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INFORMATION-THEORETIC THRESHOLDS FROM THE CAVITY METHOD

AMIN COJA-OGHLAN*, FLORENT KRZAKALA**, WILL PERKINS, AND LENKA ZDEBOROVA

ABSTRACT. Vindicating a sophisticated but non-rigorous physics approach called the cavity method, we establish a for-
mula for the mutual information in statistical inference problems induced by random graphs and we show that the mu-
tual information holds the key to understanding certain important phase transitions in random graph models. We work
out several concrete applications of these general results. For instance, we pinpoint the exact condensation phase tran-
sition in the Potts antiferromagnet on the random graph, thereby improving prior approximate results [Contucci et al.:
Communications in Mathematical Physics 2013]. Further, we prove the conjecture from [Krzakala et al.: PNAS 2007]
about the condensation phase transition in the random graph coloring problem for any number g = 3 of colors. More-
over, we prove the conjecture on the information-theoretic threshold in the disassortative stochastic block model [Decelle
et al.: Phys. Rev. E 2011]. Additionally, our general result implies the conjectured formula for the mutual information in
Low-Density Generator Matrix codes [Montanari: IEEE Transactions on Information Theory 2005].

1. INTRODUCTION

Since the late 1990’s physicists have studied models of spin systems in which the geometry of interactions is de-
termined by a sparse random graph in order to better understand “disordered” physical systems such as glasses or
spin glasses [71]. To the extent that the sparse random graph induces an actual geometry on the sites, such
“diluted mean-field models” provide better approximations to physical reality than models on the complete graph
such as the Curie-Weiss or the Sherrington—Kirkpatrick model [65]. But in addition, and perhaps more impor-
tantly, as random graph models occur in many branches of science, the physics ideas have since led to intriguing
predictions on an astounding variety of important problems in mathematics, computer science, information the-
ory, and statistics. Prominent examples include the phase transitions in the random k-SAT and random graph col-
oring problems [871, both very prominent problems in combinatorics, error correcting codes [65], compressed
sensing [86], and the stochastic block model [34], a classical statistical inference problem.

The thrust of this work goes as follows. In many problems random graphs are either endemic or can be intro-
duced via probabilistic constructions. As an example of the former think of the stochastic block model, where the
aim is to recover a latent partition from a random graph. For an example of the latter, think of low density gen-
erator matrix LDGM’ codes, where by design the generator matrix is the adjacency matrix of a random bipartite
graph. To models of either type physicists bring to bear the cavity method [68], a comprehensive tool for studying
random graph models, to put forward predictions on phase transitions and the values of key quantities. The cavity
method comes in two installments: the replica symmetric version, whose mainstay is the Belief Propagation mes-
sages passing algorithm, and the more intricate replica symmetry breaking version, but it has emerged that the
replica symmetric version suffices to deal with many important models.

Yet the cavity method suffers an unfortunate drawback: it is utterly non-rigorous. In effect, a substantial re-
search effort in mathematics has been devoted to proving specific conjectures based on the physics calculations.
Success stories include the ferromagnetic Ising model and Potts models on the random graph [37, [36], the exact
k-SAT threshold for large k [4T]], the condensation phase transition in random graph coloring [19], work on the
stochastic block model [76}[77] and terrific results on error correcting codes [46]. But while the cavity method
can be applied mechanically to a wide variety of problems, the current rigorous arguments are case-by-case. For
instance, the methods of [4T] depend on painstaking second moment calculations that take the physics
intuition on board but require extraneous assumptions (e.g., that the clause length k or the number of colors be
very large). Moreover, many proofs require lengthy detours or case analyses that ought to be expendable. Hence,
the obvious question is: can we vindicate the physics calculations wholesale?

*The research leading to these results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant Agreement n. 278857-PTCC
**The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant Agreement n. 307087-SPARCS.
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The main result of this paper is that for a wide class of problems within the purview of the replica symmet-
ric cavity method the answer is ‘yes. More specifically, the cavity method reduces a combinatorial problem on a
random graph to an optimization problem on the space of probability distributions on a simplex of bounded di-
mension. We prove that this reduction is valid under a few easy-to-check conditions. Furthermore, we verify that
the stochastic optimization problem admits a combinatorial interpretation as the problem of finding an optimal
set of Belief Propagation messages on a Galton-Watson tree. Thus, we effectively reduce a problem on a random
graph, a mesmerizing object characterized by expansion properties, to a calculation on a random tree. This result
reveals an intriguing connection between statistical inference problems and phase transitions in random graph
models, specifically a phase transition that we call the information-theoretic threshold, which in many important
models is identical to the so-called “condensation phase transition” predicted by physicists [54]. Moreover, the
proofs provide a direct rigorous basis for the physics calculations, and we therefore believe that our techniques
will find future applications. To motivate the general results about the connection between statistical inference
and phase transitions, which we state in Section 2] we begin with four concrete applications that have each re-
ceived considerable attention in their own right.

1.1. The Potts antiferromagnet. As a first example we consider the antiferromagnetic Potts model on the Erdés-
Rényi random graph G = G(n, d/n) with n vertices where any two vertices are connected by an edge with probabil-
ity d/nindependently. Let § > 0 be a parameter that we call ‘inverse temperature’ and let g = 2 be a fixed number of
colors. With ¢ ranging over all color assignments {1,...,n} — {1,..., g} the Potts model partition function is defined
as

ZgG) =) exp|-f Y 1o =ow)}|. (1.1)
g {v,w}eE(G)

Standard arguments show that the random variable Z3(G) is concentrated about its expectation. Thus, the key

quantity of interest is the function

(d, B) € (0,00) x (0,00) — r}i_{go—%Elanﬁ(G(n, dim)],

the free energy density in physics jargon; the limit is known to exist for all d, 8 [20]. In particular, for a given d we
say that a phase transition occurs at B € (0,00) if the function

B— r}i_{glo—%E[anﬁ(G(n, daln))]

is non-analytic at fy, i.e., there is no expansion as an absolutely convergent power series in a neighborhood of ,Boﬂ

According to the cavity method, for small values of 8 (“high temperature”) the free energy is given by a simple
explicit expression. But as 8 gets larger a phase transition occurs, called the condensation phase transition, pro-
vided that d is sufficiently large. Contucci, Dommers, Giardina and Starr derived upper and lower bounds on
the critical value of S, later refined by Coja-Oghlan and Jaafari [29]. The following theorem pinpoints the phase
transition precisely for all d, g. Indeed, the theorem shows that the exact phase transition is determined by the
very stochastic optimization problem that the cavity method predicts [65].

To state the result we need a bit of notation. For a finite set Q we identify the set 22(Q) of probability measures
on Q with the standard simplex in R, Let 222(Q) be the set of all probability measures on £2(Q2) and write 93 Q)

for the set of 7 € 9%(Q) whose mean f@(ﬂ) pdmr(u) is the uniform distribution on Q. Moreover, for 7 € @f Q) let

y(lm , yg” ,... be asequence of samples from 7 and let y = Po(d), all mutually independent. Further, let A(x) = xIn x

for x € (0,00) and A(0) = 0. For an integer k =1 let [k] = {1,..., k}. Finally, we use the convention inf® = co.
Theorem 1.1. Let g =2 andd >0 and for c € [0,1] let
A T 1-cp™©0)  dAa-37_, cpP @ pl” (1)

2 do) = E , 1.2
Potts (4, d, ) ne;l?()[q]) ql—clq)Y 2(1-c/q) 42
Bacond(d) =inf{B>0: Bpors(q,d, 1~ exp(=p)) >Ing+dIn(1 - (1-exp(-p))/q)/2}. (13

This definition of ‘phase transition’, which is standard in mathematical physics, is in line with the random graphs terminology. For instance,
the function that maps d to the expected fraction of vertices in the largest connected component of G(n, d/n) is non-analytic at d = 1.
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Then for all B < 4,cond (d) we have

. 1 _
r}l_{go—;E[anﬁ(G(n, d)l=-Ing-dn(1-Q1-exp(-p))/q)/2 (1.4)
and if B 4,cond(d) < 0o, then a phase transition occurs at 4 cond (d).

A simple first moment calculation shows that f; cond(d) < oo, and thus that a phase transition occurs, if d >
(2g—-1)Ingq [29]. In fact, for any 8 > 0 the formulas (L2)-(T3) yield a finite maximum value

dg,cond(B) =inf{d > 0: Bpotis(q,d,1 - exp(—p)) >Ing+dIn(1 - (1 - exp(—p))/ q)/2} (1.5)

such that (T4) holds if and only if d < dg,cond (B). Thus, (C2)-(T3) identify a line in the (d, B)-plane that marks the
location of the condensation phase transition.

1.2. Random graph coloring. The random graph coloring problem is one of the best-known problems in prob-
abilistic combinatorics: given a number g = 3 of available “colors”, for what values of d is it typically possible to
assign colors to the vertices of G = G(n, d/n) such that no edge connects two vertices with the same color? Since the
problem was posed by Erdés and Rényi in their seminal paper that started the theory of random graphs [42], the
random graph coloring problem and its ramifications have received enormous attention (e.g., [7, 8] [47)
[871). Of course, an intimately related question is: how many ways are there to color the vertices of the random
graph G with g = 3 colors such that no edge is monochromatic? In fact, for g > 3 the best known lower bounds
on largest value of d up to which G remains g-colorable, the g-colorability threshold, are derived by tackling this
second question [8,[19]. If d < 1, then the random graph G does not have a ‘giant component’. We therefore expect
that the number Z;(G) of g-colorings is about g"(1 -1/ q)%"'2, because a forest with n vertices and average degree
d has that many g-colorings. Indeed, for d < 1 it is easy to prove that

%anq(G(n,d/n)) "ZFIng+ gln(l—l/q) in probability (1.6)
and the largest degree d,cong up to which holds is called the condensation threshold. Perhaps surprisingly, the
cavity method predicts that the condensation threshold is far greater than the giant component threshold. Once
more the predicted formula takes the form of a stochastic optimization problem [87]. Prior work based on the
second moment method verified this under the assumption that g exceeds some (undetermined but astronomical)
constant gy [19]. Here we prove the conjecture for all g = 3.

Theorem 1.2. For q =3 and d > 0 and with Bpos from (L2 let
dg,cond = Inf{d > 0: Bpots(q,d,1) >Ing+dIn(1-1/g)/2}. 1.7
Then (L6 holds for all d < dg,cond- By contrast, for every d > dg cond there exists € >0 such that w.h.p.
Z;(G(n,dIn) < g"(1-1/q)"" exp(~en).

It is conjectured that dscong = 4 [87], but we have no reason to believe d; conq admits a simple expression for
q > 3. Asymptotically we know dg cong = (2g —1)Ing - 2In2 + £4 with lim;—o. €4 = 0 [I9]. By comparison, for
d>(2g-1)Inqg-1+¢, the random graph fails to be g-colorable probability tending to 1 as n — oo [28].

Since cannot hold for d beyond the g-colorability threshold, d cond provides alower bound on that thresh-
old. In fact, dg conq is at least as large as the best prior lower bounds for g > 3 from [8} [19], because their proofs
imply (L6). But more importantly, Theorem [[.2] facilitates the study of the geometry of the set of g-colorings for
small values of g. Specifically, if d, g are such that is true, then the notoriously difficult experiment of sam-
pling a random g-coloring of a random graph can be studied indirectly by way of a simpler experiment called the
planted model [3}[18/53]. This approach has been vital to the analysis of, e.g., the geometry of the set of g-colorings
or the emergence of “frozen variables” [3}[70]. Additionally, in combination with results from [74] Theorem[L[.2]im-
plies that for all g = 3 the threshold for an important spatial mixing property called reconstruction on the random
graph G(n, d/n) equals the reconstruction threshold on the Galton-Watson tree with offspring distribution Po(d).

Finally, the formula (I.I) suggests to think of the inverse temperature parameter § in the Potts antiferromagnet
as a “penalty” imposed on monochromatic edges. Then we can view the random graph coloring problem as the
B = oo version of the Potts antiferromagnet. Indeed, using the dominated convergence theorem, we easily verify
that that the number d; ¢conq from Theorem[I.2]is equal to the limit limg .o, dg cond (B) of the numbers from (T5).
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1.3. The stochastic block model. We prove results such as Theorem [[.Tland[[.2 in an indirect and perhaps sur-
prising way via statistical inference problems. In fact, we will see that these provide the appropriate framework
to investigate the replica symmetric cavity method. Let us look at one well known example of such an inference
problem, the stochastic block model, which can be viewed as the statistical inference version of the Potts model.

Suppose we choose a random coloring o* of n vertices with g = 2 colors, then generate a random graph by con-
necting any two vertices of the same color with probability dj,/n and any two with distinct colors with probability
dout/ n independently; write G* for the resulting random graph. Specifically, set din = dgexp(—f)/(qg—1+exp(—f))
and dou: = dq/(q — 1+ exp(—p)) so that the expected degree of any vertex equals d. Then bichromatic edges are
preferred if § > 0 (“disassortative case”), while monochromatic ones are preferred if f < 0 (“assortative case”).
The model was first introduced in machine learning by Holland, Laskey, and Leinhardt as early as 1983,
and has since attracted rather considerable attention in probability, computer science, and combinatorics (e.g.,
14,123, 24,27, 160]).

The inference task associated with the model is to recover ¢ * given just G*. When d remains fixed as n — oo then
typically a constant fraction of vertices will have degree 0, and so exact recovery of ¢ is a hopeless task. Instead
we ask for a coloring that overlaps with ¢ * better than a mere random guess. Formally, define the agreementof two
colorings o, as
—1+maxees, & Lpev(c Ho(v) =xoT(v)}

q-1 '
Then for all 0,7, A(o,7) 20, A(0,0) =1, and two independent random colorings o,7 have expected agreement
o(1) as n — oo. Hence, for what d, § can we infer a coloring 7(G*) such that A(¢*,7(G")) is bounded away from 0?

According to the cavity method, this question admits two possibly distinct answers [34]. First, for any given ¢, §
there exists an information-theoretic threshold dint(q, ) such that no algorithm produces a partition 7(G*) such
that A(g*,7(G")) = Q(1) with a non-vanishing probability if d < dj,¢(q, B). By contrast, for d > diy(g, B) there is
a (possibly exponential-time) algorithm that does. The formula for dj,¢(q, f) comes as a stochastic optimization
problem. The second algorithmic threshold d,¢(q, §) marks the point from where the problem can be solved by an
efficient (i.e., polynomial time) algorithm. The cavity method predicts the simple formula

Alo,1) =

g-1+exp(-pB))?
dag (4, ) = | — = o p ) (1.8)
While the information-theoretic threshold is predicted to coincide with the algorithmic threshold for g = 2,3, we
do not expect that there is a simple expression for dj,¢(q, ) for g =4, > 0.

The physics conjectures have inspired quite a bit of rigorous work (e.g. [75]). Mossel, Neeman and
Sly [77] and Massoulié proved the conjectures for g = 2. Abbe and Sandon [2] proved the positive part of
the algorithmic conjecture for all g = 3; see also Bordenave, Lelarge, Massoulié [25] for a different but less general
algorithm. Moreover, independently of each other Abbe and Sandon [2] and Banks, Moore, Neeman and Netra-
palli derived upper bounds on the information-theoretic threshold that are strictly below daq (g, §) for g = 5 by
providing exponential-time algorithms to detect the planted partition. Banks, Moore, Neeman and Netrapalli ad-
ditionally derived lower bounds on the information-theoretic threshold via a delicate second moment calculation
in combination with small subgraph conditioning. Their lower bounds match the upper bounds up to a constant
factor. The following theorem settles the exact information-theoretic threshold for all g = 3, § > 0. Recall Bpotis
from (L2).

Theorem 1.3. Suppose 3 >0, q=3 andd > 0. Let
dint(q, B) =inf{d > 0: Brows(q,d,1 —exp(—p)) >Ing+dIn(1 - (1 —exp(—p))/q)/2}.

o Ifd > dint(q, B), then there exists an algorithm (albeit not necessarily an efficient one) that outputs a parti-
1ion Ta15(G™) such that E[A(0 ", T4g(G*))] = Q(1).
o Ifd < dint(q, B), then for any algorithm (efficient or not) we have E[A(d™, T5(G™))] = o(1).

While the claim that dalg(q, B) = dins(q, p) for g = 3 is not apparent from Theorem [[.3] the theorem reduces
this problem to a self-contained analytic question that should be within the scope of known techniques (see Sec-
tion[Z.5). Furthermore, the proofs of Theorems[I.Tland[T2lare actually based on Theorem[I.3] and we shall see that
quite generally phase transitions in “plain” random graph models can be tackled by way of a natural corresponding
statistical inference problem.



1.4. LDGM codes. But before we come to that, let us consider a fourth application, namely Low-Density Generator
Matrix codes [26}[51]. For a fixed k = 2 form a bipartite graph G consisting of n “variable nodes” and m ~ Po(dn/ k)
“check nodes”. Each check node a gets attached to a random set da of k variable nodes independently. Then select
a signal o* € {+1}" uniformly at random. An output message y € {+ 1}"" is obtained by setting y; = [1;c5, 0 wWith
probability 1 -7 resp. y4 = —[lic9a @ with probability 1 for each check node a independently. In other words, if
we identify ({1}, -) with (F», +), the signal ¢ * is encoded by multiplication by the random biadjacency matrix of G,
then suffers from errors in transmission, each bit being flipped with probability 1, to form the output message y.
Now let G* be the bipartite graph G decorated on each check node a with the value y, € {+1}. The decoding task
is to recover ¢ * given G*.

The appropriate measure to understand the information-theoretic limits of the decoding task is the mutual
information between ¢* and G*, which we recall is defined as

P * = , * =
I(6*,G*)=) P[G"'=G,0*=0]l [G" =G, 0" =0]

n , (1.9)
Go P[G* =G|Plo* = 0]

with the sum ranging over all possible graphs G and o € {+1}". Abbe and Montanari [I] proved that for any d,n and
for even k the limit lim,,_.o %I (0", G") of the mutual information per bit exists. The following theorem determines
the limit for all k = 2, even or odd. Let £%([—1, 1]) be the set of all probability distributions on [-1, 1] with mean 0.
Let J,(Jp)p=1 be uniform +1 random variables, let ¥ = Po(d), and let (05.”))]21 be samples from 7 € 2% ([-1,1]), all
mutually independent.

Theorem 1.4. Fork=2,1n1>0,andd >0, let

Y k=1 d(k—-1)
()
Y [l1+o1,0 —zn)j]j[lekbﬂ.) -——A

oe{£l} b=1

1
=A

F(k,d,m) = sup E2

neZy([-1,1])

k
1+J(1-2n) ]‘[05.’”)].
j=1
Then )
nlgn ;I(a*,G*) =(1+d/k)In2+nlnn+ A -nIn(1l-n) - L (k,d,n).

Kumar, Pakzad, Salavati, and Shokrollahi [57] conjectured the existence of a threshold density below which
the normalized mutual information between ¢* and y conditioned on G, %I (", y1G), is w.h.p. strictly less than
the capacity of the binary symmetric channel with error probability n. Since a simple calculation shows that
I(o*,G") coincides with the conditional mutual information I(e*, y|G), the result of Abbe and Montanari [I] that
lim; oo %I (0", G*) exists implies this conjecture for even k. Theorem [[4] extends this result to all k. Moreover,
Montanari [72] showed that for even k the above formula gives an upper bound on the mutual information and ex-
tends to LDGM codes with given variable degrees. He conjectured that this bound is tight. Theorem [L4] proves the
conjecture for all k for the technically convenient case of Poisson variable degrees. The LDGM coding model also
appears in cryptography and hardness-of-approximation as the problem k — LIN(7) or planted noisy k-XOR-SAT
(e.g., [11}[15] [44]) and the gap between the algorithmic and the information-theoretic threshold is closely related
to deep questions in computational complexity [11}43].

