1,σ2) = ρ}
〉

G .
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Summing over the discrete set of possible overlaps for a given n, we obtain from the definition of Z (G) that

E[Z (G)2] ≤O(1)
∑

ρ:‖ρ−ρ̄‖2<ε
E[Z⊗

ρ (G)]≤
∑

ρ:‖ρ−ρ̄‖2<ε
exp

(

o(n)+n(H(ρ)+d ln(1−2/k +cβ‖ρ‖2
2)/2)

)

; (4.22)

the last formula follows from a simple inclusion/exclusion argument (cf. [29, Proposition 6]). Moreover, expanding
the exponent to the second order, we see that for d ≤ ((q − cβ)/cβ)2 the maximizer is just ρ̄. Consequently, (4.22)
implies that E[Z (G)2]= exp(o(n))E[Z (G)]2. Hence, by the Paley-Zygmund inequality, for any fixed ε> 0 we have

P
[

Z (G) ≥ exp(−εn)E[Z (G)]
]

≥ P
[

Z (G) ≥ exp(−εn/2)E[Z (G)]
]

= exp(o(n)).

Taking ε→ 0 sufficiently slowly as n →∞ and applying Lemma 3.3 twice, we thus get E[ln Z (G)] = lnE[Z (G)]+o(n).
Therefore, another application of Lemma 3.3 and Corollary 3.39 yields Eln Z (Ĝ) ∼ ln E[Z (G)]. But this contradicts
the assumption dinf(q,β) < d . �

Proof of Theorem 1.3. The theorem follows from Lemma 4.4, Lemma 4.7, Proposition 4.5, and Lemma 4.8. By
Lemma 4.4 it is enough to prove the theorem for the planted Potts model. First suppose d < dinf(q,β). Then by
Proposition 4.5, we have E

〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ = o(1). Lemma 4.7, (4.8), then says that for any τ= τ(Ĝ), 〈A(σ,τ)〉Ĝ =
o(1), which by Proposition 3.2 implies 〈A(σ̂,τ)〉Ĝ = o(1).

For the second part of Theorem 1.3, suppose that d > dinf(q,β). We can assume d ≤ ((q − cβ)/cβ)2 since if
d > ((q − cβ)/cβ)2, the algorithm of Abbe and Sandon [2] succeeds w.h.p. With dinf(q,β) < d ≤ ((q − cβ)/cβ)2,
Proposition 4.5 says that there is some ε > 0 so that E

〈

‖ρ(σ1,σ2)− ρ̄‖2
〉

Ĝ > ε. Then for some δ > 0, the first part

of Lemma 4.8 implies that there is an algorithm that returns τ = τ(Ĝ) so that E[A(σ̂,τ(Ĝ))] > δ, completing the
proof. �

4.3. Proof of Theorem 1.2. To derive Theorem 1.2 about the graph coloring problem from Theorem 2.6 some care
is required because we need to accommodate the ‘hard’ constraint that no single edge be monochromatic. Indeed,
if we cast graph coloring as a factor graph model, then the weight functions are {0,1}-valued. As in Section 4.1 we
work with the Potts antiferromagnet to circumvent this problem. Thus, let Ω = [q] for some q ≥ 3 and let cβ,
ψβ be as in Section 4.1. Let md (d) = md (n) = ⌈dn/2⌉ and md = md (n) = Po(dn/2). Lemma 4.1 shows that the
event S occurs with a non-vanishing probability and throughout this section we always tacitly condition on S.
Moreover, G(n,m, p∞) denotes the factor graph model where cβ = 1, i.e., the weight function (4.1) is {0,1}-valued.
If Z (G(n,m, p∞)) > 0, then we define the Gibbs measure via (2.4); otherwise we let µG(n,m,p∞ ) be the uniform
distribution on Ω

n . Of course none of the results from Section 3 apply to β =∞ directly. But the plan is to apply
Theorem 2.2 to the Potts antiferromagnet and take β→∞. To carry this out we need to apply a few known facts
about the random graph coloring problem.

Lemma 4.12 ([3]). For any q ≥ 3 and any ζ> 0 the property

Aq,ζ = {Z (G(n,md , p∞)) ≥ ζn }

has a non-uniform sharp threshold. That is, there exists a sequence (uq,ζ(n))n such that for any ε> 0,

lim
n→∞

P
[

G(n,muq,ζ(n)−ε(n), p∞))∈Aq,ζ

]

= 1 and lim
n→∞

P
[

G(n,muq,ζ(n)+ε(n), p∞)) ∈Aq,ζ

]

= 0.

Lemma 4.13. If d > 0, δ> 0 are such that for a strictly increasing sequence (nl )l we have

liminf
l→∞

1

nl
Eln Z (Ĝ(nl ,md (nl ), pβ)) > ln q +

d

2
ln(1−cβ/q)+δ, (4.23)

for all large enough β> 0, then

limsup
l→∞

E[Z (G(nl ,md (nl ), p∞))1/nl ] < q(1−1/q)d/2. (4.24)

Proof. By Proposition 3.2 and Lemma 3.3, (4.23) implies

liminf
l→∞

1

nl
Eln Z (G∗(nl ,md (nl ), pβ,σ∗)) > ln q +

d

2
ln(1−cβ/q)+δ. (4.25)

Further, we claim that (4.25) implies that for large enough β

liminf
l→∞

1

nl
Eln Zβ(G∗(nl ,md (nl ), p∞,σ∗)) > ln q +

d

2
ln(1−cβ/q)+δ/2, (4.26)
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where Zβ(G) =
∑

σ
∏

a∈F (G) ψβ(σ(∂a)). In words, we generate a random graph with the weight distribution p∞ but
evaluate the free energy at inverse temperature β. To get from (4.25) to (4.26), we simply observe that by (2.1) the
factor graphs G∗(nl ,md (nl ), p∞,σ∗) and G∗(nl ,md (nl ), pβ,σ∗) can be coupled such that they differ in at most
2exp(−β)dn/2 constraint nodes with probability 1−O(n−2). Since altering a single constraint node shifts the free
energy at inverse temperature β by no more than β in absolute value, we obtain (4.26).

By comparison, the first moment bound (2.6) implies that

limsup
l→∞

1

nl
Eln Zβ(G(nl ,md (nl ), p∞)) ≤ ln q +

d

2
ln(1−cβ/q). (4.27)

Furthermore, by Azuma’s inequality both ln Zβ(G(nl ,md (nl ), p∞)) and ln Zβ(G∗(nl ,md (nl ), p∞,σ∗)) are tightly
concentrated. Therefore, there exists β> 0 such that

P

[

n−1
l ln Zβ(G∗(nl ,md (nl ), p∞,σ∗))≤ ln q +

d

2
ln(1−cβ/q)+δ/2

]

≤ exp(−Ω(n)),

P

[

n−1
l ln Zβ(G(nl ,md (nl ), p∞))≥ ln q +

d

2
ln(1−cβ/q)+δ/2

]

≤ exp(−Ω(n)),

and thus the assertion follows from [19, Lemma 6.2]. �

Call σ : V →Ω balanced if |σ−1(ω)| ∈ {⌈n/|Ω|⌉,⌊n/|Ω|⌋} for all ω ∈Ω. Let B(n,Ω) be the set of all balanced σ. Further,
for a factor graph G define the “balanced” partition function as

Z̃ (G) =
∑

σ̃∈B(n,q)
ψG (σ̃)

and let µ̃G ( ·) =µG ( · |B(n,Ω)) be the corresponding “balanced” Gibbs measure. Furthermore, let us write σ̃= σ̃n,Ω

for a uniformly random element of B(n,Ω). Finally, let G̃(n,m, pβ) be the balanced version of the factor graph
distribution (3.4), i.e.,

P
[

G̃ =G
]

= Z̃ (G)P[G =G]/E[Z̃ (G)] for every possible G. (4.28)

The proof of Proposition 3.2 extends to balanced assignments, which shows that G̃ enjoys the Nishimori property;
this was actually already observed (with different terminology) in [3]. Formally, we have

Fact 4.14. The pairs (σ̃,G∗(n,m, p∞,σ̃) and (σG̃(n,m,p∞ ),G̃(n,m, p∞)) are identically distributed.

We recall that for two color assignments σ,τ : V →Ω the overlap is ρ(σ,τ) = (ρi j (σ,τ))i , j∈Ω , where

ρi j (σ,τ) = n−1|σ−1(i )∩τ−1( j )|.

Thus, ρ(σ,τ) ∈P (Ω×Ω). For ρ ∈P (Ω×Ω) let ‖ρ‖2
2 =

∑

i , j∈Ω ρ2
i j

and write ρ̄ for the uniform distribution.

Lemma 4.15 ([18, Proposition 5.6]). For any q ≥ 3 there exist ε> 0 such that for every 0 < d < (q −1)2 there is n0 > 0
such that for all n > n0 and all and all m ≤ dn/2 the following is true. Let

Z̃⊗(G(n,m, p∞) =
∣

∣

{

(σ,τ) ∈B(n, [q])×B(n, [q]) : ‖ρ(σ,τ)− ρ̄‖2 < ε and σ,τ are q-colorings of G(n,m, p∞)
}∣

∣ .

Then E[Z̃⊗(G(n,m, p∞)]≤ ε−1E[Z̃ (G(n,m, p∞)]2.

Corollary 4.16. For any q ≥ 3, 0 < d < (q −1)2 is such there exist δ> 0, n0 > 0 such that for all n > n0 the following

is true. Suppose that m ≤ dn/2 is such that

P

[

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

µ̃G̃(n,m,p∞ )
< δ

]

≥ 2/3. (4.29)

Then

P
[

Z (G(n,m, p∞)) ≥ qn(1−1/q)dn/2 exp(− ln2 n)
]

> δ.

Proof. Let ε> 0 be the number promised by Lemma 4.15 and pick δ= δ(ε, q) > 0 small enough. Define

Z (G)= Z̃ (G)1
{

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

µ̃G
< δ

}

.

(Thus, Z (G)= 0 if Z̃ (G) = 0.) Combining (4.28) and (4.29), we obtain

E[Z (G(n,m, p∞))]≥ E[Z̃ (G(n,m, p∞))]/10. (4.30)
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Moreover, by construction Z satisfies Z (G(n,m, p∞))2 ≤ 2Z̃⊗(G(n,m, p∞)), provided δ is small enough. Hence, by
Lemma 4.15

E[Z (G(n,m, p∞))2] ≤
4

ε
E[Z̃ (G(n,m, p∞))]2. (4.31)

Combining (4.30) and (4.31) and applying the Paley-Zygmund inequality, we find

P
[

Z (G(n,m, p∞)) ≥ E[Z̃ (G(n,m, p∞))]/8
]

≥
E[Z (G(n,m, p∞))]2

2E[Z (G(n,m, p∞))2]
≥

ε2

128
. (4.32)

Since a standard calculation shows that E[Z̃ (G(n,m, p∞))] ≥ n−q2
qn(1−1/q)m (cf. [8, Section 3]) and m ≤ dn/2,

(4.32) shows that for all m′ ≤ m,

P
[

Z (G(n,m, p∞)) ≥ n−q2
qn(1−1/q)dn/2/8

]

≥
ε2

128
, (4.33)

as desired. �

The following statement is a weak converse of Corollary 4.16.