2. THE CAVITY METHOD, STATISTICAL INFERENCE AND THE INFORMATION-THEORETIC THRESHOLD

In this section we state the main results of this paper about statistical inference problems and their connections
to phase transitions. Theorems and 2.4 below provide general exact formulas for the mutual information in
inference problem such as the stochastic block model or the LDGM model. Then in Theorems and 27 we
establish the existence of an information-theoretic threshold that connects the statistical inference problem with
the condensation phase transition. Let us begin with the general setup and the results for the mutual information.

2.1. The mutual information. The protagonist of this paper, the teacher-student scheme [86], can be viewed as
a generalization of the LDGM problem from Section [[4] We generalize the set {+1} to an arbitrary finite set Q
of possible values that we call spins and the parity checks to an arbitrary finite collection ¥ of weight functions
QF — (0,2) of some fixed arity k = 2. The choice of the upper bound 2 is convenient but somewhat arbitrary as
(0,00)-functions could just be rescaled to (0,2). But the assumption that all weight functions are strictly positive
is important to ensure that all the quantities that we introduce in the following are well-defined. There is a fixed
prior distribution p on ¥ and we write ¥ for a random weight function chosen from p. We have a factor graph
G = (V,E(0a) 4er, Wa) acr) composed of a set V = {x1,...,x,} of variable nodes, a set F = {ay, ..., any} of constraint
5



SYM: Forallo,o'€Q,i,i’e [kl wehave Y v Elw(71,...,T)]- [L{r; =0} —1{1y =0'}] =0.
BAL: The function € 22(Q) — X, .qx Elw(o1,...,01)] Hle (o ;) is concave and attains its maximum at the
uniform distribution.

POS: For all 7,7’ € 222(Q) and for every I = 2 the following is true. With ”gn)’”gr)’ chosen from n and
ygn ),pg’ ),... from 7’ and w € V¥ chosen from p, all mutually independent, we have
E[1- X v 1"[ u(’”(a])) +k-D(1- ¥ 1"[ p")) )
geQk geQk

k ' :
Y (1- X vouon 1 #wp)]=0

i=1 geQk JElkINi}
FIGURE 1. The assumptions SYM, BAL and POS.

nodes, and for each a € F, an ordered k-tuple da = (01 4,...,0ra) € vk of neighbors and a weight function vy, € V.
We may visualize G as a bipartite graph with edges going between variable and constraint nodes, although we keep
in mind that the neighborhoods of the constraint nodes are ordered.

Definition 2.1. Let n, m be integers and setV ={xy,...,x,} and F ={ay,..., an}. The teacher-student scheme is the
distribution on assignment/factor graph pairs induced by the following experiment.
TCH1: An assignmenta’, € QV, the ground truth, is chosen uniformly at random.
TCH2: Then obtain the random factor graph G* (n, m, p,o ;) with variable nodes V and constraint nodes F by
drawingindependently for j = 1,..., m the neighborhood and the weight function from the joint distribution

Ploa;=(y,...., k) ¥a; =w] =& pwwein, ..., o) fory,..., v €V, we¥, where 2.1)
=& =1F Y Elw @), 2.2)

TeQk

The idea is that a “teacher” chooses o}, and sets up a random factor G* (n, m, p,o,) such that for each constraint
node the weight function and the adjacent variable nodes are chosen from the joint distribution (Z.I) induced by
the ground truth. Specifically, the probability of a weight function/variable node combination is proportional to
the prior p(y) times the weight y(a},(31),...,07;,(yx)) of the corresponding spin combination under the ground
truth. The teacher hands the random factor graph G* (n, m, p,d},), but not the ground truth itself, to an imaginary
“student”, whose task it is to infer as much information about o}, as possible. Hence, the key quantity associated
with the model is the mutual information of the ground truth and the random factor graph defined as in (T.9). Let
us briefly write * = o;,. Moreover, letting m = Po(dn/ k) we use the shorthand G* = G* (n, m, p,c™).

The cavity method predicts that the mutual information %I (o*,G*) converges to the solution of a certain sto-
chastic optimization problem. We are going to prove this conjecture under the three general conditions shown in
Figure[Il The first condition SYM requires that on the average the weight functions prefer all values o € Q) the same.
Condition BAL requires that on average the weight functions do not prefer an imbalanced distribution of values
(e.g., that 03,...,0 all take the same value). The third condition POS can be viewed as a convexity assumption.
Crucially, all three assumptions can be checked solely in terms of the prior distribution p on weight functions. In
Section [4 we will see that the three assumptions hold in many important examples. These include LDGM codes
or variations thereof where the parity checks are replaced by k-SAT clauses or by graph or hypergraph g-coloring
constraints for any g = 2, and thus in particular the Potts antiferromagnet.

Theorem 2.2. Assume that SYM, BAL and POS hold. Withy = Po(d), y,,¥,,... € ¥ chosen from p, p(l’”,pg”,
chosen fromm € @2(9) and hy, hy, ... € [k] chosen uniformly, all mutually independent, let

dk-1
AT X i oty [T w2, @ ») |z wmﬂn(’%ﬂ)

|Q| oeQi=17eqk j#h; TeQk
Then for all d > 0 we have

B(d,m)=E (2.3)

lim —I(a G)=In|Ql+ ——— ) E[A(@{)]- sup ZB(d,n).

k
kEIQI* _cox TeP2(Q)



Theorem [[.4] follows immediately from Theorem 2.2] by verifying SYM, BAL and POS for the LDGM setup (see
Section[4).

Remark 2.3. The expression 98(d,n) is closely related to the “Bethe free energy” from physics [65l, which is usually
written in terms of |Q| different distributions (7,)weq on P (Q) rather than just a single . But thanks to the ‘Nishi-
mori property’ (Proposition[3.2 below) we can rewrite the formula in the compact form displayed in Theorem[2.2

2.2. Belief Propagation. We proceed to establish that the stochastic optimization problem can be cast as the
problem of finding an optimal distribution of Belief Propagation messages on a random tree. To be precise, let
7 € 22(Q) and consider the following experiment that sets up a random tree of height two and uses 7 to calcu-
late a “message” emanating from the root. The construction ensures that the tree has asymptotically the same
distribution as the depth-two neighborhood of a random variable node in G*.
BP1: The root is a variable node r that receives a uniformly random spin ¢ * (r).
BP2: The root has a random number y = Po(d) of constraint nodes ay, ..., ay as children, and independently
for each child a; the root picks a random index h; € [k].
BP3: Each a; has k — 1 variable nodes (x;;) je(k\n;; as children and independently for each a; we choose a
weight function y,, € ¥ and spins o (x;;) € Q from the distribution

P(W)W(Uily--- )O-ihi—lyo-*(r)»a-ihi+l’---yaik)

P .
ZU//E\I’,T”EQ p(U/’W/(Til; oee rTih,'—lvo'*(r);Tihi+lr--- 7Tik)

Vlal- 211’,0*(161‘]) :Uij] =

BP4: For each x;; independently choose By, € 2(Q) from the distribution |Q|u(e™ (x;;))dm ().
BP5: Finally, obtain p, via the Belief Propagation equations:

HL B (0)
Yrea T, g, (1)
Let 9, () be the distribution (over all the random choices in BP1-BP4) of u, and let

PE(d) ={ne P2Q): Ty(n) =n}.

Bo0n)= Y Hip =0y, @ [] py, @), 1, (0) =
j#hi

T7eQk

The stochastic fixed point problem J; () = 7 is known as the density evolution equation in physics [65].
Theorem 2.4. IfSYM, BAL and POS hold, then SUP e 2 () Bd,n) = supnegz.é @ ABd,).

Theorem[2.2lreduces a question about an infinite sequence of random factor graphs, one for each n, to a single sto-
chastic optimization problem, thereby verifying the key assertion of the replica symmetric cavity method. Further,
Theorem 2. 4]shows that this optimization problem can be viewed as the task of finding the dominant Belief Prop-
agation fixed point on a Galton-Watson tree. Extracting further explicit information (say, an approximation of the
mutual information to seven decimal places or an asymptotic formula) will require application-specific consider-
ations. But there are standard techniques available for studying stochastic fixed point equations analytically (such
as the contraction method [78]) as well as the numerical ‘population dynamics’ heuristic [65]. Since 28(d, m) will
occur in Theorems[Z.6land[2.7]as well, Theorem[Z.4limplies that those results can be phrased in terms of QZ‘ﬁZX(d).

2.3. The information-theoretic threshold. The teacher-student scheme immediately gives rise to the following
question: does the factor graph G* reveal any discernible trace of the ground truth at all? To answer this question,
we should compare G* with a “purely random” null model. This model is easily defined.

Definition 2.5. WithQ,p,V ={x1,...,x,} and F ={ay,..., an} as before, obtain G(n, m, p) by performing the follow-
ing for every constraint a; independently: choose 0a;j € V* uniformly and independently sample Ya; €Y from p.
With m = Po(dn/ k) we abbreviate G = G(n,m, p).

But what corresponds to the ground truth in this null model? Any factor graph G induces a distribution on the
set of assignments called the Gibbs measure, defined by

Y6l here y6(0) = [[valc@1a),...,00ra) foroeQ”and Z(G)= ) we(1). (2.4)
Z(G) acF 7eQV

ug(o) =

Thus, the probability of o is proportional to the product of the weights that the constraint nodes assign to o.
Thinking of u¢ as the “posterior distribution” of the (actual or fictitious) ground truth given G and writing o = o¢
7



for a sample from pg, we quantify the distance of the distributions (G*,0*) and (G, o) by the Kullback-Leibler
divergence

P[G*=G,0" = 0]

PIG=G,0¢=0] "

Dx1(G*,6%1G,066)=)_ P[G"*=G,6"=0]In
G,0

While it might be possible that Dxr, (G*,0*[|G,0 ) = o(n) for small d, G* should evince an imprint of * for large
enough d, and thus we should have Dxg, (G*,0*|G,0¢6) = Q(n). The following theorem pinpoints the precise
information-theoretic threshold at which this occurs. Recall %(d, ) from Theorem [2.21

Theorem 2.6. Suppose that p,¥ satisfy SYM, BAL and POS and let
ding = inf{d > 0:5Up 120 B(d,7) > (1= )N |QI+ N T e Ely ()]}

Then
1
lim — Dy, (G*,U* II G,(TG) =0 ifd < dins, (2.5)
n—oo n
1
liminf — Dgp. (G*,0*||G,¢TG)>0 ifd > dins.
n—oo n

The first scenario provides an extension of the “quiet planting” method from [3}[53] to the maximum possible
range of d. This argument has been used in order to investigate aspects such as the spatial mixing properties of
the “plain” random factor graph model G by way of the model G*. Moreover, Theorem [2.6] casts light on statistical
inference problems, and in Section[.2lwe will see how Theorem [[3]follows from Theorem[2.6]

2.4. The condensation phase transition. The “null model” G from Theorem[Z.8lis actually a fairly general version
of random graph models that have been studied extensively in their own right in physics (as “diluted mean-field
models”) as well as in combinatorics. The key quantity associated with such a model is —E[In Z(G)], the free energy.
Unfortunately, computing the free energy can be fiendishly difficult due to the log inside the expectation. By
contrast, calculating E[Z(G(n, m, p))] is straightforward: the assumption BAL and a simple application of Stirling’s
formula yield

E[y(0)]

InE[Z(G(n,m,p))] = nln|Q|+mln ) ———+o(n+m).
veok 1€

As Jensen’s inequality implies E[ln Z(G(n, m, p))] <InE[Z(G(n, m, p))], we obtain the first moment bound:

—%E[an(G)] >(d-1In|Q|- %ln Z Ely (o)l +o0(1) forall d > 0. (2.6)
oeQk
For many important examples is satisfied with equality for small enough d > 0 (say, below the giant com-
ponent threshold; cf. Section[IT). Indeed, a great amount of rigorous work effectively deals with estimating the
largest d for which is tight in specific models (e.g., [6, [47]). The second moment method pro-
vides a sufficient condition: if d is such that E[Z(G)?] = O(E[Z(G)]?), then holds with equality. However, this
condition is neither necessary nor easy to check. But the precise answer follows from Theorem 2.6

Theorem 2.7. Suppose that p,¥ satisfy SYM, BAL and POS. Then

1 d
lim —=E[nZ(G)] =(d-1)In|Q|- —In )  Ely(0)] foralld < diys,
oo n oeQk
, 1 d
limsup——E[InZ(G)] < (d-1)In|Q|- —In )_ E[y(0)] forall d > diys.
n—oo N oeQk

Clearly, the function
d € (0,00) — (d-1)In|Q| - %m Y Ely(o)]
oeQk
is analytic. Thus, if di, > 0, then either lim,,—.o — %E[ln Z(G)] does not exist in a neighborhood of dj,¢ or the func-
tion d — lim; o —%E[ln Z(G)] is non-analytic at dj,s. Hence, verifying an important prediction from [54], The-
orem [2.7lshows that if di¢ > 0, then a phase transition occurs at dj,y, called the condensation phase transition in
physics.



In Sections [.Iland [4.3] we will derive Theorems[LTland [[.2lfrom Theorem 271 While the proving Theorem L]
from Theorem 2.7]is fairly straightforward, Theorem requires a bit of work. This is because Theorem [2.7] as-
sumes that all weight functions ¥ € W are strictly positive, which precludes hard constraints like in the graph
coloring problem. Nonetheless, in Section [£.3] we show that these hard constraints, corresponding to § = oo in
(L1, can be dealt with by considering the Potts antiferromagnet for finite values of § and taking the limit f — co.
We expect that this argument will find other applications.

2.5. Discussion and related work. Theorems and 27 establish the physics predictions under modest as-
sumptions that only refer to the prior distribution of the weight functions, i.e., the ‘syntactic’ definition of the
model. The proofs provide a conceptual vindication of the replica symmetric version of the cavity method.

Previously the validity of the physics formulas was known in any generality only under the assumption that
the factor graph models satisfies the Gibbs uniqueness condition, a very strong spatial mixing assumption [17}
[351137]. Gibbs uniqueness typically only holds for very small values of d. Additionally, under weaker spatial
mixing conditions it was known that the free energy in random graph models is given by some Belief Propagation
fixed point [31} [37]. However, there may be infinitely many fixed points, and it was not generally known that the
correct one is the maximizer of the functional 28(d, -). In effect, it was not possible to derive the formula the free
energy or, equivalently, the mutual information, from such results. Specifically, in the case of the teacher-student
scheme Montanari proved (under certain assumptions) that the Gibbs marginals of G* correspond to a Belief
Propagation fixed point as in Section[2.2] whereas Theorem 2. 4]identifies the particular fixed point that maximizes
the functional %(d, -) as the relevant one.

Yet the predictions of the replica symmetric cavity method have been verified in several specific examples. The
first ones were the ferromagnetic Ising/Potts model [36} [37], where the proofs exploit model-specific monotonic-
ity/contraction properties. More recently, the ingenious spatial coupling technique has been used to prove replica
symmetric predictions in several important cases, including low-density parity check codes [46]. Indeed, spa-
tial coupling provides an alternative probabilistic construction of, e.g., codes with excellent algorithmic proper-
ties [56]. Yet the method falls short of providing a wholesale justification of the cavity method as a potentially sub-
stantial amount of individual ingredients is required for each application (such as problem-specific algorithms [4]).

Subsequently to the posting of a first version of this paper on arXiv, and independently, Lelarge and Miolane
posted a paper on recovering a low rank matrix under a perturbation with Gaussian noise. They use some simi-
lar ingredients as we do to prove an upper bound on the mutual information matching the lower bound of [55].
This setting is conceptually simpler as the infinite-dimensional stochastic optimization problem reduces to a one-
dimensional optimization problem due to central limit theorem-type behavior in the dense graph setting.

The random factor graph models that we consider in the present paper are of Erdés-Rényi type, i.e., the con-
straint nodes choose their adjacent variable nodes independently. In effect, the variable degrees are asymptotically
Poisson with mean d. While such models are very natural, models with given variable degree distributions are of
interest in some applications, such as error-correcting codes (e.g. [72]). Although we expect that the present meth-
ods extend to models with (reasonable) given degree distributions, here we confine ourselves to the Poisson case
for the sake of clarity. Similarly, the assumptions BAL, SYM and POS, and the strict positivity of the constraint
functions strike a balance between generality and convenience. While these conditions hold in many cases of in-
terest, BAL fails for the ferromagnetic Potts model, which is why Theorem[L.3]does not cover the assortative block
model. Anyhow BAL, SYM and POS are (probably) not strictly necessary for our results to hold and our methods
to go through, a point that we leave to future work.

A further open problem is to provide a rigorous justification of the more intricate ‘replica symmetry breaking’
(1RSB) version of the cavity method. The 1RSB version appears to be necessary to pinpoint, e.g., the k-SAT or g-
colorability thresholds for k = 3, g = 3 respectively. Currently there are but a very few examples where predictions
from the 1RSB cavity method have been established rigorously [39}/40}[83], the most prominent one being the proof
of the k-SAT conjecture for large k [41]. That said, the upshot of the present paper is that for teacher-student-type
problems as well as for the purpose of finding the condensation threshold, the replica symmetric cavity method is
provably sufficient.

Additionally, the “full replica symmetry breaking” prediction has been established rigorously in the Sherrington-
Kirkpatrick model on the complete graph [84]. Subsequently Panchenko proposed a different proof that com-
bines the interpolation method with the so-called ‘Aizenman-Sims-Starr’ scheme, an approach that he attempted
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to extend to sparse random graph models [80]. We will apply the interpolation method and the Aizenman-Sims-
Starr scheme as well, but crucially exploit that the connection with the statistical inference formulation of random
factor graph models adds substantial power to these arguments.

2.6. Preliminaries and notation. Throughout the paper we let Q be a finite set of ‘spins’ and fix an integer k = 2.
Moreover, let V =V, = {x1,...,x,} and F,, = {ay,..., an} be sets of variable and constraint nodes and we write ¢},
for a uniformly random map V,, — Q. Further, m = m; = m;(n) denotes a random variable with distribution
Po(dn/k).

The O(-)-notation refers to the limit n — oo by default. In addition to the usual symbols O(-), o(-), Q(-), ©(+)
we use O(-) to hide logarithmic factors. Thus, we write f(n) = O(g(n)) if there is ¢ > 0 such that for large enough
nwe have | f(n)| < g(n)In° n. Furthermore, if (E,),, is a sequence of events, then (Ey,),, holds with high probability
(‘w.h.p.) if limy,—o P[E,] = 1.

Let (1) n, (Vi) n be sequences of probability distributions on measurable spaces (Z},) ,. We call (i), contiguous
with respect to (v,), if for any € > 0 there exist 6 > 0 and ny > 0 such that for all n > ng for every event &, on Q,
with v, (&,,) < 6 we have u,(&,) < €. The sequences (i), (Vi) are mutually contiguous if (1), is contiguous
w.r.t. (V) and (vy,), is contiguous w.r.t. (1,) ;-

If X, Y are finite sets and o : X — Y is a map, then we write A1, € 22(Y) for the empirical distribution of o. That is,
forany ye Y welet A4 (y) = Ia‘l(y)I/I Y|. Moreover, for assignments 0,7: X — Y welet c AT ={x€ X :0(x) # 7(x)}.