Lemma 4.17. For any ε > 0 and any 0 < d ′ < d ′′ ≤ 100(q −1)2 there is δ> 0 such that the following is true. Assume

that (nl )l is a subsequence such that

liminf
l→∞

max
d ′nl /2≤m≤d ′′nl /2

P
[

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

G̃(nl ,m,p∞) < ε
]

< 1. (4.34)

Then

limsup
l→∞

1

nl
E

[

ln Z (G̃(nl ,md ′′(nl ), p∞)
]

> ln q +
d ′′

2
ln(1−1/q)+δ. (4.35)

Proof. Fact 4.14 shows that the Nishimori property extends to the balanced graph coloring problem. Thus, we
obtain G̃(n,m, p∞) by first choosing σ̃ ∈B(n, [q]) uniformly and then generating G∗(n,m, p∞,σ̃). In effect, we can
couple G̃(n,m, p∞) and G̃(n,m +1, p∞) such that the first is obtained by generating G ′ = G∗(n,m, p∞,σ̃) and the
second, denoted G ′′, results by adding one single random constraint node e incident to a random pair of variable
nodes with distinct colors under σ̃. Hence, with 〈 ·〉 = 〈·〉µ̃

G̃′ , we obtain

Eln
Z (G′′)

Z (G′)
= Eln

〈

ψe (σ)
〉

= o(1)+
1

n2(1−1/q)

∑

v,w
E[(1−1{σ̃(v)= σ̃(w)}) ln(1−〈1{σ(v) =σ(w)}〉)]

=−
1

n2(1−1/q)

∑

v,w

∑

l≥1

1

l
E

[

(1−1{σ̃(v)= σ̃(w)})

〈

l
∏

j=1
1{σ j (v) =σ j (w)}

〉]

.

Since by the Nishimori property we can identify σ̃ with a sample from the Gibbs measure, we obtain

Eln
Z (G ′′)

Z (G′)
= o(1)−

1

n2(1−1/q)

∑

v,w

∑

l≥1

1

l
E

[〈

l
∏

j=1
1{σ j (v)=σ j (w)}

〉

−
〈

l+1
∏

j=1
1{σ j (v)=σ j (w)}

〉]

=−
1

q −1
+

∑

v,w

∑

l≥2

q

l(l −1)n2(q −1)
E

〈

l
∏

j=1
1{σ j (v) =σ j (w)}

〉

+o(1). (4.36)

Write ρ(σ1, . . . ,σl ) ∈P (Ωl ) for the l-wise overlap; that is, ρi1 ,...,il
(σ1, . . . ,σl ) = 1

n

∣

∣

∣

⋂l
j=1σ

−1
j

(i j )
∣

∣

∣ . Then (4.36) yields

Eln
Z (G′′)

Z (G′)
= o(1)−

1

q −1
+

∑

l≥2

q

l(l −1)(q −1)
E

〈

‖ρ(σ1, . . . ,σl )‖2
2

〉

. (4.37)

Hence, if we let ξl = E
〈

‖ρ(σ1, . . . ,σl )‖2
2

〉

−q−l ≥ 0, then (4.37) becomes

E[lnG̃(n,m +1, p∞)]−E[lnG̃(n,m, p∞)] = Eln
Z (G′′)

Z (G′)
= o(1)+ ln(1−1/q)+

∑

l≥2

qξl

l(l −1)(q −1)
. (4.38)

Moreover, (4.28) implies that

E[lnG̃(n,m, p∞)]≥ ln q +
m

n
ln(1−1/q)+o(n). (4.39)

Finally, since (4.34) guarantees that ξ2 is bounded away from 0, (4.38) and (4.39) imply (4.35). �
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The following observation shows that we can extend (4.35) to sufficiently large but finite β.

Lemma 4.18. Assume that d > 0 is such that for some δ> 0 and some subsequence (nl )l we have

limsup
l→∞

1

nl
E

[

ln Z (G̃(nl ,m(d ,nl ),∞)
]

> ln q +
d

2
ln(1−1/q)+2δ. (4.40)

Then for all large enough β we have

limsup
l→∞

1

nl
E

[

ln Z (Ĝ(nl ,m(d ,nl ),cβ)
]

> ln q +
d

2
ln(1−1/q)+δ. (4.41)

Proof. By Corollary 3.27 for any d ,β the distribution of σ̂ and the uniform distribution on balanced assignments
can be coupled such that the distance is Õ(

p
n) with probability 1−O(n−2). Hence, we can couple G̃(n,m(d),1)

and Ĝ(n,m(d),cβ) such that they differ on no more than exp(−β)dn constraint nodes with probability 1−O(n−2).

Since altering a constraint node affects ln Z (Ĝ(n,m(d),cβ)) by no more than β in absolute value, we can choose
β=β(δ) large enough so that (4.40) implies (4.41). �

With the notation from (1.2) define

BPotts(π; q,d ,c) = E

[

(1−c/q)−γ

q
Λ

(

q
∑

σ=1

γ
∏

i=1
1−cµ(π)

i
(σ)

)

−
d

2(1−c/q)
Λ

(

1−
q
∑

τ=1
cµ(π)

1 (τ)µ(π)
2 (τ)

)]

.

In the case of the Potts antiferromagnet, B(d ,π) from Theorem 2.2 specializes to BPotts(π; q,d ,cβ).

Lemma 4.19. For all π ∈P
2
∗(Ω) we have BPotts(π; q,d ,1) = limβ→∞BPotts(π;d , q,cβ).

Proof. This follows from the dominated convergence theorem because Λ is bounded and continuous on [0,1]. �

Lemma 4.20. If d < dq,cond , then BPotts(q,d ,1) = ln q + d
2 ln(1−1/q).

Proof. The lower bound is attained at the distribution π= δq−11, i.e., the atom sitting on the uniform distribution
on Ω. The upper bound is immediate from the definition (1.7) of dq,cond . �

In order to derive an upper bound on dq,cond we use the following observation.

Lemma 4.21. For any d1 > (q −1)2 there exists δ> 0 such that for all d ≥ d1 the following is true. W.h.p. there is an

assignment τG̃(n,md ,p∞) such that
〈

A(σ,τG̃(n,md ,p∞))
〉

µ̃G̃(n,md ,p∞ )

> δ.

Proof. We begin by observing that it suffices to prove the statement for d = d1. By the Nishimori property for
balanced colorings from Fact 4.14, G̃(n,md , p∞) is distributed as G ′ =G∗(n,md , p∞,σ̃). Furthermore, if we obtain
G ′′ from G ′ by deleting each constraint node with probability 1−d1/d independently, then G ′′ is distributed as
G∗(n,md1 , p∞,σ̃). Hence, setting τG ′ = τG ′′ , we see that

〈

A(σ,τG ′ )
〉

µ̃G′ > δ w.h.p.

Thus, assume that d = d1 and fix some (q −1)2 < d ′ < d . The algorithm of Abbe and Sandon [2] delivers the
following:

for some δ′ > 0 w.h.p. the algorithm returns τG∗(n,md ′ ,p∞ ,σ∗) such that A(σ∗,τG∗(n,md ′ ,p∞ ,σ∗)) > δ′. (4.42)

We are going to use this algorithm to achieve the same for the balanced planted coloring model.
Given an instance of G0 = G̃(n,md , p∞,σ̃), delete a uniformly random set of εn vertices to form the graph G1

for some suitable ε = ε(d ,d ′,δ′) > 0 such that n1 = (1−ε)n is an integer. Let σ1 be σ̃ restricted to the vertices that
remain after deletion. Then G1 is distributed as G(n1,m(1−ε+O(ε2))d , p∞,σ′). Hence, by choosing an appropriate ε

we can ensure that G1 and G(n1,md ′ , p∞,σ′) have total variation distance o(1). Moreover, σ1 and the uniformly
random map σ∗

n1
are mutually contiguous. Hence, so are G1 and G(n1,md ′ , p∞,σ∗). Thus, (4.42) applies to G1

and we extend the assignment produced by that algorithm to an assignment of n vertices by assigning colors at
random to the εn deleted vertices. Consequently, choosing d −d ′ and thus ε sufficiently small, we deduce from
(4.42) that there is an algorithm such that

for some δ′ > 0 w.h.p. the algorithm returns τ′
G∗(n,md ,p∞ ,σ̃) such that A(σ̃,τ′

G∗(n,md ,p∞ ,σ̃)) > δ′. (4.43)

Since τ′
G∗(n,md ,p∞ ,σ̃) depends on the graph G∗(n,md , p∞,σ̃) only, the assertion follows from (4.43) and the Nishi-

mori property. �
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Corollary 4.22. We have dq,cond ≤ (q −1)2 for all q ≥ 3.

Proof. Combining Lemma 4.21 with Lemma 4.7 and Lemma 4.17, we conclude that for every d > (q −1)2 there is
δ> 0 such that

limsup
n→∞

1

n
E

[

ln Z (G̃(n,md , p∞)
]

> ln q +
d

2
ln(1−1/q)+δ.

Therefore, Lemma 4.18 shows that for (4.41) holds for some subsequence (nl ) for all large enough β. Consequently,
Theorem 2.2, Lemma 3.4 and Lemma 4.3 yield BPotts(q,d ,cβ) > ln q+ d

2 ln(1−1/q)+δ for all large enough β. Hence,
Lemma 4.19 shows that dq,cond ≤ d . �

Remark 4.23. For q ≥ 5 the upper bound dq,cond ≤ (q −1)2 actually follows from a simple first moment argument.

As a final preparation we need the following elementary observation.

Lemma 4.24. Assume that d > 0, η> 0 are such that for some strictly increasing sequence (nl )l≥1 there is a sequence

m(nl ) such that

lim
l→∞

P
[

Z (G(nl ,m(nl ), p∞)) ≥ qnl (1−1/q)m(nl ) exp(−ηnl )
]

= 0.

Then

lim
l→∞

max
m(nl )≤m≤n+m(nl )

P
[

Z (G(nl ,m, p∞)) ≥ qnl (1−1/q)m exp(−ηnl /2)
]

= 0.

Proof. We use two-round exposure. Thus, for m > m(nl ) we think of G(nl ,m,1) as being obtained from G(nl ,m(nl ),∞)
by adding m −m(nl ) random constraint nodes. Then for each q-coloring σ of G(nl ,m(nl ),∞) we have

P
[

σ is a q-coloring of G(nl ,m, p∞)|σ is a q-coloring of G(nl ,m(nl ), p∞)
]

≤ (1−1/q)m−m(nl )+o(n).

Therefore,

E[Z (G(nl ,m, p∞))|G(nl ,m(nl ), p∞)]≤ Z (G(nl ,m(nl ), p∞))(1−1/q)m−m(nl )+o(n)

and the assertion follows from Markov’s inequality. �

Proof of Theorem 1.2. From Lemma 4.22 we know that dq,cond ≤ (q − 1)2. Hence, assume for contradiction that
d1 < dq,cond ≤ (q −1)2 but

liminf
n→∞

E n

√

Z (G(n,md1 , p∞))< q(1−1/q)d1/2.

Then there exist a subsequence (nl )l and η> 0 such that

lim
l→∞

E[Z (G(nl ,md1 (nl ), p∞))1/nl ]= q(1−1/q)d1/2 exp(−3η). (4.44)

Set ζ = q(1− 1/q)d1/2 exp(−2η) and let (u(n))n be the sharp threshold sequence from Lemma 4.12. Then (4.44)
implies that limsupl→∞ u(nl ) ≤ d1. Hence, there exists d1 < d2 < dq,cond ≤ (q −1)2 such that

lim
l→∞

P[Z (G(nl ,md2 (nl ), p∞))1/nl ≥ q(1−1/q)d2/2 exp(−η)]= 0.

Consequently, if we fix d2 < d3 < d4 < dq,cond with d4 −d2 sufficiently small, then Lemma 4.24 yields

lim
l→∞

max
d3nl /2<m<d4nl /2

P[Z (G(nl ,m, p∞)) ≥ qnl (1−1/q)m exp(−η/2)] = 0.