When defining probability distributions we use the o -symbol to signify the required normalization. Thus, we
use P[X = x] « gy for all x € X as shorthand for P[X = x] = qx/Zyggg qy for all x € &', provided that Zyeg{ qy > 0.
If 3 year gy = 0 the o< -symbol defines the uniform distribution on X.

Suppose that % is a finite set. Given a probability distribution  on " we write o7,01,,02,4,... for indepen-
dent samples from . Where u is apparent from the context we drop it from the notation. Further, we write (X (a)}
for the average of a random variable X : " — R with respect to . Thus, (X(0)), = X gegn X(0) (o). Similarly, if
X:(2™M! - R, then

]
X@1,...o)y= Yy, Xor,....,0p [[ ).
j=1

If 4 = ug is the Gibbs measure induced by a factor graph G, then we use the abbreviation (-)g = (-} .

If &, 1 are finite sets, u € P (X I)is a probability measure and i € I, then we write u; for the marginal dis-
tribution of the i-coordinate. That is, y; (W) = Y 4.79 1{o(i) = w}u(o) for any w € . Similarly, if J c I, then
W) =Y g.1—q 1ol = wlu(o) for any w : ] — & denotes the joint marginal distribution of the coordinates J. If

2
2 vij—vievjlly <elr®.
ijel
More generally, v is (¢, [) -symmetric if

Z ”:uil ----- iz_ui1®"'®ﬂil”TV<€|I|l'

Crucially, in the following lemma € depends on 6, [, Z only, but not on p or 1.

Lemma 2.8 ([17]). Forany % # @, 1=3,08 > 0 there is e > 0 such that for all I of size|I| > 1/¢ the following is true.
Ifue 2" is e-symmetric, then u is (8, 1) -symmetric.

The total variation norm is denoted by | - [ty. Furthermore, for a finite set Z we identify the space 2 (%) of
probability distributions on 2 with the standard simplex in R* and endow 22(%) with the induced topology and
Borel algebra. The space 22 (%) of probability measures on 22 (%) carries the topology of weak convergence. Thus,
%(%) is a compact Polish space. So is the closed subset 22(Z) of measures 7 € 22(%’) whose mean [ ud(w)
is the uniform distribution on &. We use the W; Wasserstein distance, denoted by Wj (-, -), to metrize the weak
topology on ,@f (Z) [21}85]. In particular, recalling 4(d, -) from 23) and F,(+) from Section[22] we observe

Lemma2.9. The mapn e P2(Q) — T 4(m) and the functional € P%(Q) — B(d,m) are continuous.

Proof. We prove this for 9 (), the proof for 2(d, 7r) is similar. We need to show that for every € > 0, thereis § > 0 so

that if Wi (71, 72) < 6, then W1 (F (1), T4 (2)) < €. Let Ty < (1) be the output distribution of I (-) conditioned

on the event that y < M. For any fixed M, 9, <M(7) is a continuous function of 7 in the weak topology as it
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is the composition of a continuous function and and a product distribution on at most M independent samples
from 7. Now given ¢, choose M large enough that P[y > M] < /2, and 6 small enough that W (7, 72) < 6 implies
W1 (T ay=m (1), Tay<pm(m2)) < /2. Then W1(T4(m1), T (m2)) < W1 (T g,y <m (1), Tap<m(12)) +Ply > Ml <e. U

Furthermore, for a measure yu € (%) we denote by § u€ P2%(Z) the Dirac measure on u.

Proposition 2.10 (Glivenko—Cantelli Theorem, e.g. Chapter 11]). For any finite setQ, there is a sequence g — 0
as K — oo so that the following is true. Let iy, o, -+ € 2(Q) be independent samples from w € 2%(Q) and form the

empirical marginal distribution
_ 1 &
fig =22 Op
Kia
Then E[W1 (r, ig)] < ek.

Suppose that (&, u) is a probability space and that X, Y are random variables on (&, u) with values in a finite set
% . We recall that the mutual informationof X, Y is

wX=xY=y)
I(X,Y)= X=x,Y=y)h—————
XN= 2 X =xY =y =)

with the usual convention that Oln% =0, 0In0 = 0. Moreover, the mutual information of X, Y given a third & -
valued random variable W is defined as
uX=xY=ylW=w)

I(X,Y|W)= Z /J(X:X,Y:y,W: W)ln'u(sz|W=w)l,L(Y=y|W=w)

X, ), WEX

Furthermore, we recall the entropy and the conditional entropy:

HX)=- ) pX=x)InuX=x), HX|Y)=- ) puX=xY=y)huX=xY=y).
xXeX X, yeX

Viewing (X,Y) as a Z x & -valued random variable, we have the chain rule
H(X,Y)=H(X)+ H(Y|X).

Analogously, for p € 22(Z) we write H(() = =Y yeq 1(x) In p(x).
The Kullback-Leibler divergencebetween two probability measures y, v on a finite set & is

o)
D = In——.
ke (1lv) UEZ% Ho)n 7o

Finally, we recall Pinsker’s inequality: for any two probability measures p,v € 22(Z) we have
=]y =/ Dxe (rllv) 12 2.7

3. THE REPLICA SYMMETRIC SOLUTION

In this section we prove Theorems 24128 and 27 The proofs of Theorems[L.IHL.4l follow in Section[d] along
with a few other applications.

3.1. Overview. To prove Theorem [2.2] we will provide a rigorous foundation for the “replica symmetric calcula-
tions” that physicists wanted to do (and have been doing) all along. To this end we adapt, extend and generalize
various ideas from prior work, some of them relatively simple, some of them quite recent and not simple at all,
and develop several new arguments. But in a sense the main achievement lies in the interplay of these compo-
nents, i.e., how the individual cogs assemble into a functioning clockwork. Putting most details off to the following
subsections, here we outline the proof strategy. We focus on Theorem from which we subsequently derive
Theorem 2.6l and Theorem 2.7]in Section Theorem 2.4 also follows from Theorem [Z.2] but the proof requires
additional arguments, which can be found in Section 3.6
The first main ingredient to the proof of Theorem[Z2]is a reweighted version of the teacher-student scheme that
enables us to identify the ground truth with a sample from the Gibbs measure of the factor graph; this identity is
an exact version of the “Nishimori property” from physics. The Nishimori property facilitates the use of a general
lemma (Lemma [3.5] below) that shows that a slight perturbation of the factor graph induces a correlation decay
property called “static replica symmetry” in physics without significantly altering the mutual information; due to
11



its great generality Lemma B.5]should be of independent interest. Having thus paved the way, we derive a lower
bound on the mutual information via the so-called ‘Aizenman-Sims-Starr’ scheme. This comes down to estimating
the change in mutual information if we go from a model with n variable nodes to one with n + 1 variable nodes.
The proof of the matching upper bound is based on a delicate application of the interpolation method.

3.1.1. The Nishimori property. The Gibbs measure ¢ of the factor graph G from (24) provides a proxy for the
“posterior distribution” of the ground truth given the graph G. While we will see that this is accurate in the asymp-
totic sense of mutual contiguity, the assumptions BAL, SYM and POS do not guarantee that the Gibbs measure pig=
is the exact posterior distribution of the ground truth. This is an important point for us because the calculation of
the mutual information relies on subtle coupling arguments. Hence, in order to hit the nail on the head exactly, we
introduce a reweighted version of the teacher-student scheme in which the Gibbs measure coincides with the pos-
terior distribution for all n. Specifically, instead of the uniformly random ground truth o}, we consider a random
assignment & ,,m,p chosen from the distribution

EW/G(n,m,p) (0)]
E[Z(G(n,m, p))]

Thus, the probability of an assignment is proportional to its average weight. Further, any specific “ground truth” o
induces a random factor graph G*(n, m, p, o) with distribution

PG mp=0]= @eQ). 3.1)

P[G*(n,m,p,0)e ] = ElYGummp @G m, p) € 1] for any event </ 3.2)
e B Gnmp (0] Y | |

In words, the probability that a specific graph G comes up is proportional to ¥ (o).

acto.l. roranyn,m,p,o tne disirioulion (3.<l coinciaes wi e distrioution jrom Definition weno =a0.
Fact3.1. F y p,a the distributi incides with the distribution from Definition[2.1 gi *

Proof. Consider a specific factor graph G with constraint nodes ay, ..., a;;. Since the constraint nodes of the ran-
dom factor graph G(n, m, p) are chosen independently (cf. Definition[Z5), we have

Yg(o) m Ya;(0(014)),...,00ka;))

(3.3)

.....

Since the experiment from Definition[Z.Ilgenerates the constraint nodes ay, ..., a,, independently, the probability
of obtaining the specific graph G equals the r.h.s. of 3.3). O

Additionally, consider the random factor graph G(n, m, p) defined by

E[Z(G(n,m, p))I{G(n, m, p) € A}]
E[Z(G(n,m, p))]

which means that we reweigh G(n, m, p) according to the partition function. Finally, recalling that m = Po(dn/k),
we introduce the shorthand 6 = 6,1, G*(6) = G* (n,m, p, 6 ,m,p) and G=Gnm, p).

P[G(n,m,p) ed]=

for any event <7, (3.4)

Proposition 3.2. For all factor graph/assignment pairs (G,o) we have
P|6 =0,G"(6) =G| =P[G =G| uc(0). (3.5)
Moreover, BAL and SYM imply that 6 and the uniformly random assignment ¢* are mutually contiguous.

In words, provides that the distributions on assignment/factor graph pairs induced by the following two
experiments are identical.

(i) Choose &, then choose G*(6).
(i) Choose G, then choose o from pg.

In particular, the conditional distribution of & given just the factor graph G* () coincides with the Gibbs mea-
sure of G*(6). This can be interpreted as an exact, non-asymptotic version of what physicists call the Nishimori
property (cf. [86]). Although (6,G*(6)) and (6*,G") are not generally identical, the contiguity statement from
Proposition[3.2]ensures that both are equivalent as far as “with high probability”-statements are concerned. The
proof of Proposition[3.2]can be found in Section[3.2]
To proceed, we observe that the free energy of the random factor graph is tightly concentrated.
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Lemma 3.3. ThereisC = C(d,¥) > 0 such that
P[IInZ(G)-EInZ(G)| > tn] <2exp(~t*n/C)  forallt>0. (3.6)
The same holds with G replaced by G*(6), G* (6*) or G. Moreover,
EllnZ(G)] =E[In Z(G*(¢*))] + o(n). 3.7)

Proof. Because all weight functions y € W are strictly positive, is immediate from Azuma’s inequality. More-
over, since G and G*(¢) are identically distributed and ¢ and ¢* are mutually contiguous by Proposition B2} G
and G* (¢*) are mutually contiguous as well. Therefore, (3.7) follows from (B.6). O

The following statement, which is an easy consequence of Proposition[3.2] reduces the task of computing I(6*, G*)
to that of calculating the free energy —E[In Z(G)] of the reweighted model G.

Lemma 3.4. We have

1(6,G*(6)) = -E[In Z(G)] + QF Z [A(p ()] +nln|Ql+o(n), (3.8)
kf' TeQF
* * * 2 dl’l
I(6",G"(67))=-E[InZ(G)] + Ty Z E[A(y ()] + nIn|Q| + o(n). 3.9)
kE1QI* ok
Proof. Proposition[3.2limplies that
He (o)

1(6,G*(6))=)_P[G=G]) pg(0)In = H(6) - E[H(ug)]- (3.10)
G [

Pl =0]
Further, since é and the uniformly random ¢ * are mutually contiguous, we have
H(6) =nln|Q|+ o(n). (3.11)

Moreover, for any factor graph G we have

and Proposition shows that E(lnwé(aé))é = E[ h’le*(&) (6)]. Since 6 and ¢* are mutually contiguous by
Proposition[3.2] we see that |6 (w)| ~ n/|Q| for all w € Q w.h.p. In addition, the construction Z.I) of G* (&) is such
that the individual constraint nodes a, ..., a,, are chosen independently. Therefore, (21D yields

=InZ(G) - (Inycloc))g 3.12)

d d
E(Inyg(04) = —E[wa @) +om=——— ¥  p@y®hy@ = ——— ¥ EA@@D). (313
k kflol T€Qk,w€q/ klel T€Qk

Combining (3.10)-(3.13) completes the proof of (3.8). Applying the same steps to (¢*,G* (¢*)) yields (3.9). O

3.1.2. Symmetry and pinning. Hence, we are left to calculate —E[ln Z (6)]. Of course, computing In Z(G) for a
given G is generally a daunting task. The plain reason is the existence of correlations between the spins assigned to
different variable nodes. To see this, write o for a sample drawn from pu¢. If we fix two variable nodes xj, x; that
are adjacent to the same constraint node a i then in all but the very simplest examples the spins o g(x,), 06 (x;)
will be correlated because y,; ‘prefers’ certain spin combinations over others. By extension, correlations persists
if xp, x; are at any bounded distance. But what if we choose a pair of variable nodes (x,y) € V x V uniformly at
random? If G is of bounded average degree, then the distance of x, y will typically be as large as Q(In|V]). Hence,
we may hope that o5 (x),0(y) are ‘asymptotically independent’. Formally, let i x be the marginal distribution of
0 (x) and g,y the distribution of (ac(x), 0(y)). Then we may hope that for a small € > 0,

~5 2 ey —Hex®ucy| <€ (3.14)
v xev
In the terminology from Section[Z.6] (3.14) expresses that p is e-symmetric.

The replica symmetric cavity method provides a heuristic for calculating the free energy of random factor graph
where (3.14) is satisfied w.h.p. for some € = ¢(n) that tends to 0 as n — co. But from a rigorous viewpoint two chal-
lenges arise. First, for a given random factor graph model, how can we possibly verify that e-symmetry holds w.h.p.?
Second, even granted e-symmetry, how are we going to beat a rigorous path from the innocent-looking condition
(3.I4) to the mildly awe-inspiring stochastic optimization problems predicted by the physics calculations?
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The following very general lemma is going to resolve the first challenge for us. Instead of providing a way of
checking, the lemma shows that a slight random perturbation likely precipitates e-symmetry.

Lemma 3.5. Foranye >0 thereis T = T(g,Q) > 0 such that for every n > T and every probability measure 1 € (Q")
the following is true. Obtain a random probability measure 1 € 22(Q") as follows.

Draw a sampled € Q" from u, independently choose a number 0 € (0, T) uniformly at random, then
obtain a random set U c [n] by including each i € [n] with probability @/ n independently and let

. wo)livieU:o;=0;}
(o) = - -

wTeQn:VielU: 1, =6}
Then 1 is e-symmetric with probability at least 1 — €.

(0eQ™).

In words, take any distribution p on Q" that may or may not be e-symmetric. Then, draw one single sample
¢ from p and obtain f1 by “pinning” a typically bounded number of coordinates U to the particular spin values
observed under ¢. Then the perturbed measure f is likely e-symmetric. (Observe that i is well-defined because
pureQ":VieU:1; =0d;}) = u(d) >0.) Lemmal[3.5lis a generalization of a result of Montanari [73] Lemma 3.1]
and the proof is by extension of the ingenious information-theoretic argument from [73], parts of which go back
to [64]. The proof of Lemma[B.5] can be found in Section3.71

Proposition[3.2land Lemma 3.5l fit together marvelously. Indeed, the apparent issue with Lemma [3:5]is that we
need access to a pristine sample ¢. But Proposition[3.2limplies that we can replace & by the “ground truth” .

3.1.3. The free energy. The computation of the free energy proceeds in two steps. In Section[3.3]we prove that the
stochastic optimization problem yields a lower bound.

Proposition 3.6. IfSYM and BAL hold, thenliminf, .., —1EIn Z(G) = - SUP e g2 () B(d, 7).

To prove Proposition B.6lwe use the Aizenman-Sims-Starr scheme [10]. This is nothing but the elementary obser-
vation that we can compute —E[In Z (] by calculating the difference between the free energy of a random factor
graph with n + 1 variable nodes and one with 7 variable nodes. To this end we use a coupling argument. Roughly
speaking, the coupling is such that the bigger factor graph is obtained from the smaller one by adding one variable
node xp+1 along with a few adjacent random constraint nodes by, ..., by. (Actually we also need to delete a few
constraint nodes from the smaller graph, see Section[3.3]) To track the impact of these changes, we apply pinning
to the smaller factor graph to ensure e-symmetry. The variable nodes adjacent to by, ..., by are “sufficiently ran-
dom” and y is typically bounded. Therefore, we can use e-symmetry in conjunction with Lemma [2.8]to express the
expected change in the free energy in terms of the empirical distribution p, of the Gibbs marginals of the smaller
graph. By comparison to prior work such as that also used the Aizenman-Sims-Starr scheme, a delicate
point here is that we need to verify that p, satisfies an invariance property that mirrors the Nishimori property
(Lemma [3.I7below). With Lemmas[2.8land B.5land the invariance property in place, we obtain the change in the
free energy by following the steps of the previously non-rigorous Belief Propagation computations, unabridged.
The result works out to be —%8(d, p,,), whence Proposition[3.6lfollows. The details can be found in Section3.3]
The third assumption POS is needed in the proof of the upper bound only.

Proposition 3.7. IfSYM, BAL and POS hold, thenlimsup,,_. . — %Eln Z(G) < - SUP e 2 () ABd, ).

We prove PropositionB.7]via the interpolation method, originally developed by Guerra in order to investigate the
Sherrington-Kirkpatrick model [49]. Given 7 € @f (Q), the basic idea is to set up a family of factor graphs (Gt) 1€10,1]
such that G = G, is the original model and such that Gy decomposes into connected components that each contain
exactly one variable node. In effect, the free energy of Go is computed easily. The result is —28(d, 7). Therefore, the
key task is to show that the derivative of the free energy is non-positive for all ¢ € (0,1). The interpolation scheme
that we use is an adaptation of the one of Panchenko and Talagrand to the teacher-student scheme. A crucial
feature of the construction is that the distributional identity from Proposition remains valid for all ¢ € [0, 1].
Together with a coupling argument this enables us to apply pinning to the intermediate models for ¢ € (0,1) and
thus to deduce the negativity of the derivative from as modest an assumption as POS. The details are carried out
in Section[3.4]

Theorem[.2lis immediate from Propositions[3.2] B.6landB.7land (3.9). We prove Propositions[3.2] B.6landB.7lin
Section[3.2H3.4] Theorem[Z6lfollows from Theorem[Z.2]and a subtle (but brief) second moment argument that can
be found in Section[3.5l The proof of Theorem[2.7lis also contained in Section[3.5] Finally, the proof of Theorem[2.4]
comes in Section[3.6
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3.2. The Nishimori property. In this section we prove Proposition[3.2] Actually we will formulate and prove a gen-
eralized version to facilitate the interpolation argument in Section[3:4l To define the corresponding more general
factor graph model, let k = 2 be an integer and let ¥ be a (possibly infinite) set of weight functions v : Q% — (0,2)
where ky, € [k] is an integer. Thus, the weight functions may have different arities, but all arities are bounded by
k. Since each function ¥ can be viewed as a point in the |Q|*v -dimensional Euclidean space, the Borel algebra
induces a o-algebra on W. Let p be a probability measure defined on this o-algebra and let ¥ € ¥ be a sample
from p. The conditions BAL and SYM extend without further ado.

Define the random factor graph model G(n, m, p) with variable nodes V = {xi,...,x;} and constraint nodes
F={a,..., am} by choosing for each i € [m] independently a weight function v, from p and a neighborhood da;
consisting of kwa,- variable nodes chosen uniformly, mutually independently and independently of v,,. Formally,
we view G(n, m, p) as consisting of a discrete neighborhood structure and an m-tuple of weight functions. Let
% (n, m, p) be the measurable space consisting of all possible outcomes endowed with the corresponding product
o-algebra.

Any G € 4(n, m, p) induces a Gibbs measure p¢ defined via (Z4). Moreover, the model G(n, m, p) induces a
distribution 6, ;,,, on assignments, a reweighted distribution G(n, m, p) on factor graphs and for each assignment
o a distribution G*(n, m, p,0) on factor graphs via the formulas (3.I)-(3.4). In particular, we have the following
extension of FactB.1l

Fact 3.8. The graph G*(n, m, p,0) is distributed as follows. For all j € [m], | € [k], i1,...,i; € [n] and any event
o <V we have
S Xn o E[lky = By (o), 0 (xn,))]

..... 1=

P[ky,, =l,1//a].Ed,aajz(x,-l,...,xil)]:

and the m pairs (Y a;,0a;) jejm) are mutually independent.

Additionally, we consider an enhanced version of these distributions where a few variables are pinned to specific
spins. More precisely, foraset U c V = {x1,..., x,}, an assignment J € QU and a factor graph G let Gy 4 be the factor
graph obtained from G by adding unary constraint nodes a, with da = x and 4, (0) = 1{o = 6(x)} for all x € U.
In contrast to all the weight functions from ¥, the unary weight functions y,, are {0,1}-valued. The total weight
function, partition function and Gibbs measure of Gy 4 relate to those of the underlying G as follows:

Yy 0) =ygo) [[ Ho) =g, Z(Gys) = Z(G) < [[ o= 6(x)}> : (3.15)
xeU xeU G

_ H6@) rey 1o (x) = 0 (x)}
(Myey o) =0}
Thus, pg,, is just the Gibbs measure of G given that o (x) = ¢(x) for all x € U. (Because all ¢ € ¥ are strictly

positive, we have Z(Gy,¢) > 0 and thus g, , is well-defined.) Let %(n, m, p) be the measurable space consisting of
all Gy s with Ge¥4(n,m,p), UcVando:U — Q.
Further, let Gy (n, m, p) be the outcome of the following experiment.

HGy s (0)

PIN1: choose a spin (x) € Q Elniformly and independently for each x € U,
PIN2: independently ch9ose G=G(n,m,p),
PIN3: let Gy(n,m,p) =Gy .
Thus, Gy (n, m, p) is obtained from G(n, m, p) by pinning the variable nodes x € U to random spins & (x). By exten-
sion of the formulas (3I)-([3.4) we obtain the following associated distributions on assignments/factor graphs:
_ Elweym,m,p) (0)]
~ ElZ(Gy(n,m, p))]
ElZ(Gy(n,m, p)) {Gy(n,m, p) € A}
E[Z(Gy(n,m, p))]
Elveymmp (@) UGy (n,m, p) € o/1]
Elweymn,m,p) (0)]
Finally, mimicking the construction from Lemma 3.5 we introduce models where the set of pinned variables itself
is random.

P[&U,n,m'p =0] foro e Q",

P[GU(n, m,p)edd| = for an event o c 4(n, m, p),

P[G},(n,m,p,0)€f]| = for an event o < 4(n, m, p) and o € Q".
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Definition 3.9. For T =0 letU = U(T) c V be a random set generated via the following experiment.
Ul: choose@ < [0, T] uniformly at random,
U2: obtain U c V by including each variable node with probability @/ n independently.
Then we let
Gr(n,m,p) = Gy(n,m,p), Gr(n,m,p) = Gy(n,m, p) and G (n,m,p,0) = Gy(n,m, p,o).
Further, with m = Po(dn/ k) chosen independently of U, we define
Gr=Gy(n,m,p), Gr = Gy(n,m, p), G;(0) = G;(n,m, p,0) and G} = Gy;(n,m, p,a*)
The following statement provides a Nishimori property for the models from Definition[3.9}
Proposition 3.10. The following two distributions on factor graph/assignment pairs are identical.
(i) Choose G = 6 p,m,p, then choose G*T (6).
(ii) Choose G, then choose g,
Moreover, (¢*,G}.(0™)) and (6, G} (6)) are mutually contiguous and 6y, n,m,p And & n,m,p are identically distributed.

In formulas, (i), (ii) are the distributions defined by
P[6=0,G} @) e /| =E[Pl6 = 0lm]-P[G} @) e /Im]|, P|og, =0,6ress|=E|ug, (11Gre )

respectively, for o € Q" and events «f < 4(n, m,p). We prove Proposition BI0 by way of the following lemma
regarding the model with a fixed pinned set U. Observe that in the first two experiments we first choose an as-
signment/factor graph pair without paying heed to the set U at all and subsequently pin the variables in U. By
contrast, in the other two experiments we choose a pair that incorporates pinning from the outset.

Lemma 3.11. For any fixed set U < V the distributions on assignment/factor graph pairs induced by the following
four experiments are identical.

(1) Chooseod = G n,m,p, then choose GY =G*(n,m, PO nm,p) and output(a(l)» GS){;(U).

(2) Choose G? = G(n,m, p), then choosed? = a ¢ and output (a®, Gg?a(z)).

(3) Choose G® = Gy (n, m, p), then choose ® = Oy tnmp) and output (0¥, G®).

(4) Choosea™ =&y, ,,m,p, then choose G? = G}, (n,m, p,6™) and output (6@, GV).

Moreover, the distributions of 6 y,n,m,p and 6 n,m,p coincide.

Proof. In order to show that (i) and (ii) are identical it suffices to prove that the pairs (o', , > G(n,m, p)) and
(6 nm,p, G*(n,m, p,6 n,m,p)) are identically distributed. Indeed, for any event </ and any o € Q"
E[Z(G(n, m,p)L{G(n, m, p) € L} UG n,m,p) (0)]
E[Z(G(n,m, p))]
_ Elwemmp (0)1{G(n,m, p) € o}]
a E[Z(G(n, m, p))]
_ Elwemmp (@] EWeunmp (0)H{G(n, m,p) € 1]
" EIZ(G(n,m,p)] E[YGn,m,p) (0)]
=P[6nmp=0]|P[G"(n,m,p,6 nmp) €6 pmp=0]

P[G(n,m,p) €ed,0;5=0]=

=P[G"(n,m,p,6 nmp) €A, 0 nmp=0].
A very similar argument shows that (iii) and (iv) are identical: for any event </ and any o € Q",
E[Z(Gy(n, m, p)UHGy(n,m, p) € A} UuGynm,p) (0)]

ElZ(Gy(n,m, p))]

_E[HGy(n,m,p) e L weymmp (0)]
B ElZ(Gy(n,m, p))]
_ Elweyiump (0] ElWe,mmp (@) HGy(n,m,p) € o/}
T EIZ(Gu(n,m, )] E[W Gy (n,mp) (0)]
=P[6unmp=0,Gy(n,m,p,6y nmp) €L].

P GU(n, m, p) Ed’aéu(n,m,p) = 0] =
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As a next step we show that &, ,p, G U n,m,p are identically distributed. Indeed, because the random choices
performed in PIN1, PIN2 are independent, (3.15) implies

_ EWeymmp (@] ElWemmp @)]-1Q717
E[Z(Gy(n,m,p))] E[Z(G(n,m,p))]-1Q|71VI

P[6y,nmp=0] P[0 ymp=0]. (3.16)

Finally, to prove that (i) and (iv) are identical, consider the map 4(n, m, p) — 9(n,m, p), G — G°, where G° is
obtained from G by deleting the unary factor nodes ay, x € U, that implement the pinning. Then for any event
o <¥9(n,m,p) and any o € Q", due to the independence of PIN1 and PIN2,

ElWeym,mp (@) H{(Gy(n,m, p))° € o}
Elveym,m,p) (0)]

_ Blyem,mp (@1{G(n,m, p) € 431107V

- E[WG(n,m,p) (0)]]Q171V]

Since U is fixed and the unary weight functions v,_, x € U, are determined by ™ resp. o', and 317
imply that (ii) and (iii) are identical. 0

PG edloW =0]=

=P[GV eV =0]. (3.17)

Next, we make the following simple observation.

Lemma 3.12. Suppose that m = O(n). Under the assumption BAL the distribution 6 n,m,p and the uniform distri-
bution are mutually contiguous.

Proof. Recall that A, € 22(Q) denotes the empirical distribution of the spins under the assignment o € Q". Since
the constraint nodes of G(n, m, p) are chosen independently,

k m
Elycmmp @)1= Y By, 1, ) [[ @] (3.18)
7eQk j=1
k m
EIZ(Gn,m,p)l= ) | Y Elway,..., 15, [[Ae(@)) (3.19)
oeQ" | reqk j=1

Further, since the entropy function is concave, (3.19), Stirling’s formula and BAL ensure that there exists a number
C = C(¥, p) such that

K'¢MIC <ElZ(G(n,m,p))] < k"¢E™. (3.20)

Further, let u be the uniform distribution on Q and let . (L) be the set of all o € Q" such that ||y — ullpy < L//n.
Then BAL guarantees that there exists C' = C' (¥, p) > 0 such that for large enough n

k
E-C'L*In< Y Ely(ry,..., 1) [] Ae(r)) <& forall o € #(L).
j=1

1eQk
Therefore, 3.I8) shows that there exists C” = C" (¥, p, L, m/ n) such that
C"&M <Elyemmp (0)] <&M forall o € #(L). (3.21)
Since for any € > 0 we can choose L = L(¢) large enough such that for a uniformly random o* € Q" we have
Plo* € #(L)] = 1 - ¢, the assertion follows from and 3.21). O

Proof of Proposition[3.10. We couple the experiments (i) and (ii) such that both experiments pin the same set U
and use the same number m of constraint nodes. Then LemmaB.ITldirectly implies that the two distributions are
identical. Analogously, couple (g%, G*T) and (g, G;(&)) such that both have the same U, m. Then the contiguity

statement follows from Lemma[3.12]and the final assertion follows from Lemma [3.11] O
Proof of Proposition[3.2 The proposition follows from PropositionB.I0]by setting T = 0. O

Finally, we highlight the following immediate consequence of Proposition[3.101
Corollary 3.13. Forall T =0 and all w € Q we have
E(llo™ @) -n/|Qll)g, =0(1) and E(llo”" @)|-n/1Qll)g, = o(D).
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Proof. Since o* assigns spins to vertices independently, Chebyshev’s inequality shows that

EY llo* Hw)l-n/Qll = o). (3.22)

weQ

Because by Proposition the distribution of & is contiguous with respect to the uniform distribution, (3.22)
implies EY. ,cq |16~ (w)| — n/|Q|| = o(1). Proposition BI0 therefore implies that

EY (o~ @l-n/IQll)g, = o). (3.23)
weQ
Together with the contiguity statement from Proposition[3.I0lequation (3:23) yields the assertion. O

3.3. The lower bound. In this section we prove Proposition [3.6] regarding the lower bound on the free energy of
G. The following lemma shows that we can tackle this problem by way of lower-bounding the free energy of the
random graph G7. from Definition[3.9} Throughout this section we assume BAL and SYM.

Lemma 3.14. Forany T >0 we have E[lnZ(6G)] = E[an(G;)] +o(n).

Proof. By PropositionB3.2lwe have E[In Z ()] = E[In Z(G*(é))]. Moreover, since o* and ¢ are mutually contiguous,
so are G*(6) and G*(g*). Since InZ(G*) and In Z(G* (6)) are tightly concentrated around their expectations by
Lemma[3.3] we thus obtain

E(ln Z(G)] = E[In Z(G*)] + o(n). (3.24)

Further, a standard application of the Chernoff bound shows that with probability 1 — O(n~2) the degrees of all
variable nodes of G* are upper-bounded by In? . If so, then pinning a single variable node to a specific spin can
shift the free energy of G* by no more than O(In? ), because all weight functions v € W are strictly positive. Since
the expected number of pinned variables is upper-bounded by T, we conclude that

E[an(G;)] =E[InZ(G")] + O(ln2 n. (3.25)
The assertion follows from (3.24) and (3:25). O

Thus, we are left to calculate E[In Z(G7.(6*))]. The key step is to establish the following estimate.
Lemma 3.15. Letting
Ar(n) =E[InZ(Gy(n+1,m(n+1),p,0,,.,)]—ElnZ(G}(n,m(n),p,o,)]

we have

limsuplimsupAr(n) < sup AB(d,n).

T'—oco n—oo TeP2(Q)
Hence, we take a double limit, first taking 7 to infinity and then T Let us write f(n, T) = or (1) if

im limsup|f(n, T)| =0.

\
T—o0 n—o00

Then Lemma[B.I5lyields
1 . 1 . L1l
—E[InZ(G")] = —Elln Z(G;(1,m(1), p,o7)] + — Z Ar(N)< sup %A(d,n)+or(l).
n n n N=1 TePZ(Q)

Thus, applying Lemmas[B.I4land[3.I5land taking the lim sup, we obtain Proposition 3.6}
Hence, we are left to prove Lemma [3.15] To this end we highlight the following immediate consequence of
Lemma[3.5]

Fact 3.16. Foranye >0 there is To > 0 such that for all T > Ty and all large enough n the random factor graph G,
is e-symmetric with probability at least 1 — €.

Proof. LemmaB5limplies that G is e-symmetric with probability at least 1 — ¢, provided T = T(e) is sufficiently
large. Therefore, the assertion follows from the contiguity statement from Proposition[3.10] 0
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Additionally, we need to investigate the empirical distribution of the Gibbs marginals of the random factor graph
G’;. Formally, for a factor graph G we define the empirical marginal distribution p¢ as
pG=1VIT'Y 6. € 2.
xeV
Thus, pg is the distribution of the Gibbs marginal pig x of a uniformly random variable node x of G. If we are also
given an assignment o € Q" then we let

Y Ho(x) = wlb,,

PGow =117
|O' (w)l xeV

unless 01 (w) = @ (in which case, say, PG00 is the uniform distribution on 22(Q2)). Thus, pg g, is the empirical
distribution of the Gibbs marginals of the variables with spin w under o. Further, write pg,, for the reweighted
probability distribution

Hw)
JSv(@)dpc(v)
unless [ pu(w)dpg(u) =0, in which case g,y is the uniform distribution.

PG = dpG (W), (3.26)
Lemma 3.17. We haveZwEQElf,u(w)dpG;(,u) —-1QI7 Y = o).

Proof. CorollaryBI3lyields ¥ ,,cq E{lloc ' ()| - n/IQl|).. = o(1). Hence, by the triangle inequality, for all w € Q
ry Yy G y g ty,

1
=E|= ) (Lo =0}-19" )6, | <E({|n" o™ @)= 10I!|)g, = o),

xeV

E‘fﬂ(w)dpc;(u)— Q!

as desired. 0
Recall that W, denotes the L'-Wasserstein metric on 22 (Q).

Lemma 3.18. We have)_,cq E[W1 (pG*T,,,*,w, ﬁG*T,w)] =or(1).

Proof. By Proposition[3.10lit suffices to prove that

Y EW; (PGT'a@T'w’ﬁGT,w)] =or(1). (3.27)

weQ)

Leto = i, for brevity. Since W, metrises weak convergence, in order to prove (3.27) it suffices to show that for
any continuous function f: 22(Q2) — [0, 1] and for any € > 0 for large enough n, T we have
> < 3¢ for all w € Q. (3.28)

5
Gr

To prove pické = 6(f,¢) > 0 small enough. The compact set 22(Q2) admits a partition into pairwise disjoint
measurable subsets Si, ..., Sk such that any two distributions that belong to the same set S; have total variation
distance less than ¢ for some K = K(5,Q) > 0 that depends on §,Q only. Pick a small enough n =1(5,K,Q). Then
by FactB.I6lthere is Ty(n, Q) such that for all T > Ty for large enough n we have

dpg, o) dp
. fw PGT,w(,U) f@(ﬂ) fw pGT,a,w('u)

P [F‘GT is n4—symmetric] >1-1. (3.29)

Let 7; = 7;(Gr) be the set of variable nodes of G whose Gibbs marginal Hép x lies in S; and let n; = |7;]. Let
Z: » (o) be the set of x € 7; such that o (x) = w and let X; , (o) = |%; , (0)]. By the linearity of expectation we have

(Xiw(@)g, = X Mg, (@) foralloeQ. (3.30)
x€¥;
Furthermore, if Ké, is n4-symmetric, then the variance of X; 4, (o) works out to be
(X2,@). ~(Xiw@)g, = ¥ (Mo @ o) e, @, @) <2n'n®  forallveq. (3.31)
T x,y€V;

Combining (3.30) and (3.:31) with Chebyshev’s inequality, we obtain

<1{|Xl~,w(a)—Zuépx(w)|>nn}> <2n*  forallie(K].

xeV;

Gr
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Hence, by the union bound and Corollary3.13]

<I{Zie[1<],we[m 1Xiw(0) = Xxey; My x (@) = N, Lyea llo = (w)| - n/|Q| < nn}>GT >1-n, (3.32)

provided 1 was chosen small enough.
Now, suppose that GT, g=0g, are such that

Y Xiw@) =} g @< yin Y llog @l -n/iQl<an, 3

ie[K],we[Q] xX€V; weQ) weQ)

<17. (3.33)

f p@)dpg: ()~ 197

Because f: 22(Q) — [0, 1] is uniformly continuous, we can pick §,7 small enough so that (3.33) implies that

f f(,U)dﬁ G (W) = Zle ZxEVi #@T,x(w)f(’uéT’x(w))
2Q) Gro DWEPREATTRND

£+ \/ﬁ+2i€[K] er%,-w((r) f(:uGT x) f
= ' = <2e+ (wdp¢ (.
Q1 —n 9’(0>f HPerow

A similar chain of inequalities yields a corresponding lower bound. Thus,
13.33) = dog - f dp¢
G33) ‘ fgm) fwdpg, ., (W o f(wdpg, o010

Finally, since (3.29), and Lemma[B.I7show that (3.33) holds with probability at least 1 —37 and since f takes
values in [0, 1], (3.34) implies (3.28). O

<2e. (3.34)

We proceed to prove Lemma B.I5l To calculate A7p(n) we set up a coupling of G;(n +1,mn+1), p,afﬁl) and
G’ (n,m(n), p,oy,). Specifically, we are going to view both these factor graphs as supergraphs of one factor graph
G on n variable nodes. To obtain G first choose a ground truth o7, : {x1,...,x,} — Q uniformly and let & be a

random extension obtained by choosing o7 , ; (x;,+1) uniformly. Let

*
n+1

D=D(o},) = (3.35)

Y ireln+llyey POIW(O, (X)), .., 0, (Xi,) k

Unravelling the construction (Z.I), we see that D is the expected degree of x,.; in G*(n+1,m(n+1),p,o
Additionally, let

*
n+1)'

D=E[D|a}], D(w) =E[Dlo},0,,1(Xp+1) = 0], Dmax = max{D,, : w € Q}.
Further, define
A =max{0,min{d(n+ 1)/ k — Dmax, dn/k}}, AN =dnlk-1, A" =max{0,d(n+1)/k— A - D}.
Additionally, choose 8 € [0, T] uniformly and suppose that n > ny(T) is sufficiently large. Now, let G be the random

factor graph with variable nodes V,, = {xy, ..., x,,} obtained by

CPL1: generating iz = Po(1) independent random constraint nodes a, ..., a; according to the distribution
(210 with respect to the ground truth ground truth o7}, and

CPL2: inserting a unary constraint node that pins x; to o, (x;) with probability 8/(n + 1) for each i € [n]
independently.