Therefore, Corollary 4.16 shows that for any fixed d3 < d5 < d6 < d4 there is ε> 0 such that

liminf
l→∞

max
d5nl /2≤m≤d6nl /2

P
[

〈∥

∥ρ(σ,τ)− ρ̄
∥

∥

2

〉

G̃(nl ,m,p∞) < ε
]

< 1.

Hence, Lemma 4.17 yields

limsup
l→∞

1

nl
E

[

ln Z (G̃(nl ,md6 (nl ), p∞)
]

> ln k +
d6

2
ln(1−1/q)+δ.

Further, applying Lemma 4.18 we obtain

limsup
l→∞

1

nl
E

[

ln Z (Ĝ(nl ,md6 (nl ), pβ)
]

> ln q +
d6

2
ln(1−1/q)+δ for all large enough β.
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Since Lemma 4.3 shows that the Potts antiferromagnet meets the assumptions of Theorem 2.2, we conclude

BPotts(q,d6,cβ) ≥ limsup
l→∞

1

nl
E

[

ln Z (Ĝ(nl ,md6 (nl ), pβ)
]

≥ ln q +
d6

2
ln(1−1/q)+δ

for all large enough β. Finally, Lemma 4.19 shows that then

BPotts(q,d6,1) > ln q +
d6

2
ln(1−1/q),

which contradicts the fact that d6 < dq,cond.

Conversely, assume that d is such that BPotts(π; q,d ,1) > ln q + d
2 ln(1−1/q) for π ∈ P

2
∗(Ω). Then Lemma 4.19

implies that there is δ > 0 such that BPotts(π; q,d ,cβ) > ln q + d
2 ln(1− cβ/q)+δ for all large enough β. Therefore,

Lemma 4.3 and Theorem 2.2 imply that for all large enough β and n > n0(β),

1

n
Eln Z (Ĝ(n,m(d), pβ))> ln q +

d

2
ln(1−cβ/q)+δ/2.

Consequently, Lemma 4.13 yields limsupn→∞ E n
√

Z (G(n,m(d), p∞))< q(1−1/q)d/2. �

4.4. Proof of Theorem 1.4. Here we prove Theorem 1.4 on LDGM codes. We will apply Theorem 2.2 as follows. Let
Ω= {±1}, Ψ= {ψ1,ψ−1} with

ψJ (σ)= 1+ (1−2η)J ·
k
∏

i=1
σi

for σ ∈Ω
k , J ∈ {±1}. The prior is uniform: p(ψ1) = p(ψ−1) = 1/2. In particular, the distribution on Ψ conditioned

on the planted assignment is exactly as in the description of the LDGM codes:

P[ψa =ψ1|σ(∂a) = (σ1, . . .σk )]=
1+ (1−2η) ·

∏k
i=1 σi

1+ (1−2η) ·
∏k

i=1 σi +1− (1−2η) ·
∏k

i=1 σi

=
{

1−η if
∏k

i=1 σi = 1

η if
∏k

i=1 σi =−1.

Recall that ξ= |Ω|−k ∑

τ∈Ωk E[ψ(τ)], so in this setting we have ξ= E[ψ(1)]= 1. We also compute

d

kξ|Ω|k
∑

τ∈Ωk

E[ψ(τ) lnψ(τ)]=
d

k

1

2

[

2(1−η) ln(2−2η)+2η ln(2η)
]

=
d

k
[ln 2+η lnη+ (1−η) ln(1−η)].

Now a distributionπ′ ∈P
2
∗ ({±1}) corresponds exactly to a distributionπ ∈P0([−1,1]) via the mapθ (π)

j
= 2µ(π′)

j
(1)−

1. So the Bethe formula becomes:

B(d ,π′) = E

[

ξ−γ

|Ω|
Λ

(

∑

σ∈Ω

γ
∏

i=1

∑

τ∈Ωk

1{τhi
=σ}ψb(τ)

∏

j 6=hi

µ(π′)
ki+ j

(τ j )

)

−
d(k −1)

kξ
Λ

(

∑

τ∈Ωk

ψ(τ)
k
∏

j=1
µ(π′)

j
(τ j )

)]

= E

[

1

2
Λ

(

∑

σ∈{±1}

γ
∏

i=1

(

1+
∑

τ∈{±1}k−1

(1−2η)J bσ
k−1
∏

j=1
τ jµ

(π′)
ki+ j

(τ j )

))

−
d(k −1)

k
Λ

(

1+
∑

τ∈{±1}k

(1−2η)J ·
k
∏

j=1
τ jµ

(π′)
j

(τ j )

)]

(4.45)

= E

[

1

2
Λ

(

∑

σ∈{±1}

γ
∏

i=1

(

1+ (1−2η)σJ b

k−1
∏

j=1
θ(π)

ki+ j

))

−
d(k −1)

k
Λ

(

1+ (1−2η)J ·
k
∏

j=1
θ(π)

j

)]

. (4.46)

Now we check the three conditions SYM, BAL, and POS. Both SYM and BAL are immediate since the function
τ 7→ E[ψ(τ)] is constant over all τ ∈ {±1}k .
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Now recall the POS condition:

E
[(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π)

j
(σ j )

)l

+ (k −1)
(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π′)

j
(σ j )

)l

−
k
∑

i=1

(

1−
∑

σ∈Ωk

ψ(σ)µ(π)
i

(σi )
∏

j 6=i

µ(π′)
j

(σ j )
)l ]

≥ 0.

Let J ∈ {±1} be chosen uniformly. Then ψ=ψJ and

(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π)

j
(σ j )

)l

= ((1−2η)J )l
k
∏

j=1

(

∑

σ
σµ(π)

j

)l

,

(

1−
∑

σ∈Ωk

ψ(σ)
k
∏

j=1
µ(π′)

j
(σ j )

)l

= ((1−2η)J )l
k
∏

j=1

(

∑

σ
σµ(π′)

j

)l

,

(

1−
∑

σ∈Ωk

ψ(σ)µ(π)
i

(σi )
∏

j 6=i

µ(π′)
j

(σ j )
)l

= ((1−2η)J )l

(

∑

σ
σµ(π)

i

)l k
∏

j 6=i

(

∑

σ
σµ(π′)

j

)l

.