Further, obtain G’ from G by

CPL1: adding m' = Po(1’) independent random constraint nodes drawn according to (ZI) w.r.t. o,, and
CPL2": pinning each as yet unpinned variable node to ¢, independently with probability 8/(n(n+1-8)).

Finally, obtain G” from G by adding the single variable node x,.1 and
CPL1": adding y* = Po(D) independent constraint nodes by, ..., by« such that for each j € [y*],
Py, =,0b) = (i i) | o€ LR+ L€ Lo, N PWIWO 4 (51, T (5 ).

inwords, by,..., by~ are chosen from (2.I) w.r.t. o, subject to the condition that each is adjacent to x4 1.
CPL2": adding m" = Po(1”) independent random constraint nodes ci, ..., ¢, such that for each j € [m"],

Py, =v,0b; = (oo i) | o M+ 1€ i, TN PO (X)), T (13));

thus, by,..., by+ are chosen from (2.I) subject to the condition that none is adjacent to x;1.
20



CPL3": pinning x,+1 to ¢ (x,+1) with probability @/(n + 1) independently of everything else.

We observe that this construction produces the correct distribution.

Fact 3.19. For sufficiently large n the random factor graph G' is distributed as G.(n,m(n), p,a},) and G" is dis-

tributed as G.(n+1,m(n+1),p,0;,,,).

Proof. Because all ¢ € V¥ are strictly positive D is bounded by some number depending on ¥, d only. Therefore,
A >0 for large enough n and A1+ A’ = dn/k. Consequently, since a sum of independent Poisson variables is Poisson,
CPL1 and CPL1’ ensure that G’ has m(n) = Po(dn/k) independent constraint nodes drawn from (Z.I). Moreover,
by CPL2 and CPL2’ each variable node of G’ gets pinned with probability 8/n independently. Hence, G’ has the
desired distribution.

Analogously, by CPL2 and CPL3" each variable node of G” gets pinned with probability 8/(n+1) independently.
Further, by CPL1, CPL1” and CPL2" the total expected number of constraint nodes of G” equals A + D + A" =
d(n+1)/k for large enough n. Moreover, Definition 2.Iland guarantee that D equals the expected number
of constraint nodes adjacent to x,+; in G*T(n +1,m(n+ 1),p,0:‘1+1). Thus, G” has distribution G;(n +1,m(n+
,po;,). 0

Fact implies that for large enough n,

Z U U /
Ar(n)=E lnﬁl) = [ln Z(G~) —E[an(—G~) . (3.36)
Z(G) Z(G) Z(G)
Actually the following slightly modified version of is more convenient to work with.
Claim 3.20. The event
E=NweQ:|o; () -n/Qll < Vnlnn}
has probability 1 — O(n~2) and
Z(G”)] [ Z(G
Ar(n)=E|1{&}In — | —E[1{&}In — [+ 0(1). 3.37
r(n) [{} 7@ {&} 70 (1) ( )
Moreover, on & we have
D=d+o(1), A=dn+1)/k—-d+o(), AM=dk-1)/k+o(1), A" =o(1). (3.38)

Proof. Because o * is chosen uniformly, the Chernoff bound shows that P[§] = 1 - 0O(n~2). Moreover, because all
v € V¥ are strictly positive, there exists constant Cy > 0 depending on ¥ only such that In Z(G) < Cy m for all factor
graphs G with m constraint nodes. Since the Poisson distribution has sub-exponential tails and P[§] = 1 — o(n™?),
therefore yields (337). Further, SYM guarantees that given & we have D, = d + o(1) for all w € Q, whence
follows. O

Claim 3.21. The random factor graphs G and G’ have total variation distance o(1).

Proof. Let U be the set of variables of G that got pinned. Then CPL1-CPL2 ensures that given 72 = m and given
U = U, G has distribution Gg(n, m, p,0 ;). By comparison, G”} is defined as G’{,(n, m,p,a},), where m =Po(dn/k)
and, as in Definition[3.9] U is obtained by including every variable node with probability 8/n independently. Since
T/n—T/(n+1) = o(1) for every fixed T, the total variation distance of U and U is o(1). Similarly, since E[7i] —E[m] =
A —dnlk = 0(1) while Var(m) = ©(n), the total variation distance of 7z, m is o(1). O

Let w = pg be the empirical distribution of the Gibbs marginals of G and recall the notation of Theorem[Z:2] We are
going to show that the two expressions on the r.h.s. of (3.36) are equal to the the formulas from Theorem[2.2] up to
an or(1) error term.

Claim 3.22. With probability 1 — o7 (1) over the choice of o, and G we have

k
Yvolle]a J-))
1eQk j=1

dk-1)

H&EIN(Z(G)/ Z(G))|G,a] = or(1) + i

E|A
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Proof. We may assume that ' € & and also, since 72 = Po(1) and the Poisson distribution has sub-exponential
tails, that /iz < 2dn. Let % be the event that CPL2' did not pin any variable node at all. Then for all G, o, for large
enough n we have P[%|G,a}] = 1 —2T/n. Consequently, since all weight functions are strictly positive and the
average number of constraint nodes adjacent to any one variable node is bounded by k#iz/n = O(1), we conclude
that

L{EIENN(Z(G"/ Z(6))|G,07] = or(1) + EI{%}In(Z(G")/ Z(6))|G,a7). (3.39)

Moreover, let by,..., b, be the constraint nodes added by CPL1’ and let Y be the set of adjacent variable nodes.
Because on the event % the factor graph G’ is obtained from G by just adding by, ..., by, Z4) yields
m/
In(Z(G)/Z(G)) =In < [T, (@@1b),.. .,a(akbi))> =In ) pgy@ ]‘[ Y, (7). (3.40)
i=1 G 7eQY
To make sense of the r.h.s. of we need to take a closer look at the distribution of Y. Since by, ..., b, are
chosen from (2.I), Y is not generally uniformly distributed. Nonetheless, since all constraint functions v € ¥ are
strictly positive and o}, € &, there is a number ¢ = ¢(¥) > 0 such that for any set Yy < {x1,..., x5} of size |Yp| =
(k—1)m' we have

P(IY|=(k-1)m'|G,6%] =1-0(1) and ™ < n* V" Py = V|G, 0%, m'] < c™™ (3.41)

Hence, for any given value of m’, Y is contiguous with respect to a uniformly random set of size (k— 1)m’. Con-
sequently, because (3.38) shows that on & the mean A’ of the Poisson variable m' is bounded independently of T,
Lemma[2.8] FactB.I6land Claim[B:2Tlyield e 7 = o7 (1) such that the event

-

Further, on the event % N % equation (3.40) becomes

m

In(Z(G"/Z(G) = or(1) + Zln >y, (1) ]‘[ 1,0, (Th)- (3.43)

i=1  7eqk

pey - Qug,| =erand|Y|= km’}
yey v

satisfies

P(#|Go;]=1-¢T. (3.42)

Since the mean of the Poisson random variable m' is bounded independently of of T, the Poisson distribution has
sub-exponential tails and all weight functions are strictly positive, (3.39), (3.42) and (3.43) yield

E[In(Z(G)/Z(G))|G,0};] = or(1) +E Zln Yy, (1) ]'[ 5, b, (Th) ( G, (3.44)
i=1  1eQk
Indeed, because the new constraint nodes by, ..., b, are chosen independently given G, o}, B44) yields
Elln(Z(G)/Z(G)|G, o] =or()+AE|In ) vy, () ]'[ 5,1, (Th) ( Go)|. (3.45)
TeQk

Let iy,...,ix € [n] be chosen uniformly and independently and choose ¥ from p independently of everything else.
Since Ia;‘l‘l(w)l ~ n/|Q| for all w € Q we have E[y (07},(x;,),...,0,,(x;,))] ~ ¢. Hence, recalling the distribution (Z.I)
from which b; is chosen, we can write as

/

Elln(Z(G)/Z(G)|G,a}] = or(1) +% (3.46)

)3 wmﬂucx (m) |Ga; .

T7eQk

Since 7 is the empirical distribution of the Gibbs marginals of G, the assertion follows from (338) and (3.46). [

Claim 3.23. With probability 1 — o7 (1) over the choice of o, and G we have

£ 11 % =m0 [T )|

0e€Qi=17eQk Jj#hi

L&IEIN(Z(G")/ Z(G)|G,o) = or(1) +E —A

12|
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Proof. Once more we may assume that o, € & and m < 2dn. Additionally, by Claim B.2T] Lemma 317 and
Lemma[B.I8lwe may assume that G, satisfy

2

we)
Moreover, let 2 be the event that CPL3” does not pin x,+1 and that m" = 0. Since P[%|G,0};] =1 - o(1), since by

CPL1" the expected number of constraint nodes adjacent to x,+1 is bounded and because A" = o(1) by (3.38), we
have

p@dpg—1Q1™ [ =o() and Y Wi(pg et 4 Pgw) = 0r(D). (3.47)

weQ)

ElIn(Z(G")/ Z(G))|G,0 ] = o(1) +E[1{%}In(Z(G")/ Z(G))|G, o). (3.48)
Hence, with by ..., by+ € 0x,+1 the new constraint nodes that CPL1" attaches to x,+1, on % we have
Z(G" r*
n———=In ) pgy@ly) [[vy,@@1b),...,T@Okbi). (3.49)
Z(G) TeQYVn41} i=1

We need to get a handle on the distribution of by,..., by+. With hy, hy, ... mutually independent and uniformly
distributed on [k], the assumptions SYM and o, € & show that for every j € [y*] and every (iy,..., ;) € [n+ 11% with
ihj =n+1we have

= o)+ pIY (e, (Xi), ..., 0, (X3)). (3.50)

P [6b] = (x,-l,...,xl-k),wbj = W|G,0’Z+1

In particular, given their spins the variables 0b; \ {x,+1} are chosen asymptotically uniformly and independently.
Hence, we can characterize the distribution of by, ..., by as follows. Independently for each b iz

(i) choose w; = (wj,... W) k)€ QF and 17/]- from the distribution

p [wj =(@1,...,00), ¥ = w] o« Hwjp, =0, (Xns)IE p@Iy (1., 08),

(i) and subsequently choose variable nodes y; = (y; ..., ¥; ) such that Yih; = Xn+1 and y; j, € {x1,..., x,} for
all h # hj such that Ule(J/j,h) =wWjp for all & € [k] uniformly at random.
Then becomes

P[0b) = (s, X1, Wby = Y16, 0y | = 0D +P [0 = Xipy o ¥ = i W = ] (3.51)
LetY = {yj'h 1 j<vy*, helkl}\{x,+1}. Since all weight functions y € ¥ are strictly positive and since o7}, € &, the
construction (i)—(ii) has the following property, we have
P[lY|=(k-Dy*IG o}, =1-0(1) (3.52)
and there exists ¢ > 0 such that
o <n® VY Py = vylG, 0%,y | <cY forany Yo < ixi,..., Xa}, Yol = (k= Dy*. (3.53)
Hence, for any given value of y* the distribution of Y and the uniform distribution are mutually contiguous. Since
by (338) the mean D = d + o(1) of y* is bounded independently of T, (3.52), (3.53), Lemma [2.8] Fact B.I6l and
ClaimB.Z]lyield 7 = o7 (1) such that the event & = {llug y — Qyey Ug,, lltv < €7 and |Y| = (k— 1)y *} satisfies
P[#|G,a;|=z1-¢7. (3.54)
Thus, let

E=E .

Y _
Y [1Y tww =00 [1 ng, ,@0|6o;
0€Q j=17eqk helk\(hj} »

Then (3.48), 3.49), 3.51) and yield
Elln(Z(G")/ Z(G))|G,0}) = or(1) + E[L{% n#}In(Z(G")/ Z(G))|G, 0] = E+ or(1).

Further, let (Vy, ) p=1weq be a family of independent random distributions on Q such that ¥ 5., has distribution
.- Since by (i)—(ii) above Hé,y,, T W) are independent samples from pg ,: ,, G.47) yields

E=o0or(1)+E . (3.55)

)l -
n) [] X Uy, =0} (1) I1 f’h+jk,wj,h(7h)‘6,02
0eQ j=17eQk helk\hj}
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As a next step we plug in the definition (3.26) of 0, Due to (3.47) the denominator of (3.26) is |Q2| + o(1). Hence,
(3.55) becomes

* Y*
E=orM+E|1Q" “ [T [T )@ (3.56)

In) H Y LTy, = oty (1) H p;ﬁjk(‘rh)‘é,az
j=1h#h;

0€Q j=l7eQk

Finally, writing out the distribution of (w, (s j) from (i) above, we obtain from (3 that

Y ]'[ Y ity = oh;(0) ]'[ p(ﬁjk(rh))|(~;,az

0eQ j=17eQk

E=or()+E[ET A

This last equation yields the assertion because o ; (x;+1) is chosen uniformly and D = d+0(1) on & by (338). [J

Proof of Lemmal313 The coupling CPL1-CPL2, CPL1’-CPL2’, CPL1"-CPL3" is such that G, G" are obtained
from G by adding a Poisson number of constraint nodes such that the mean of the Poisson distribution is bounded
independently of T. Therefore, we obtain from Claims[3.22]and [3.23] that

Ar(n) = or(1) +E[#(d, pg)l. (3.57)

The assertion would be immediate from @57 if M(G) = f udpg (1) were equal to the uniform distribution u =
|Q|~'1 on Q. While this is generally not the case, Lemma[B.IZIshows that E | M(G) — u| 1, = o(1). Therefore, w.h.p.
there exists a(G) = 0 and v(G) € 2(Q) such that

Ela(G)l=0(1) and (1-a(B)pg+a(G)d,g € P2(Q). (3.58)
Finally, since Lemmal[Z9]shows that %(d, -) is weakly continuous, the assertion follows from (3.57) and 358). [

3.4. The upper bound. To prove PropositionBZlwe will show that for any distribution 7 € 222(Q),
1 A
——E[InZ(G)] <o) -2ABd,n). (3.59)
n

The proof of is based on the interpolation method. That is, for a given 7 € 922(Q) we are going to set up a
family of random factor graph models parametrized by ¢ € [0, 1] such that the free energy of the # = 0 model is easily
seen to be —n9%(d, ) + o(n) and such that the r = 1 model is identical to G. Finally, we will show that the derivative
of the free energy with respect to ¢ is non-positive, whence follows. Throughout this section we assume that
BAL, SYM and POS hold.

3.4.1. The interpolation scheme. To construct the intermediate models let y = (y,) ven be a sequence of integers.
Fixme ?}’f (©2). We define a random factor graph model G = G(n, m,y, r) as follows.

G1: the variable nodes are V = {xy,..., x;}.
G2: there are k-ary constraint nodes ay,..., a,,; for each i € [m] independently choose da; € vk uniformly
and pick an independent y,, € ¥ from the prior p (cf. Definition[2.5).
G3: for each x € V there are unary constraint nodes by1,..., by, adjacent to x whose weight functions are
generated as follows: for each j € [y,] independently,
* choose v, ; € ¥ from the prior distribution p,
e pick iy, € [k] uniformly,
o with (g, ; ;) he(k) chosen independently from 7, let

Yp,;0€Q— ) YT, T, =0l I1 Hx,j,h (Th).
T TREQ h#iy,

Let 4(n, m,y, ) be the set of all possible outcomes of this experiment. Depending on 7 the set ¥’ of possible
weight functions resulting from G3 may be infinite and thus we turn ¢ (n, m,y, ) into a measurable space as in
Section[3:2] The fact that the given prior distribution p on V¥ satisfies SYM immediately implies that the distribu-
tion p' that G3 induces on ¥’ satisfies BAL and SYM. Therefore, so does any convex combination of p, p'.

We recall that the random factor graph model induces a few further distributions. First, the Gibbs measure of
Ge¥Y(n,m,y,n)is

m Yv
,UG(O')ZG—(U with g :erVHHwai(o(alai,...,aka,-)) H Hbe,j(U(v))’ Z(G) = Z yglo).
Z(G) i=1 xeV j=1 geQV
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We also obtain a reweighted version G(n, m,y,7) of the model by letting

ElZ(G(n,m,y,n)1{G(n,m,y,n) € o/}
ElZ(G(n,m,y,n))]

P[G(n,m,y,m) ed] = for any event /.

Further, there is an induced distribution 6, y,» on assignments defined by
P& nmyx = 0] =EWemmym(@1/EIZ(Gnmy,m). (3.60)
Finally, each assignment ¢ induces a distribution G* (n, m,y, ,0) on factor graphs by letting

E () 1{G(n,m,y,n) € of}
P[G*(n,m,y,m,0)ed] = Yeomyn L4 | for any event /.
E[
YGn,m,y,m) (0)]

We are ready to set up the interpolation scheme. Given d > 0, t € [0,1] we let m; = Po(tdn/k). Moreover, for
each x € V independently we let y, , = Po((1 - 1)d). Lety, = (y, ) xev. Finally, let

G:=G(n,my,y,,m.
Then G; is identical to our original factor graph model. Moreover, all constraint nodes of G are unary; in other
words, each connected component of Gy contains just a single variable node. Since Y, and m; are independent
Poisson variables, the Gt model fits the general random factor graph model from Section B2 with Po(dn(1 - (1—
1/k)t)) random constraint nodes chosen with weight functions from ¥ U ¥’ chosen from the prior distribution

B ¢ .\ ka-1
_k—t(k—l)p k—t(k—l)p'

Pt

The construction of G, is an adaptation of the interpolation schemes from [81]. But we need to apply one
more twist. Namely, we are going to use Lemma 33l to perturb the intermediate factor graphs G, to make them
‘replica symmetric’. Thus, for a number T > 0 consider the following experiment.

INT1: choose an assignment ¢ from the distribution 6, m, -

INT2: generate a factor graph G* (G, n, m;,y ;, ).

INT3: pick @ € [0, T] uniformly.

INT4: obtain U by including each x € V independently with probability 8/n. For each x € U add a unary
constraint node a, with probability 8/7n whose sole adjacent variable node is x and whose weight function
isyq,(0)=1{c =0(x)}.

Write (A;T,t = (A;T,t(n, my,y ,, ) for the resulting factor graph. Then Proposition B.I0shows that (A;T,t is identical to
the model from Definition[3.9 Critically, the number T > 0 in the following lemma is independent of ¢.

Lemma 3.24. For any € > 0 there is T > 0 such that for all t € [0,1] the Gibbs measure of G; is e-symmetric with
probability at least1 — €.

Proof. This is immediate from Fact[3.16] where T depends on € and Q only. 0

Finally, we need a correction term. Let

_td(k-1)
= E

The following is the centerpiece of the interpolation argument.

I, A

k
Y wvm]] u}”’(rj))
j=1

TeQk

Proposition 3.25. Foreverye > 0 there is T > 0 such that for all large enough n the following is true. Let
¢$r:tef0,1] — (E[an((A;T,t)] +I')/n.
Then ¢'.(t) > —¢ for all t € [0,1].