Hence, if we let

X = E

[

(

∑

σ
σµ(π)

1

)l
]

, Y = E

[

(

∑

σ
σµ(π′)

1

)l
]

,

then POS becomes

E
[

((1−2η)J )l
](

X k + (k −1)Y k −kX Y k−1
)

≥ 0.

Crucially, if l is odd then E
[

((1−2η)J )l
]

= 0. Moreover, if l is even than X ,Y ≥ 0. Since

X k + (k −1)Y k −kX Y k−1 ≥ 0 if X ,Y ≥ 0

the assertion follows.
Now with

I (k,d ,η) = sup
π∈P0([−1,1])

E

[

1

2
Λ

(

∑

σ∈{±1}

γ
∏

b=1

(

1+σJ b(1−2η)
k−1
∏

j=1
θ(π)

kb+ j

))

−
d(k −1)

k
Λ

(

1+ J (1−2η)
k
∏

j=1
θ(π)

j

)]

,

Theorem 2.2 and (4.46) give

lim
n→∞

1

n
I (σ∗,G∗) = (1+d/k) ln2+η lnη+ (1−η) ln(1−η)−I (k,d ,η),

completing the proof of Theorem 1.4.

4.5. Further examples. Finally, we compile just a few further examples of well known models that satisfy the con-
ditions SYM, BAL and POS. The first one is a hypergraph version of the Potts antiferromagnet related to the hyper-
graph q-coloring problem.

Lemma 4.25. Let Ω= [q] for some q ≥ 2, let k ≥ 2, β> 0 and let Ψ= {ψ} where

ψ : σ ∈Ω
k 7→ exp(−β1{σ1 = ·· · =σk }).

Then BAL, SYM and POS hold.

Proof. As in the Potts antiferromagnet SYM is immediate from the symmetry amongst the colors. Further, let
cβ = 1−exp(−β). Then

ψ(σ) = 1−cβ
∑

τ∈Ω

k
∏

i=1
1{σi = τ}.

Hence, for any µ ∈P (Ω) we have

∑

σ∈Ωk

ψ(σ)
k
∏

i=1
µ(σi ) = 1−cβ

∑

σ∈Ω
µ(σ)k .
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Thus, BAL follows from the convexity of x ∈ [0,1] 7→ xk . Moving on to POS, we fix π,π′ ∈P
2
∗ (Ω). In the present case

the condition boils down to

0 ≤ E
[(

∑

σ∈Ω

k
∏

j=1
µ(π)

j
(σ)

)l

+ (k −1)
(

∑

σ∈Ω

k
∏

j=1
µ(π′)

j
(σ)

)l

−k
(

∑

σ∈Ω
µ(π)

1 (σ)
k−1
∏

j=1
µ(π′)

j
(σ)

)l ]

.

Using the mutual independence of µ(π)
1 ,µ(π′)

1 , . . ., the expression simplifies to

∑

σ1 ,...,σl ∈Ω
E

[

l
∏

j=1
µ(π)

1 (σ j )

]k

−kE

[

l
∏

j=1
µ(π)

1 (σ j )

]

E

[

l
∏

j=1
µ(π′)

1 (σ j )

]k−1

+ (k −1)E

[

l
∏

j=1
µ(π′)

1 (σ j )

]k

.

Clearly the last expression is non-negative (because xk−kx yk−1+(k−1)yk ≥ 0 for all x, y ≥ 0), whence POS follows.
�

As a second example we consider the random k-SAT model at inverse temperature β > 0. We represent the
Boolean values by ±1 rather than 0,1 to simplify the calculations. Moreover, the vector J represents the signs with
which the literals appear in a given clause.

Lemma 4.26. Let Ω= {±1}, k ≥ 2, β> 0 and let Ψ= {ψJ : J ∈ {±1}k } where

ψJ : σ ∈Ω
k 7→ 1− (1−exp(−β))

k
∏

i=1

1+ Jiσi

2
.

Let p be the uniform distribution on Ψ. Then BAL, SYM and POS hold.

Proof. Let cβ = 1−exp(−β). The assumption SYM is satisfied because for any i ∈ [k], τ=±1 we have

2−k
∑

J∈{±1}k

∑

σ∈Ωk :σi =τi

ψJ (σ) = 2k −cβ.

Moreover, BAL holds because

µ ∈P (Ω) 7→ 2−k
∑

J∈{±1}k

∑

σ∈Ωk

ψJ (σ)
k
∏

j=1
µ(σ j ) = 1−cβ2−k

is a constant function. To check POS, we follow similar steps as in the interpolation argument from [81]. Fix π,π′.
We need to show that

0≤ 2−k cl
β

∑

J∈{±1}k

E
[(

∑

σ∈Ωk

k
∏

j=1
(1+ J jσ j )µ(π)

j
(σ j )

)l

+ (k −1)
(

∑

σ∈Ωk

k
∏

j=1
(1+ J jσ j )µ(π′)

j
(σ j )

)l

−
k
∑

i=1

(

∑

σ∈Ωk

(1+ Jiσi )µ(π)
i

(σi )
∏

j∈[k]\{i}
(1+ J jσ j )µ(π′)

j
(σ j )

)l ]

= cl
β

∑

J∈{±1}k

E
[( k

∏

j=1
µ(π)

j
(J j )

)l

+ (k −1)
( k
∏

j=1
µ(π′)

j
(J j )

)l

−
k
∑

i=1

(

µ(π)
i

(Ji )
∏

j∈[k]\{i}
µ(π′)

j
(J j )

)l ]

.

Since µ(π)
1 ,µ(π′)

1 , . . . are independent, the last expectation simplifies to

E

[

∑

J∈{±1}
µ(π)

1 (J )l

]k

+ (k −1)E

[

∑

J∈{±1}
µ(π′)

1 (J )l

]k

−kE

[

∑

J∈{±1}
µ(π)

1 (J )l

]

E

[

∑

J∈{±1}
µ(π′)

1 (J )l

]k−1

.