We prove Proposition [3.25]in SectionB.4.3] But in preparation we first need to construct couplings of the assign-
ments G p m,,y,» for different values of m;,y in SectionB.42l In Section B.4.4l we show how the lemma implies
Proposition 3.7}
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3.4.2. Couplingassignments. As shows, to study the distribution of the assignment ¢ we need to get a handle
on the expectations E[Y G n,m,y,» (0)]. Recall that § = |Q|"‘ZT€Q;c Ely(1)].

.....

Proof. In step G2 the weight functions of the k-ary constraint nodes a,..., a,, are chosen from v and the neigh-
borhoods da; are chosen uniformly. Due to independence their overall contribution to the expectation is just the
term in the square brackets. Further, G3 ensures that the constraint nodes by, ; are set up independently by choos-
ing a weight function ¥ from the prior distribution and independent p, ; ;, from 7. Since 7 € 22(Q), assumption
SYM implies that each by, ; contributes a factor ¢ to the expectation. O

Corollary 3.27. For anyy and m = O(n) the distribution of 6 n,m,y,» and the uniform distribution on QY are mutu-
ally contiguous. Moreover,

P[“/l —|Q|_11H2>\/ﬁln2/3n] < O(n~Inlnny

O n,m,y,m

Proof. By Lemma[3.26]we have

m

k
S El,..., 1 [[ A0 (7))
j=1

Moreover, by BAL the expression on the r.h.s attains its maximum if A, is uniform. At the same time, the uniform
distribution maximizes the entropy H(A,). Therefore, the assertion follows immediately from Stirling’s formula
and the fact that the entropy is strictly concave. 0

Corollary3.28. Foranyy,y' the colorings & n,m,y,n, 0 nm,y',x are identically distributed.

Proof. This is immediate from Lemma[3.26land the definition of ¢ n,m,y,7, 6 n,m,y" - O

Corollary 3.29. Suppose m = O(n). There is a coupling of 6 n,m,y,x, 0 n,m+1,y,x Such that
PlOom#Gml=0m™") and P[|6mAGme1l>Vnlnn|=0mn?).

Proof. The second assertion is immediate from Corollary[3.27] To prove the first assertion, we need to show that
& m, 0 11 have total variation distance O(1/n). To this end, assume that |1, — Q| 12 = O(n~1/2); the probability
mass of o that do not satisfy this condition is negligible under either measure by Corollary3.27] We expand

k
F:2e2(Q)— Y Ely(,... 7] [[A(7))
TeQk j=1

to the second order. Due to BAL the uniform distribution A maximizes Y eak Elw(T1,...,T1)] H?:l A (T j). Hence,
| _ _ _ _
F)=F)+3 (D*FI;(A-1), A= D))+ O(IA - AII3) = E+ O(IA - A[3). (3.61)

(In fact, since the entropy is strictly concave, condition BAL ensures that all eigenvalues of the Hessian D?F| i
on the space {x € R : x 1 1} are strictly negative.) Consequently, we obtain from Lemma B.26] that in the case
IMe —1Q17 12 = O(n~1/2),

Elvem,m+ Ly,m) (0)] k -
= Ely(t1,...,7] | | Ao (7)) = exp(O(1/n))¢,
E[Yem,m,y,m (0] rl,;rk vin k ]l:[1 / P ¢

whence 6, 6,41 have total variation distance O(1/n). ]
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3.4.3. Proof of Proposition[3.20 The proof requires several steps. The first, summarized in the following proposi-
tion, is to derive an expression for the derivative of ¢7 (). We write {-) 1, for the expectation with respect to the
Gibbs measure of G1;. Unless specified otherwise 1,073, ... denote independent samples from By,

Proposition 3.30. With y chosen from p, y,,..., ¥ chosen uniformly from the set of variable nodes, and p,, ..., i}
chosen from 1, all mutually independent and independent of G, let

l
<1— > ymUri=oy) [ u; (T1)>

2 =E[(1-y@),...o D)}, | - ZE
TeQk J#i Tt

+(k—-1)E

k 1
(1— > W(r)l'[uj(rj)) :

T7eQk j=1

Then uniformly forall t€ (0,1) and all T =0,

d Er1l
—¢T(t) =o(1)+ k—szz TS

We proceed to prove Proposition[3.30] Let
A¢=E[InZ(Gr,(m; + 1,y )| ~E[InZ(Gr (my,y )],

1 ~ .
A} ==Y E[InZ(Gr:(ms,y, +1)] —E[InZ(G1,(my,y )]

xeV

Lemma 3.31. We have L1 $E[InZ(Gr,)] = $A, - dA).

not

Proof. The computation is similar to the one performed in [8I]. Let P;(j) = AJ exp(-A)/j!. By the construction
of the random graph model, the parameter ¢ only enters into the distribution of m,,y,. Explicitly, with the sum
ranging over all possible outcomes m, Y,

Elln Z(Gr,)l = Y Elln Z(Gr,)lm; = m,y, = Y1Pyanc(m) [] Pa—pa(r)-

m)y xeV
We recall that
—P (m) = L 9 (@)mex (—tdn/k)=@[1{m>1}P (m-1)—-P (m)]
Y tdnlk mar\ & P 2 = tdnlk tdnlk )
9 —Pa-palyv) = 19 (1-0d)"" exp(-1-0d) = —d [y, = 1}Pa-na(yv—1) = Pa—na(ys)].
ot vl ot
Hence, by the product rule
L0 pin 2@r01= L Y Bin 2@ oime = my, =12 Prauictm) T] Pacoar)
not n iy ot vein]
d
%

Y [E[InZ(Gr)lm; = m+1] -E[In Z(Gr,0) lm; = m]| Py (m)

m

d R

- Z Z [InZ(Groly, =yx+1] —E[INZGr.)ly,, =Yix]] Pa-na(¥ix)
xeV

d . .
=7 [E[InZ(Gri(mi+1,y,)] -E[InZ(Gr,(n,my,y,)]]

d . .
- Y [E[InZ(Gr(my,y, + 10| ~E[In Z(Gr (my, v )] ],
X

as claimed. O

To calculate A, A}, we continue to denote by ¥ a weight function chosen from the prior distribution, independently
of everything else.

_ !
Lemma 3.32. WehaweAtzo(l)—l—€+L ooy — l(l <H 1—1I/(Uh(y1),---,0h(J/k))>
h=1

3
¢ty eviz Tt
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Proof. Because the tails of the Poisson distribution decay sub-exponentially and since

InZ(Gr(my,y,) = O(n+ me+ Yy m),
xeV

we may safely assume that
me+ ) Yix<(d+Dn. (3.62)

xeV

By Corollary[3.29lwe can couple the two assignments 6" = 6 ,m,y,,m;» 0" = 6 n,m,y,m,+1 such that
P[6'=6"]=1-0(n"), P[|¢'A6"| > Vnlnn] = O(n™?). (3.63)

We are going to extend this to a coupling of (A;T,t(n, me,y,;, ), GT,t(n, vecm+1,y,,m). Specifically, given 6',6" we
construct a pair (G', G") of factor graphs as follows.
Case 1: 6’ = ¢": then we define G’ as the outcome of INT1-INT4 with ¢ = ¢’ = 6". Further, G” is obtained
from G’ by adding one single k-ary constraint node a such that da, v, have distribution

Ploa= (Xjy,.... %), Wa =y] o< p)w(0' (x;),...,6"(x;))  (i1,...,ik € [n],y € P). (3.64)
Case 2: |6'Aé"| < /nlnn: consider the probability distributions ¢’, ¢" on V¥ x ¥ defined by

qd . Yiew) o< p)y (@ (n),...,6" ),

q" 1, Yew) o< pw (@ (n),...,6" ().

Since |6'Aé”"| < v/nlnn these two distributions have total variation distance O(n~'/?). Consequently,
we can couple G*(n,m;,y,,7,6") and G*(n,m; +1,y,,m,6") such that with probability 1 — O(n"2) no
more than O(\/ﬁ) constraint nodes either have different neighborhoods or different weight functions. Let
(G',G") be the outcome of this coupling subjected to pinning the same set U of variable nodes to 6’, 6",
respectively.

Case3: |6'A6"| > /nlnn: choose G*(n,m;,y,,7,6') and G*(n,m;+1,y,,7,6
G', G" by pinning.

AH

) independently and obtain

The construction ensures that (G', G”) is a coupling of GT,t(n, me,Y;, ), (A;T,t(n, m;+1,y,,m). Hence,

. . Z(G"
E[InZ(Gr(n,m; +1,y,,m)] —E[In Z(Gr, (n,my,y,, )] =E [ln% . (3.65)
Further, (3 and (3:63) and the construction in case 2 ensure that
Z(G”) AT Z(G" " ACRIp:
E|ln 6'=6¢" | +E|l &"'|<vnlnn|+E|l &' > vnl
[ Z(G’)] [ Z6hH |7 [n Z(G) |19 40" 1= Vainn | +E|In Z] > Vnlnn
zZG" ., . ~ 1)
=E[ln 76 '=6"|+0(mn . (3.66)

Thus, if we denote by a an additional random factor node drawn from the distribution (3.64), regardless whether
ornot 6’ = 6", then (3.63), (3.65) and (3.66) yield

E[InZ(Gr(m;+1,y )| -E[Z(Gre(myy )] =E [ln<wa(ac/)>G, é'
=E[In{yalog))g]+O0m ). (3.67)

— é’”] + O(n—l/Z)

Hence, we are left to compute E [In(y4(0¢)) G,]. Writing 0,011,073, ... for independent samples from pg and
plugging in the definition of a, we find
Yy pev E[W (@' (1),.... 6" (y) In(w (o (1), ...,0 (y)) ¢ ]
Yy yeev B[w(0' (y1), ..., 6" ()] '

Since by Corollary B:27] the empirical distribution A, is asymptotically uniform with very high probability, the
denominator in the above expression equals 1¥ (£ + 0(1)) with probability 1 — O(n~?). Thus,

ElIn(Va(06))e ] =

1
E[In(yalog))e]=o0)+ o Y. Elw@' (),....6" y) In(w@(n),....,0 ()¢ |- (3.68)
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Further, because all weight functions ¢ € ¥ take values in (0, 2), expanding the logarithm gives

1 1/ 4
In{y@(r),....0(y))g =—2_ ] (1 —W(U(y1);---,0'(Yk))>l(;r == 7 <ﬂ 1- w(ah(yl),...,ah(yk))> ;
=1 =1 h=1 G

the second equality sign holds because 01,0, ... are mutually independent. Combining the last two equations, we
obtain

E[ln{yalog))g]=0)-) > E
121 V1 Vk

=o(1)+ZL > E

=1 lnk'f V1oV

I
- T Y E<1'[1—w(oh(y1),...,oh(yk))> . (3.69)
=1 My Ty \n=1 G

CA A AL
1” yll k yk <n1_1”(0h(ﬂ)»,0h(yk))>
nt¢ h=1 &

]
1=y (@' (n),....6"(yK) < []1- w(ah(yl),...,ah(yk))>
h=1 G

Since Proposition B.I0limplies that given G’ the assignment " is distributed as a sample from the Gibbs measure
g, we obtain

1-y(&'(n),...,6' l 23]
o] Rl ACASIVIRL AN/ <ﬂ 1—w<ah<y1),...,ah(yk))> =E<ﬂ 1—w<ah<y1),...,ah(yk))>
ll’l E h=1 G h=1 G

for [ = 1. Moreover, by Corollary[3.27]

1 Elyw(@' (y1),....a" (i)
Tk Y. E(l-w@(y),...o0yi))g=1- > [w(o' (n )]

- =1-&+o0(D).
= yi,Lyk Y1V n

Plugging these two into and simplifying, we finally obtain

1- 1 !
E[In(yalog))e] =0(1)——E+Z Y. ———E( [[1-vw@rtn),....on)
S iZzyny HI=DREE\ o p

and the assertion follows from (3.67). ]

The steps that we just followed from B:68) onward to calculate Eln (v, (O'G/)>G/ are similar to the manipulations
from the interpolation argument of Abbe and Montanari [I]. Similar manipulations will be used in the proof of the
next two lemmas.

Lemma 3.33. With y,,l,,... chosen from n mutually independently and independently of everything else,

1 1
A’t=‘1fe+zl(l—1)kn€E< 2ol X w(mm:gh(X)}H”j(Tj)> '
T,t

=2 xeV,ie[k] h=1 1eQk J#i

Proof. By Corollary[3.28] é'n,m,yt,m[yé'n,m,yt+1x,m, are identically distributed. Hence, let 6 = 6n,m,yt,m[ for brevity
and write x for a uniformly random element of V. Starting from & we can easily construct a coupling (G, G") of
Gr.(n, my,y,,n) and Gr(n, my,y, +1x,7m). Namely, let G’ = G%.(n, my,y,,m,6). Then obtain G” by choosing x€ V
(independently of G') and add a unary constraint node b adjacent to x whose weight function is distributed as
follows. Pick an index i € [k], a weight function yp . € ¥ and i, ..., fi; from the distribution

Yreqr UTi =6y @) [, T2 4G )dn® (..., fi)
Yook Xh Hri =6 OIEWO [Tz pi(t)]

Pli=i,(y,... 00 ) €, Wps =] = (3.70)

Then the weight function associated with b is

vp(0)= ) Uti=0lyp. (@) [] ;).

TeQk J#i

Proposition B.I0 implies that G’ is distributed as GT,t(n, my,y,, ) and that G” is distributed as GT,t(n, myy, +
1,,7m).
Therefore, with o, 071,... denoting independent samples from p,

EllnZ (G, (m;,y, + 1) - Elln Z(Gr, (my, ¥ )] = EIn(Z(G")/ Z(G') = EIn(yp(0 (%)) ) o - (3.71)
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Because [ udn(u) is the uniform distribution, assumption SYM ensures that the denominator on the r.h.s. of (3.70)
equals k¢. Therefore,

Eln (y(0(x)) g = Z ZE

erz 1

> l{rl—a(x)}w(r)l"[u](r,)ln< > l{ai=a(x)}w(a)1"[uj(r,~)> :
G!

1eQk J#i oeQk Jj#i

Further, since the weight functions take values in (0, 2), expanding the logarithm yields

Eln(yp(@(x))g =~ ) Z Yo kl ZE Y Uri=6w@ [[p;a)

xeVi=1lz1 TeQk J#i
!
<1‘[1— Y 1{oi=ah(x)}ww)1'[uj(rj)>
h=1 oeQk J#i G
k 1
=) Yy —E (1_ > l{ri:&(x)}q/(‘r)nyj(‘rj))<n 1- ) l{ol—ah(x)}w(o)]_[u](r])>
sevisiiz1 king reQk j#i ek j#i .

(3.72)

—<1'[ 1- 3 I{Uizo'h(x)}W(U)Hllj(Tj)> :
h=1 oeQk J#I G

Since by PropositionBI0Ithe conditional distribution of ¢ given G’ coincides with the Gibbs measure p ¢/, we find

l
(1— > = a(x)}w(r)l"[u](r, )<ﬂ1— > 1{ai=ah(x)}w(a)1"[u,~(r,~)>
G/

TeQk h=1 oeQk J#i
I+1
=E<H 1- ) l{aizah(x)}w(a)npj(‘rj)> . (3.73)
h=1 oeQk J#i G
Moreover, since f pdr () € 22(Q) is the uniform distribution, SYM implies
E<1— Z 1{0i=0(x)}W(U)Hﬂj(Tj)> =1-¢. (3.74)
oeQk J#i G

Plugging (373) and (3.74) into (3.72), we obtain

1 1
Eln(yp(0x)g = - ¢ +Zl(l—1)kn£E< > I1- X W(r)l{ri=ah(x)}1‘[n,~(r,-)>
G/

1-¢ =2 xeV,ie[k] h=1 1eQk J#i

and the assertion follows from (3.71). O

Lemma 3.34. With u,, u, chosen independently from m we have

l
11_;3 _ ¢ l 1 ~
R TSIy T ey l(l_l)E[(l 2 W(T)Hn,(r])) ]

T7eQk ]

Proof. This follows by expanding the logarithm in the expression that defines I';. 0
Proposition 330lis now immediate from Lemmas[331H3.34]

Proof of Proposition[323 Let p¢,, be the empirical distribution of the marginals of p1¢;. ; in symbols,

1 2
Py, = erzvéﬂé”" e 2% Q.

Write vy, v2,... for independent samples drawn from p¢,  ~and define

l 1 l
E,,=E (1— Y W(U)Hv](oj)) 2(1— Y w(r)vl(r)nyj(rj)) + (k- 1)[1— > W(T)Hy](rj)

oeQk j=1 i=1 1eQk J#i T7eQk j=

30



Lemma 2.8 implies that for any £ > 0, [ > 1 there is § > 0 such that in the case that G, is §-symmetric for any
eV, iek] wehave

1
prs > (1—W(a(yl),...,a(yk)»ém—E (1— > y() ]_[v,(a,)) |GTt <e,
Ve Y€V geQk
l
1
- > <1— > w(r)l{rizah(y)}l—[yj(rj)> (1— > w(r)vl(rl)np](rj)) |GTI <e.
yev TeQK j#i G TeQk j#i
Since G, is o7 (1)-symmetric with probability 1 — o7 (1) by Lemma[B5} we therefore conclude that
‘Et,l - E'm| =or(1). (3.75)

Furthermore, Lemma [3.1T]implies together with Corollary3.27] that f pdpg,. (1) is within total variation distance

o(1) of the uniform dlstrlbutlon w.h.p. Therefore, POS implies that = r = 0(1) Finally, the assertion follows from
Proposition330and B.75). O

3.4.4. Proofof Proposition[371 Let us recap what we learned from Proposition[3.25]

Lemma 3.35. For any distribution n € 22 (Q) we have
1 A 1 A
liminf —E[ln Z(G)] = liminf —E[In Z(Gg )] - T;.
n—oo n n—oo n

Proof. Together with the fundamental theorem of calculus Proposition implies that for any € > 0 there is
T = T(¢) > 0 (independent of n) such that for large enough n,

[an(GTl)] z— [1nZ(GTo)] -TIh - (3.76)

Furthermore, by LemmaB.I1l G 1 results from G snnply by attaching a random number of constraint nodes with
{0,1}-valued weight functions. Therefore, E[In Z(Gr;)] < Elln Z(G)]. Similarly, by Lemma BIT we can think of
Gry as being obtained from Ggp by adding a few constraint nodes with {0, 1}-weights. The expected number of
these constraint nodes does not exceed T, which remains fixed as n — oo, and each connected component of (A?O'T
contains only a single variable node and a Po(d) number of unary constraint nodes. Consequently, E[ln Z (GO,T)] =
EllnZ (Go,o)] + o(n) and the assertion follows from (3.76). ]

Thus, we are left to calculate E[In Z(Gg)]. That is straightforward because every connected component of G
contains just a single variable node.

Lemma 3.36. With independenty =Po(d), ¥; from p, u;; chosen from n and uniform h; € [k] we have

¥ 11 X e, =otwy@ ] nb,m))

geQ b=17cQk Jj#hy

%E[an(Go,o)]—— ETA

Proof. Because the random graph model is symmetric under permutations of the variable nodes, we can view
%E[ln Z(Gyp)] as the contribution to E[In Z(Gy )] of the connected component of x;. The partition function of the
component of x; is nothing but

Yy

z= Z 1—[ wbxlvj @)

0€Q j=1

Furthermore, by construction at 7 = 0 the degree y,, is chosen from the Poisson distribution Po(d). Hence, recall-
ing the distribution of the weight functions v, ., j <7, from G3in Section[34.T] we find

%E[IHZ(GO,O)] Elz] = —E|& A

Y I X Yaw =atw,@ [] w0

Yy )
0eQ j=17eQk i#h;

as desired. ]

Finally, Proposition[3.7lis immediate from Lemmas[3:35]and [3.36]
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3.5. Proof of Theorems[2.6land[2.7] We derive Theorems [2.6land2.71from Theorem[2.2] Recall that the Kullback-
Leibler divergence is defined as

R R P[G(n,m,p) = G]
D G ) ) G ’ » = P G ] ) :Gl ]
k. (G(n, m, p)|G(n, m, p)) ; [(G(n,m, p) ]nP[G(n,m,p):G]

with the sum ranging over all possible factor graphs. Let us begin with the following humble observation.