The last expression is non-negative because xk −kx yk−1 + (k −1)yk ≥ 0 for all x, y ≥ 0. �

Finally, let us check the conditions for the random k-NAESAT model at inverse temperature β > 0. Again we
represent the Boolean values by ±1 and the literal signs by a vector J .

Lemma 4.27. Let Ω= {±1}, k ≥ 2, β> 0 and let Ψ= {ψJ : J ∈ {±1}k } where

ψJ : σ ∈Ω
k 7→ 1− (1−exp(−β))

k
∏

i=1

1+ Jiσi

2
− (1−exp(−β))

k
∏

i=1

1− Jiσi

2
.

Let p be the uniform distribution on Ψ. Then BAL, SYM and POS hold.
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Proof. Let cβ = 1−exp(−β). SYM holds because for any i ∈ [k], τ=±1 we have

2−k
∑

J∈{±1}k

∑

σ∈Ωk :σi =τi

ψJ (σ) = 2k −2cβ

and BAL holds because

µ ∈P (Ω) 7→ 2−k
∑

J∈{±1}k

∑

σ∈Ωk

ψJ (σ)
k
∏

j=1
µ(σ j ) = 1−cβ21−k

is a constant. To check POS, fix π,π′. Then POS comes down to

0≤
∑

J∈{±1}k

E
[( k

∏

j=1
µ(π)

j
(J j )+

k
∏

j=1
µ(π)

j
(−J j )

)l

+ (k −1)
( k
∏

j=1
µ(π′)

j
(J j )+

k
∏

j=1
µ(π′)

j
(−J j )

)l

−
k
∑

i=1

(

µ(π)
i

(Ji )
∏

j∈[k]\{i}

µ(π′)
j

(J j )+µ(π)
i

(−Ji )
∏

j∈[k]\{i}

µ(π′)
j

(−J j )
)l ]

=
∑

J∈{±1}k

∑

s1,...,sl∈{±1}
E

[

l
∏

h=1

k
∏

j=1
µ(π)

j
(sh J j )+ (k −1)

l
∏

h=1

k
∏

j=1
µ(π′)

j
(sh J j )−

k
∑

i=1

l
∏

h=1
µ(π)

i
(sh Ji )

∏

j 6=i

µ(π′)
j

(sh J j )

]

.

Due to the independence of the µ(π)
1 ,µ(π′)

1 , . . ., the last expression boils down to

∑

s1,...,sl∈{±1}
E

[

∑

J∈{±1}

l
∏

h=1
µ(π)

1 (sh J )

]k

+ (k −1)E

[

∑

J∈{±1}

l
∏

h=1
µ(π′)

1 (sh J )

]k

−kE

[

∑

J∈{±1}

l
∏

h=1
µ(π)

1 (sh J )

]

E

[

∑

J∈{±1}

l
∏

h=1
µ(π′)

1 (sh J )

]k−1

,

which is non-negative because xk −kx yk−1 + (k −1)yk ≥ 0 for all x, y ≥ 0. �
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[42] P. Erdős, A. Rényi, On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5 (1960) 17–61.
[43] U. Feige: Relations between average case complexity and approximation complexity. Proceedings of the Thirty-fourth Annual ACM on

Symposium on Theory of Computing (2002) 534–543.
[44] V. Feldman, W. Perkins, S. Vempala: On the complexity of random satisfiability problems with planted solutions. Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing (2015) 77–86.
[45] S. Franz, M. Leone:Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111 (2003) 535–564.
[46] A. Giurgiu, N. Macris, R. Urbanke: Spatial coupling as a proof technique and three applications. IEEE Transactions on Information Theory

62 (2016) 5281–5295.
[47] M. Dyer, A. Frieze, C. Greenhill: On the chromatic number of a random hypergraph. Journal of Combinatorial Theory, Series B, 113 (2015)

68–122.
[48] O. Guédon, R. Vershynin: (2015). Community detection in sparse networks via Grothendieck’s inequality. Probability Theory and Related

Fields (2015) 1–25.
[49] F. Guerra: Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 (2003) 1–12.
[50] P. Holland, K. Laskey, S. Leinhardt: Stochastic blockmodels: First steps. Social networks, 5 (1983) 109–137.
[51] Y. Kabashima, D. Saad: Statistical mechanics of error correcting codes. Europhys. Lett. 45 (1999) 97–103.
[52] M. Krivelevich and B. Sudakov: The chromatic numbers of random hypergraphs. Random structures and algorithms, 12 (1998) 381–403.
[53] F. Krzakala and L. Zdeborová: Hiding quiet solutions in random constraint satisfaction problems. Phys. Rev. Lett. 102 (2009) 238701.
[54] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborová: Gibbs states and the set of solutions of random constraint

satisfaction problems. Proc. National Academy of Sciences 104 (2007) 10318–10323.
[55] F. Krzakala, J. Xu, L. Zdeborová: Mutual Information in Rank-One Matrix Estimation. arXiv:1603.08447 (2016).
[56] S. Kudekar, T. Richardson, R. Urbanke: Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Transac-

tions on Information Theory 59 (2013) 7761–7813.
[57] K. Kumar, P. Pakzad, A. Salavati, A. Shokrollahi: Phase transitions for mutual information. IEEE 6th International Symposium on Turbo

Codes & Iterative Information Processing (2010) 137–141.
[58] M. Lelarge, L. Miolane: Fundamental limits of symmetric low-rank matrix estimation. arXiv:1611.03888 (2016).
[59] T. Łuczak: The chromatic number of random graphs. Combinatorica 11 (1991) 45–54
[60] F. McSherry: Spectral partitioning of random graphs. 42nd Annual IEEE Symposium on Foundations of Computer Science (2001) 529-?537.
[61] N. Macris: Griffith-Kelly-Sherman correlation inequalities: a useful tool in the theory of error correcting codes. IEEE Transactions on

Information Theory 53 (2007) 664–683.
[62] L. Massoulié: Community detection thresholds and the weak Ramanujan property. Proceedings of the 46th Annual ACM Symposium on

Theory of Computing (2014) 694–703.
[63] C. Méasson, A. Montanari, T. Richardson, R. Urbanke: The generalized area theorem and some of its consequences. IEEE Transactions on

Information Theory 55 (2009) 4793–4821.
[64] C. Méasson, A. Montanari, R. Urbanke: Maxwell construction: the hidden bridge between iterative and maximum a posteriori decoding.