Fact 3.37. Forany n,m, p we have

Elln Z(G(n, m, p))] = InE[Z(G(n, m, p))] + Dx1. (G(n, m, p)|G(n, m, p)) (3.77)
=InE[Z(G(n, m, p))] - Dx1.(G(n, m, p)|G(n, m, p)) = E[ln Z(G(n, m, p))].

Proof. Plugging in the definition (3.4) of G and using (Z.6), we obtain

. Z(GP[G(n,m,p) =G| . Z(G)P[G(n,m,p) =G| /E[Z(G(n,m,p))]
D, (G(n,m, p)|G(n, m, p)) = %: szGommpy ™ P[Gnm, )= G
=E[InZ(G(n,m, PN —InE[Z(G(n,m, p))],
P[G(n,m,p) =G|
Z(G)P[G(n,m, p) = G| IE[Z(G(n,m, p))]
=InE[Z(G(n, m, p))] —E[ln Z(G(n, m, p))].

Dx1.(G(n,m, p)IG(n,m, p)) =Y P[G(n,m,p) = G| In
G

The middle inequality follow from the fact that the Kullback-Leibler divergence is non-negative. O

Lemma 3.38. Assume that m = m(n) is such thatE[ln Z(G(n, m, p))] =InE[Z(G(n, m, p))]+o(n). Then for any event
& on graphlassignment pairs,

E(L(G(1n,m, p),0) €EY) iy SEPEQM) = E(H(G(,m, p),0) €E) g,y 1y < EXP=QUN)).
Proof. The argument is similar to the one behind the “planting trick” from [3]. Suppose that
E(L{(G(n,m, ), 0) € E}) g py < EXP(=2E7) (3.78)

for some ¢ > 0. By Lemma [3.3] and the assumption E[ln Z(G(n, m, p))] = InE[Z(G(n, m, p))] + o(n) there is § =
6 (g, V) > 0 such that for large enough n,

P[InZ(G(n,m, p)) <InE[Z(G(n,m, p))| —en| <exp(-6n). (3.79)
Consider the event Z = {In Z(G(n, m, p)) = InE[Z(G(n, m, p))] —en}. Then implies
E(L(Gn, m, ), 0) € 8)) g,y < EXP(=07) +E [(L(Gn, 1, 1), 0) € 8)) g 1 | Z ] (3.80)
Further, by 2:4) and (34) and (378), with the sum ranging over all possible factor graphs and assignments,
E[(1(G(n,m,p),0) € E)) g ) 1ZY] = (;TI{G € Z}1{(G,0) € 8P [G(n, m, p) = G| g (0)

¥ (0)

Z(G)

YG(@)P[G(n,m,p) =G|
E[Z(G(n, m, p))]

=) 1{Ge Z}1{(G,0) € 8&}P[G(n,m, p) = G]
G,0

<exp(en) Z 1{(G,0) € &}
G,0
= exp(en)E(L{(G(n,m, p), @) € EY) g,y 1 ) < EXP(=EN). (3.81)
Finally, the assertion follows from (3.79), and (381). O

Corollary 3.39. We have
E[ln Z(G(n,m, p))] = InE[Z(G(n,m,p)] +o(n) < ElnZ(G(n,m,p))] =InE[Z(G(n,m,p))]+o(n).
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Proof. Assume that Elln Z(G(n, m, p)] = InE[Z(G(n, m, p))] + o(n). Then there is a sequence Q(1/Inn) < e(n) =
o(1) such that E[ln Z(G(n, m, )1 <InE[Z(G(n, m, p))] + ne(n). Because £(n) = Q(1/1nn), Lemma[3.3limplies that
the event

& ={InZ(G(n,m, p)) <Elln Z(G(n, m, p))] <InE[Z(G(n, m, p))] +2ne(n)}

satisfies P [G(n, m,p) € éa] =1-o0(1). As a consequence, recalling (3.4), we conclude that the random variable
Z(G(n,m,p)) = Z(G(n, m, p))1{&} satisfies

E[Z(G(n,m,p))| =E[Z(G(n,m, p)1{E}] = E[Z(G(n,m, p))IP[G(n,m, p) € ] = (1 + 0(1)E[Z(G(n, m, p))]. (3.82)
On the other hand, the definition of Z (G(n, m, p)) guarantees that
E[Z(G(n,m, p))*] = E[Z(G(n, m, p))*1{E}] < exp(4ne(n)E[Z(G(n, m, p))I* = exp(o(n)E[Z(G(n, m, p)))*. (3.83)
Combining and (3.83) with the Paley-Zygmund inequality, we obtain
P[Z(G(n,m,p)) = E[Z(G(n,m, p))|/4] = P[Z(G(n,m, p)) = E[Z(G(n,m, p))]/2]

_ BIZ(G(m,m, p)?
" 4E[Z(G(n,m, p))?]

Since In Z (G(n, m, p)) is tightly concentrated by Lemmal[3.3] (3.84) implies that

> exp(o(n)). (3.84)

Elln Z(G(n, m, p))] =InE[Z(G(n, m, p))] + o(n).

Conversely, assume that E[In Z(G(n, m, p)] =InE[Z(G(n,m, p))] + Q(n). Then there is 6 > 0 such that for large
enough 7, E[ln Z(G(n,m, p)1 = InE[Z(G(n, m, p))] + dn. Therefore, by Lemma[3.3]the event

&={G:E[InZ(@)]=InE[Z(G(n, m,p))]+dn/2}
satisfies P [G(n, m,p) €E| = 1-exp(—Q(n)). Applying Lemma 338/ to & and recalling that E[In Z(G(n, m, p))] <
InE[Z(G(n, m, p))] by Jensen, we conclude that E[In Z(G(n, m, p))] <InE[Z(G(n, m, p))] — Q(n). O

We recall from that for any sequence m = m(n) = O(n),
InE[Z(G(n,m,p))l =1 -d)nln|Q|+mln Z Elw(0)]+o(n). (3.85)
oeQk
Moreover, Theorem[2.2] Proposition[3.2land Lemma[B.4limply that
1 “
lim —E[InZ(G)]= sup AB(d,n). (3.86)
n—eon TeP2(Q)
Corollary 3.40. Assume thatd >0 is such that
d
sup A(d,m)>1-d)In|Q|+ —In Z Ely(o)]. (3.87)
TEPZ(Q) k oeQk
Then
. 1 d
limsup ;E[an(G)] <(1-d)In|Q|+ Eln Z Ely(0)].

oo geQk
Proof. 1f (3.87) holds, then (3.:86) shows that there is § > 0 such that for large enough n,
1 . d
—EllnZ(G)]=z1-d)n|Ql+—In ) E[y(0)]+26.
n k k
ogeQ)
Hence, there exists a sequence m = m(n) = dn/k+ O(y/n) such that for large n,
1 . d
—EInZ(Gn,m,p))l=z(1-d)In|Q|+ Eln Z Ely(0)]+0.
n
oeQk

Consequently, (377, and Corollary B339 imply that E[Iln Z(G(n, m, p))] < InE[Z(G(n, m, p))] — Q(n) and the
assertion follows from Lemma[3.3] O
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Proof of Theorem[2.4 Assume that d < dj,s. Then
d
sup AB(d,n)<(1-d)In|Q|+ —In Z Ely(0)] (3.88)
TEP2(QY) oeQk
and and yield
1 . d
—E[lnZ(G]l=01)+ sup AB(d,n)<(1-d)In|Q|+ —In Z Ely(o)]+o0(1).
n TeP2(Q) k oeQk
Hence, (3.77) and imply that there exists m = m(n) = dn/k+ O(y/n) such that
Elln Z(G(n, m, P =InE[Z(G(n, m, p))]+ o(n).

Therefore, Corollary B.39] shows that E[ln Z(G(n, m, p))] = InE[Z(G(n, m, p))] + o(n). Consequently, and
Lemmal[33lyield E[In Z(G)] = (1 - d) In|Q| + %lnzgmk Ely(0)] +o(1).
Conversely, suppose that d > dgonq. Then there exist d’ < d and § > 0 such that

d/
sup %(d',m)>(1-d)n|Q|+—1In ) E[y(0)]+6.
TEPZ(QY) oeQk
Therefore, letting m' = Po(d'n/ k), we obtain from Theorem[Z.2]and

!
%E[an(G(n, m',p)]>1-d)n|Q|+ a In ) E[y(0)]+6.

oeQk

Thus, Lemma[3.3] (3.77) and imply that the event

!
& = {G:an(G) <(1-d)In|Q|+ %ln Z Ely(o)] +6/2}

oeQk
satisfies
P[G(n,m',p) € &'] = exp(-Q(n)), P[G(n,m',p) € &'] =1-exp(-Q(n)). (3.89)

Now, for a factor graph Glet G’ be the random factor graph obtained from G by removing each constraint node with
probability 1 — d'/d independently. Moreover, consider the event & = {G:P[G' € §'| = 1/2}, where, of course, the
probability is over the coin tosses of the removal process only. Then the distribution of G(n, m, p)’ coincides with
the distribution of G(n, m’, p). Furthermore, Proposition B.2limplies that G(n,m, p) and G(n,n, p) are mutually
contiguous. Therefore, entails that

P[G(n,m,p)e&] <exp(-Q(n))  while P[G(n,m,p)e&]=1-exp(-Qn)).

Consequently, Lemma [3.38l yields E[ln Z(G(n, m, p))] < E[InZ (G(n,m, p))] —Q(n), whence the assertion follows
from Corollary[3.39and (.77). O

Finally, to derive Theorem [2.6from Theorem.7lwe need the following lemma.
Lemma 3.41. Under SYM and BAL we have

Dk (G*, 071G, 06) =0(n) < %E[an(G)] =(1—d)ln|Q|+%ln Y Elw(0)]+o0(1).

oeQk

Proof. We have

v % . . P(G*=G,0" = 0]
Dxi (G, G,0) = P|G" =G, =co|l
«.(G*,0*1G,0) ;‘; [ o*=0]ln PIG=Co 0l

P[G=G]P[6=0IG=G]
PG =Gl ug(o)
Z(G)P[G =Gl ug(0)
E[Z(G)IP[G = G] ug(0)
= Dx1.(G*,0*1G,6) +E[ln Z(G*)] - E[InE[Z(G)|m]]. (3.90)

=D (G*,0%1G,6)+ Y P[G*=G,0*=0]|In
G,o

=Dk (G*,6%(G,6)+ ) P[G*=G,0* =0]ln [by G.2)]
G,o
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Further, because o, ¢ are asymptotically balanced with overwhelming probability by Lemma[3.12]
P[G*=Hlo* =0]|P[o* = 0]
P[G* = Hlo* =0]P[6 = 0]

Dx.(G*,0%1G,6)=) Plo* ZU]ZP[G* =Hlo"* =0]In
o

% Plo* =0] A
= P = 1 _— = D = .
; [6* =0]ln P16 =0] . (o*16) = o(n)
Hence, yields

D1 (G*,0711G,0) & E[ln Z(G*)] = EInE[Z(G)m]] + o(n). (3.91)
Further, by Proposition B.21and Lemma B3] we have E[In Z(G*)] = E[InZ ()] + o(n). Thus, the assertion follows
from (3.85), (3.91) and Corollary[3.39 O
Proof of Theorem[2.8 The theorem is immediate from Theorem[2Z.7land Lemma[3.41] O

3.6. Proofof Theorem[2.4l Here we prove that under the assumptions SYM, BAL and POS,

sup 4A(d,m)= sup B(d,n),
TEPZ(Q) et (d)

where
PE(d) ={ne P2Q): Ty(n) =n}.
Since Qﬁzx(d) c @f (Q), we have immediately SUP e 2 () B(d,m) = supnegéx( ) AB(d, ). The other direction follows

from the following bound

limsup — Ean(G)< sup %B(d,n), (3.92)

n—oo ne? (d)
since Proposition[3.71gives
sup 4A(d,n) < hmlnf Ean(G) <limsup — Ean(G)
TeP?(Q) n—oo

To show ([3.92), we show that the random factor graph G7.(n, m(n), p,o ;) (from Definition3.9) and its empirical
marginal distribution (e satisfy an approximate distributional Belief Propagation fixed point property.

Lemma 3.42. For n large enough,
EW1(Talpgy), pg;)] = or (D). (3.93)
We prove Lemma[3.42]below, but first we derive from it. We first define a set of approximate distributional
BP fixed points. Let 2% (d, ¢) be the set of all 7 € 2(Q) so that
FIX1: W1 (9 (d,n),n) <e.
FIX2: || [udr(w) —1/1Qllrv <e.

Recall the random factor graph G defined by CPL1 and CPL2 in Section[3.3] and Ay (n) =E[In Z (GT(n+ 1,mn+
D, p,0;,. )1-ElnZ(G}(n,m(n), p,o;)] from Lemma[3.I5] LemmasB.42landB.I7land Claim[B.ZT]show that for any
&> 0, with probability 1 - or (1), pG € 32‘2 (d,€), and so Claims[3.22]and[B.23] give that for any € > 0,

limsup — E[an(G)]<11msuphmsupAT(n)< sup 4B(d,n).

n—oo T—oco N—o0 neg»éx(d,g)
Now we take € — 0 and must show that

limsup sup HB(d,x)< sup %B(d,n). (3.94)
=0 ne? (de) neP (d)

Let (¢x, i) be a sequence so that e — 0, 1y € 92 (d,Ek), and

hrn B(d,ri) =limsup sup AB(d,n).
=0 el (de)

Since the space 222(Q) is compact under the weak topology, there is a convergent subsequence 7 k; with

lim W, (ﬂk ,7'[00) =0,

j—oo
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for some 7o, € 2?(Q). Now from Lemmal[Z9} %4(d, -) and J,(-) are continuous in the W metric, and so we have

nmegéx(d) and %B(d,nx) =limsup sup AB(d,n),
=0 ne? (de)

which gives (3.94) and in turn (3.92).
Before turning to the proof Lemma[3.42] we introduce an additional tool, based on |31}, Lemma 3.1], that shows
that the empirical distribution of an e-symmetric factor graph is stable under a bounded number of perturbations.

Lemma 3.43. For every finite set Q, finite set ¥ of k-ary constraint functions y : Q€ — (0,2), € > 0 and K > 0, there
exists 0 >0, ng > 0 so that the following is true. Let Gy be a factor graph on n > ng variable nodes V, taking values in
Q, with a set Fy of m; constraint functions from the set ¥ and my ‘hard’ fields of the form 1{o (x;) = w;} for arbitrary
values w? € Q. Let Gy be formed by adding a set Vi of at most K new variable nodes, each attached to at most K new
constraint nodes, with the other attached variables chosen arbitrarily from Vy, and constraint functions chosen from
the set V. Then if Gy is (0, 2) -symmetric,

Wi (p(Go), p(G1)) <Ee.

The proof of Lemma [3.43] requires the following ‘Regularity Lemma’ for probability measures from [I7]. For
pnePQM",and U <V, let u[-|U] € 22(Q) be the measure defined by

1
— 1 = w}.
T u;U {o(u) = w}

We say a measure i on Q" is e-regular with respect to U < V if for every Sc U, |S| = €|U],

plwlU] =

(@IS -o[- U, <e.

We say a measure g on Q" is e-regular with respect to a partition V of V if there is a set J € [#V] such that
Zjej [Vil>(1-¢)n and p is e-regular with respect to Vi forall j € J. For S< Q" let u[-|S] be the measure defined
by

l{o € S}
1(S)

Theorem 3.44 ([17], Theorem 2.1). Given any € > 0 and Q, there exists N(g,Q so that for any n> N and p € 2(Q")
the following is true. There exists a partition V of [n] and a partition S of Q" so that#S+#V < N and there is a subset
I c [#8] such that the following conditions hold.

REG1: u(S;)>0 foralliel, and} ierpu(Si) =1-¢.

REG2: Forallieland je[#V], andallo,o’ € S; we have ||o[-|Vi] —o'[-|Vi]|| 1y <&

REG3: Forallie I, ul-|S;] is e-regular with respectto V.

REG4: p is e-regular with respectto V.

ulolSl =

Proof of Lemmal3.43. The proof follows along the lines of that of Lemma 3.1 of [3T], but here we must take into
account the hard external fields of Gy. Recall Vp, F; are the set of variable nodes and constraint nodes of Gy, and
let Uy be the indices of variable nodes with hard fields in V. Let V1, F; be the set of variable and constraint nodes
respectively added to Gy to form G;. Let V=VyuVj and F = Fy U F;.

Let Xy ={o e Q% : o(xj) = w}f Vj € Up}. Then we claim that there exists M = M(K,¥) > 0 so that for all o € 2y
andallTe QY1

M Y cqwn MG (0,7)

For all o ¢ X, both g, (0), ug, (0,T) are 0 on account of the hard fields.