IEEE Transactions on Information Theory 54 (2008) 5277–5307.
[65] M. Mézard, A. Montanari: Information, physics and computation. Oxford University Press 2009.
[66] M. Mézard, G. Parisi: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20 (2001) 217–233.

57



[67] M. Mézard, G. Parisi: The cavity method at zero temperature. Journal of Statistical Physics 111 (2003) 1–34.
[68] M. Mézard, G. Parisi, M. Virasoro: Spin glass theory and beyond. World Scientific 1987.
[69] M. Mézard, G. Parisi, R. Zecchina: Analytic and algorithmic solution of random satisfiability problems. Science 297 (2002) 812–815.
[70] M. Molloy: The freezing threshold for k-colourings of a random graph. Proc. 43rd STOC (2012) 921–930.
[71] R. Monasson: Optimization problems and replica symmetry breaking in finite connectivity spin glasses. Journal of Physics A: Mathematical

and General 31 (1998) 513.
[72] A. Montanari: Tight bounds for LDPC and LDGM codes under MAP decoding. IEEE Transactions on Information Theory 51 (2005) 3221-

3246.
[73] A. Montanari: Estimating random variables from random sparse observations. European Transactions on Telecommunications 19 (2008)

385–403.
[74] A. Montanari, R. Restrepo, P. Tetali: Reconstruction and clustering in random constraint satisfaction problems. SIAM Journal on Discrete

Mathematics 25 (2011) 771–808.
[75] A. Montanari, S. Sen: Semidefinite programs on sparse random graphs and their application to community detection. Proceedings of the

48th Annual ACM Symposium on Theory of Computing (2016) 814–827.
[76] E. Mossel, J. Neeman, A. Sly: A proof of the block model threshold conjecture. arXiv:1311.4115 (2013).
[77] E. Mossel, J. Neeman, A. Sly: Reconstruction and estimation in the planted partition model. Probability Theory and Related Fields (2014)

1–31.
[78] R. Neininger, L. Rüschendorf: A general limit theorem for recursive algorithms and combinatorial structures. The Annals of Applied Prob-

ability 14 (2004) 378–418.
[79] D. Panchenko: The Sherrington-Kirkpatrick model. Springer 2013.
[80] D. Panchenko: Spin glass models from the point of view of spin distributions. Annals of Probability 41 (2013) 1315–1361.
[81] D. Panchenko, M. Talagrand: Bounds for diluted mean-fields spin glass models. Probab. Theory Relat. Fields 130 (2004) 319–336.
[82] S. Rachev: Probability metrics and the stability of stochastic models. John Wiley & Sons 269 (1991).
[83] A. Sly, N. Sun, Y. Zhang: The number of solutions for random regular NAE-SAT. arXiv:1604.08546 (2016)
[84] M. Talagrand:The Parisi formula. Ann. Math. 163 (2006) 221–263.
[85] C. Villani: Optimal transport: old and new. Springer-Verlag Berlin Heidelberg 338 (2009).
[86] L. Zdeborová, F. Krzakala: Statistical physics of inference: thresholds and algorithms. Advances in Physics 65 (2016) 453–552.
[87] L. Zdeborová, F. Krzakala: Phase transition in the coloring of random graphs. Phys. Rev. E 76 (2007) 031131.

AMIN COJA-OGHLAN,acoghlan@math.uni-frankfurt.de, GOETHE UNIVERSITY, MATHEMATICS INSTITUTE, 10 ROBERT MAYER ST, FRANK-
FURT 60325, GERMANY.

FLORENT KRZAKALA,florent.krzakala@ens.fr, LABORATOIRE DE PHYSIQUE STATISTIQUE, CNRS, PSL UNIVERSITÉS & ECOLE NORMALE

SUPÉRIEURE, SORBONNE UNIVERSITÉS ET UNIVERSITÉ PIERRE & MARIE CURIE, 75005, PARIS, FRANCE.

WILL PERKINS,math@willperkins.org, SCHOOL OF MATHEMATICS, UNIVERSITY OF BIRMINGHAM, EDGBASTON, BIRMINGHAM, UK.

LENKA ZDEBOROVÁ, lenka.zdeborova@gmail.com, INSTITUT DE PHYSIQUE THÉORIQUE, CNRS, CEA, UNIVERSITÉ PARIS-SACLAY, F-
91191, GIF-SUR-YVETTE, FRANCE

58


	1. Introduction
	1.1. The Potts antiferromagnet
	1.2. Random graph coloring
	1.3. The stochastic block model
	1.4. LDGM codes

	2. The cavity method, statistical inference and the information-theoretic threshold
	2.1. The mutual information
	2.2. Belief Propagation
	2.3. The information-theoretic threshold
	2.4. The condensation phase transition
	2.5. Discussion and related work
	2.6. Preliminaries and notation

	3. The replica symmetric solution
	3.1. Overview
	3.2. The Nishimori property
	3.3. The lower bound
	3.4. The upper bound
	3.5. Proof of Theorems ?? and ??
	3.6. Proof of Theorem ??
	3.7. Proof of Lemma ??

	4. Applications
	4.1. Proof of Theorem ??
	4.2. Proof of Theorem ??
	4.3. Proof of Theorem ??
	4.4. Proof of Theorem ??
	4.5. Further examples

	References