For o € 2 and 7 € Q"1, we write:

(3.95)

HaeFo Wa(U(aa))
Za’ezo HaeFO Va (o'(0a))

Ue, (o) =

and
[aer, val(0,7)(0a) Tlacr, Walo(0a))
Yores, 2peavi Haer, Wa((0',7)(0a) Tlacr, Walo' (0a))
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Now because for some >0, n<w(o) <2forallo e QF and v €V, we have

1< < [] wallo, D 0@) <25,

aclF

and for all o’ € 3,

2 2
Q" < Y ] walto!,7h0a) < 10125
T'eQV1 aeF
Taking M = @/m¥1QIX proves the claim.
Now consider the measure fi that G; induces on Vy. That is, for o € QY%
po)= Y pe((0,1).
7eQ"1
Note that for x € Vo, tg,,x = fix. We will show that for every € > 0, there is § > 0 small enough and ny > 0 large
enough so that if g, is 6-symmetric and |Vp| = n = ny, then
Y kG x — fixllry < en. (3.96)
xeVy
Let V, S be partitions of V and Q" guaranteed by Theorem [B.44]so that fi is £’-homogeneous with respect to
V,S, and let N = N(¢') be such that #V + #S < N.
Let J be the set of all j € [#S] so that fi(S;) = ¢'/N and fi[:|S;] is e-regular with respect to V. Then REG1 and
REGS3 ensure that
Y S <2¢'. (3.97)
il
Now we claim that and B97) imply that pg, [|S jlis MZE’-regular with respect to V for all j € J. Let V; be
such that [ is £'-regular on V; and let U c V; be such that |U| = €'|V;|. Then
Nl 1Vil = o U g 1)1 = 2 HGo(@1S)) lol-1Vil = o[- Ul Iy
oeQo

< M*(lo[-1Vil = o [-1UlIlv) g is;) < M€

and so ug,|-1S;] is M?¢'-regular.
Next, using REG2 we have
Vil /
— (o[- Vil =<F[-|V; S <3e. 3.98
iewv) I <H Vil =<l lDMO[ 1551 “TV>uco[-|Sj] ( )
for any j € J. [31} Lemma 2.4], the M?¢'-regularity of g, [-1S;], and imply that S; is an (¢”,2)-state of ug, for
every j € J, provided that ¢’ = ¢'(¢"") was chosen small enough. The bound implies that g, (S;) = €'/ (M?N)
for all j € J. Therefore, if we choose § small enough, Corollary 2.3 of [31] and the §-symmetry of ug, give that for
eachjeJ,
Y ltGox = 1Goxl 181 1y < €114, (3.99)

xeV

provided £” = " (¢) is chosen small enough and 7 is large enough. Further, by [31} Lemma 2.5] and M?¢’-regularity,

Yo Y HGoxl-1Sj1 =0l |Vil|py <€n/4  forallje], o€S;,
vV

i€[#V]xeV;
and by G99,
Y Y ucox—ol-1Vil|y<2en/4  forallje], o€S;. (3.100)
i€#V]xeV;
Similarly,
Yo Y x-S ol Vil||ly<€”n  forall jeJ, o€S;. (3.101)
i€[#V]xeV;

Combining and (3.J0T) and using the triangle inequality, we obtain
Z ||,uG0,x—ﬁx[-|Sj]||TVS3£n/4 forall jeJ.

xeVy
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Therefore,

2 G —fallry=2en+ X 3 3 @S ko = Axl-11 |y <em
xeVy JeJie[#V] xeV;
which proves (3.96).

Now consider sampling a variable node x uniformly from V and V and outputting pg,,» and g, x respectively.
The distributions of ug,,» and g, x are exactly p(Go) and p(Gp). Since the probability we choose x € Vj in the
second experiment is O(1/n) we can couple the choice of x to coincide with probability 1 — O(1/n). On the event
they coincide the expected total variation distance between ug,,» and pg,,x = fix is at most £ by (3.96), and so
W1 (p(Go), p(Gr)) < € — o(1), completing the proof of Lemma[3.43] O

With this tool we now prove Lemma[3.42]

Proof of Lemmal3.42 Let G’} = G’}(n, m(n), p,o;) and e be its empirical marginal distribution. We must show
that for n large enough,
E[W, (Loj_d(PG*T)yPG*T)] =or(1).
More precisely we will show that for any € > 0, there is T large enough so that

EW1(JTalpe: ) pg: 1 <€ (3.102)

Fix € > 0. For L = L(¢) large enough, we will couple the factor graph G*T = G’}(n,m(n), p,a}) on n variable
nodes with a factor graph G’ on n + L variable nodes as follows. Form G’}(n,m(n), p,a;) as usual by choos-
ing m ~ Po(dn/k), 8 uniformly from [0, T], and a ground truth o}, uniformly at random from Q". Then add m
random constraint nodes with weight functions from ¥ and pin each variable node independently with prob-
ability 8/n. To obtain G’ we add L additional variable nodes x;1,...Xy+1, extending o7, to 0:‘1 .1 by choosing
”Z I C ISP ”Z o (nrr) uniformly at random, then we add Po(d) constraint nodes with weight functions from
¥ adjacent to each new variable node x;1,...x,+1 with respect to 0;‘1 Ly and finally pin each new variable node
independently with probability 8/ n.

Up to total variation distance o(1), the distribution of G’ with the L distinguished variable nodes x;+1,... Xp+L
is identical to the distribution of G’ with L uniformly chosen distinguished variable nodes from xi,... x,+1. Let pr
denote the empirical marginal distribution of x,1,... X,+r, thatis

Knt j

1 L
pL = Z Z 5“0’
Jj=1

By Proposition[2Z.I0] for L = L(¢) chosen large enough we have
EWi(pL, pg)] <€/3. (3.103)
Next we claim that the empirical marginal distributions of G} and G’ are close: for n, T large enough,
E[Wi(pg:,pg)] <€/3. (3.104)

To prove this we use Lemma [3:43] Take K > L large enough so that with probability at least 1 — £/10, each vari-
able node xp+1,... s+ in G’ is joined to at most K constraint nodes. With probability 1 — o(1), none of these L
variable nodes are pinned, and no two are joined to the same constraint node. Since pg+ is or(1)-symmetric with
probability 1 — o7 (1), we apply LemmaB.43lwith Gy = G and G = G’ to obtain (3.104).
Now it remains to show that
EW1(Jalpey), pr)l <el3. (3.105)

The Gibbs measure e is or(1)-symmetric with probability 1 — o (1), and so by Proposition Z-I0land repeated
applications of Lemma[3:43]and the triangle inequality, it suffices to show that

EIW1(Ta(06;) Bgr 1 xpy)) <EM4 (3.106)

»Xn+1

where 5+ . is the distribution of the marginal of x4 over the randomness in adding a single variable node
n+1,

»Xn+1
Xp+1 tO G’} with a uniformly chosen & 41 (x,+1), and attaching Po(d) random constraint nodes from W to it. We
may assume that x,; is not pinned, as this occurs with probability O(1/n).

With y ~ Po(d), let b; ..., by € 0xp+1 be the factor nodes adjoining x,,+1. With probability 1-or(1), Be:, isor(1)-
symmetric, and so the random set YV = U};l 0b; of variable nodes satisfies ||HG;,Y - ®y€y e ylrv =o0r() with
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probability 1 — o7(1), again using the contiguity of Y with a uniformly chosen set, as in (3.41), 3.42). Under this
condition we can compute

M, X eqon T (s = 03, O T yeanp gy Haty T )

B xn @ =0T(1) + (3.107)

Yoen H}/:l 2 reqov: HT(xni1) = 0y, (D) [lyeon,\ i) M,y (T(Y)
H}’:I By, (@)

=or(l))+ ——,
ZUEQ H}’:I ”bi (o)

(3.108)

where
By, @) = Y Vg, = olys, @ [ tery, @),
7eQk J#hi

h; is the position at which x4 is attached to the constraint node b;, and y; j is the variable node attached to
constraint node b; at position j. As before, the neighborhoods 0b; and weight functions v, are chosen according
to the teacher-student scheme with respect to 0;‘1 +1» and so by assumption SYM and Lemma[3.17] we have

P[3b; = 1y, i) W = W] o 0(1) + 1{yn, = X} EIW (O (1), ., 0 (7)), (3.109)

where hy,... are independent and uniform on [k]. Conditioned on their spins, the variables in 0b; are uniformly
chosen and independent, and so their marginals are independent samples from the corresponding empirical dis-
tributions PG00 Combining the definition of 7 (), the weak continuity of 7, (-), (3.107), 3.109), and Lemmal[3.18]
we obtain and thus (3.105).

The bound follows from (3.103), (3:104), (3.105), and the triangle inequality. O

3.7. Proof of Lemmaf3.5l As a first step we establish the following lemma.
Lemma 3.45. LetQ # @ be a finite set, let n > 0 be an integer and let u € 22 (Q"). Given6y,...,0, € (0,1), consider the
following experiment.

(1) chooseU c [n] by including each i € U with probability 0; independently.
(2) independently choose o € Q" from (1.
Then foranyi, j € [n], i # j, we have
62
Eyll(o,0l(0wuc)l = 1-0;)(1-0;) ————Ey[H(0 (0 ) yev)]
00;00;

Lemma [3.45]and Corollary [3.48] below are generalized version of Lemma 3.1]. The proofs are based on very
similar calculations, parts of which go back to [64]. We proceed to prove Lemma[3.45] We begin with the
following claim.

Claim 3.46. We have G%EU[H(al(au)ueu)] =-EylH(ol(0W)uecv)li ¢ U].
Proof. By the chain rule, for any i € [n] we have

Ev[H(ol(0wuev)] = Eu[H(0il(0 W) uew) + HO1(O W) ueuuiip)]-

Hence,
0 EylH(ol(0 W) ueu)l = 0 Ev[H(oil(0 W) ucv)] + 0 Ey[H(o|(0o) )]
a6, U uwuel _69i U i u)uel a6, U wueUuiit)1-
We claim that
0
a_eiEU[H(U'“Uu)ueUu{i}) =0].
To show this define for U c [n] and j € [n]
n . . . .
p(U)=PWU=U]=[]0}"" 1-0)"", p;i() =P[U\{j}=U\{j}|=[]0;" V" a-on""#V.

i=1 i#j
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Then

0
—Ey[H(01(0 ) vevui)] = —p(U) Y. wO)H@1(0 W wevuii = (0w ueuutiy)
69 Uc(n] ael oeQ”
=Y wo)| Y piWHEI@W v = @Ducuui)
geQ” Ucln]:ieU
- Z pi(U)H(o(0 W) ueuutiy = (0w ucuuiy) | =0
Ucln]:igU
Moreover,
0
—EylH(ol(0W)ucv)] = p(U)]Z;u(U)H(a [0 uev = (Ou)uev)
69 Uc(n] ael
0
= ) @P(U)]Zu(o)H(ail(au)ueu=(ou)ueu)
Ucln]:igU i a

because H(0';|(0 ) ucu = (04)uey) =0if i € U. Hence,

0
30, CulH @ oue)l == Y, pi) Y wo)H@0 () ueu = (01 uew)
Uc[n]\{i} a

=-EylH(0ol(0W)uecv)li ¢ U],

as claimed.
Claim 3.47. Ifi # j, then #gngU[H(Ul(Uu)ueU)] =Eyll(o;,0l(0W)ucv)li,j ¢ U].

Proof. By Claim[3.46]

0
—Ey[H (010w uecv)] = —Ey[H(0i[(0 W) uecr) i ¢ U]

a0;
== Y  piY Wo)H@0 (0w uev = (0w uevr)-
Uc[n]\{i} o
Hence,
2 )
56:06; ———Ey[H(0|(0) yer)] = —Uc%m} agjpl(U)]Zu(a)H(a 10 ueu = (0w uewr)-
Letting
pij () =P[U\{i,ji=U\1i, ji] = [] 6}V a-0,)""v,
h#i,j
we get
2
——EylH@il(0uer)l= Y, pij0)Y wo)HO (0w uecu = (0w ueu)
00;00; Ucin\{i,j} 4
- Y i)Y o) HO (0 Wy = (W) uer)
Uc[n)\{i},jeU g
= Y pyW) L HE 0w = O er)

Ui, j}
- H(oil(owueuujy = (0w ucurog))

= Y pijOYY o) (0,010 W) ey = (0w uer)-
U'c[n\{i,j} 4

The last line follows from the general formula I(X,Y) = H(X) - H(X|Y).
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Proof of Lemmal3.45. The mutual information I(c;,0 |(0,)yey) vanishes if i € U or j € U. Therefore, Claim 3.47]
yields

Ey (10,010 ucv)] = (1-0;)1-0))Ey [I(0,0j1(0) ue)li, j U]
62
= (1—9i)(1—9])66 56, Ey[H(o|(0 w)uev)],

as desired. ]

Corollary 3.48. Suppose in the experiment from Lemmal345 we set0; = 0 for all i € [n]. Then
Z EU[I(O’,‘,O']'KO'u)ueu)]dH <nln|Q|  forallo<t<1.
i,j=1
Proof. By the chain rule and Lemma[3.45] for 0 € (0, 1),

n n Eu[l(ﬂi,o'ﬂ(o'u)ueU)]
Z EU[I(O'l,U']KO'u)uEU)]S Z (1-6;)(1_61)

ij=1 ij=1
2
—HZI 36, 66] By H(01(0 Wuev)] = 557 Eu[H©@1(0 0 uew)):
Hence,
0 0=t
j(; Z Eyll(o;,0 (o) yey)ldl = f a92EU[H(tTI(tfu)ueU)]——EU[H(UI(Uu)ueU)]|
i,j=1
Once more by the chain rule and Claim[3.46]
) 0=t
~sEulH@|@uen)l| =Y EylH(o; (©@uuen)li ¢Vl _ ~EylH©@ (@ )uen)li2U)| = ninial,
- i=1 =
whence the assertion follows. ]

Corollary 3.49. For the random measure j1 from Lemmal3.5 we have

)] - n21n|Q|_

n
> E[DKL(ﬂijllili® i T

ij=1
Proof. We claim that
Eue | Diw (i1 @ ;)| = Bu [161,61(@ ) vew)].
Indeed, since g is chosen from y, given U such that i, j ¢ U we have

1(6,61(0y)vev) = Y ou@ ) poi=0;,0;=0jVuel:a,=75,)

oeQn 0',',0']'€Q

po;=0;,0j=0jlVuel:o,=0,)

n
ploi=oiNuelU:o,=0,)ulo;j=0jlNuel: o, =06y)
= Bg | D (15 1129 ;) |U |
Moreover, both the mutual information and the Kullback-Leibler divergence vanish if i € U or j € U. Therefore,
Corollary[3.48limplies

n

Tin
E[ D gl o) | = 7 [ BG4I )ueu))d6 =

as desired. ]

n%n|Q|

Proof of Lemmal3.3 By Lemma[3.491and Markov’s inequality for large enough T = T(¢,Q) we get
p H{(i,j) € [n] x [n] : Dyt (izijllizi ®i1j) >52}| < Enz] >1-¢.

Therefore, the assertion follows from Pinsker’s inequality @.7). O
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4. APPLICATIONS

In this section we derive the results stated in Section[Ilfrom those in Section[2l We begin with the proof of Theo-
rem[LTlin Section 1l Section [4.2] contains the proof of Theorem [[.3] parts of which we will reuse in Section [£.3]
to prove Theorem Then in Section [£4] we prove Theorem [[4l Finally, Section [4.5] deals with a few further
examples.

4.1. Proofof Theorem[I. 1l The Potts antiferromagnet can easily be cast as a random factor graph model. Indeed,
for g =2, 1et Q = [g] be the set of spins and set ¢g = 1 — exp(—f). There is just a single weight function of arity two,
namely

1///3:92—>(0,1], (a,r)Hl—cﬁl{azr}. (4.1)
Thus, ¥ = {yg} and pg(yg) = 1. With m = m(d, n) = Po(dn/2) let G = G(n, m, pg) be the resulting random factor
graph model.

Lemma4.1. Let S be the event that every constraint node is adjacent to two distinct variable nodes and that for all
1 < i < i’ < m the set of neighbors of a; is distinct from the set of neighbors of a;. For any d > 0 there is {(d) > 0 such
that forall g =2, >0 we haveP [S] = {(d) + o(1).

Proof. Given m, the number X;(G) of constraint nodes that hit the same variable node twice has mean (1 +
o(1))m/n and a standard argument shows that X; (G) is asymptotically Poisson. Similarly, the number X;(G) of
pairs of constraint nodes that have the same neighbors has mean (1 + 0(1))2m?/n?. Since m = Po(dn/2), a stan-
dard argument shows that (Xj (G), X»(G)) is within total variation distance o(1) of a pair of independent Poisson
variables with means d/2 and d?/2. Hence, P[S] = exp(—d/2 - d%?12+ o(1)). O

We remember that G(n, d/n) denotes the Erdés-Rényi random graph.
Corollary 4.2. Foralld >0, >0 we haveE[In Zg(G(n,d/n))| = E[In Z(G)] + o(n).

Proof. The number of edges of the random graph G(n, d/n) has distribution Bin((’;), d/n), which is at total varia-
tion distance o(1) from the Poisson distribution Po(dn/2). Therefore,

E[InZg(G(n,d/n)] =E[In Z(G)|S] + o(n). (4.2)
Further, since P[&] = Q(1) by Lemma [£T] and since In Z(G) is tightly concentrated by Lemma [3.3] we see that
E[lnZ(G)|&]=E[InZ(G)] + o(n). Hence, the assertion follows from (4.2)). O

Thus, we can prove Theorem[[.Tlby applying Corollary[Z7]to G. We just need to verify the assumptions BAL, SYM
and POS.

Lemma 4.3. The Potts antiferromagnet satisfies the assumptions BAL, SYM and POS forall g =2, = 0.
Proof. Condition SYM is immediate from the symmetry amongst the colors. Then

Y wlo, Do =1-cp Y, po)*  forany e P(Q).
o0,7eQ) geQ)
BAL follows because the uniform distribution is the (unique) minimizer of } ;<o /J(O')z. With respect to POS, fix
n,n’ € 22(Q). Plugging in the single weight function v = ¥, and simplifying, we see that the condition comes
down to

01,02€Q 01,02€Q

2 1 2 , 1
0<i[( ¥ uo=0d [[uP0)) +( ¥ lor=0a[[ "))
j=1 j=1

, I
—2( ¥ uor=ouonp @) |-

01,02€Q

! !
Since p”, p”, ™, pi) are mutually independent, the expression on the right hand side can be rewritten as

! ! ! l , ! , ! ,
> E (H ui’”(oﬂ)(n p;%,-))—z(n ni’”wﬂ)(n né’”(oﬂ)+(ﬂ ni“wﬂ)(n né”’wﬂ)
j=1 j=1 j=1 j=1 j=1 j=1

01,...,0€EQ
)2

1
()

M| -E

.

l !
[11" @)
| i

j=1
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Clearly the last expression is non-negative, whence POS follows. 0

Proof of Theorem[L1l A straightforward calculation reveals that in the case of the Potts model the formula from
Theorem[T.2]boils down to the expression Bpotts (g, d, 1 —exp(—f)) from (L2). Therefore, the assertion follows from
Corollaries[Z.7]land O

4.2. Proof of Theorem[L.3} To derive Theorem [[3] from Theorem a bit of work is required because the to-
tal number of edges that are present in the stochastic block model contains a small bit of information about the
ground truth. Specifically, the total number of edges contains a hint as to how “balanced” the ground truth o*
is. Yet we will show that the disassortative stochastic block model is mutually contiguous with the planted Potts
antiferromagnet. We tacitly condition on the event G that neither graph features multiple edges; this has a negligi-
ble effect on the mutual information as the number of multiple edges is well known to be Poisson with a constant
mean (cf. Lemmal4.T).

*

Lemma 4.4. The random graphs G}, (0*) and Gy

(") are mutually contiguous forallq=2,d >0, > 0.

Proof. We identify G}, (o) with a factor graph model in the obvious way by identifying the edges of the origi-
nal graph correspond to the constraint nodes of the factor graph. Let G be any possible outcome of G} (™).
Let m(G,o*) the number of monochromatic edges under ¢*, and M(¢ *) the number of monochromatic pairs of

vertices under o *. Then

. d |E| d (3)-M(@*)-|El+m(G,o*)
P G* * =G| = -Bm(G,o )( ) (1_ )
(Goom(07) =Gl =e n(g—1+eb) n(g-1+eP)
de‘ﬁ M(o*)-m(G,0*)
J1-— :
( n(q—1+e—/3))

For the planted Potts model, each edge is added independently with probability of the form P[Po(1) = 1] where
A =0©(1/n) and depends whether the edge is monochromatic under o *:

B dgne P I dqgn
T 2(e P-D)M@) + (1) M2 P-DMe) + ()

in
and we can write

PG}y (07) = Gl = e PG (10 + 0 2))E

—M(o*)-|El+m(G,0™*) M(o*)-m(G,0*)

'(1_Aout+o(n_2))(g) '(1—/11n+0(n_2))

7 < Cn, then
dgn : dgn :
2(eP-DM@@*) +(})  2((eP-1n2/2q+n2/2+0(Cn) n(g—1+eP)

Now suppose for some large C, ‘M(a*) - g—z

(1+0(C/ny),
and so

. IE|
Pl (0" =61 =6 Lo o)
(3)-M(@*)~|El+m(G,a*)
1= —— (1 +0(C/
( n(q—1+e—ﬁ)( Ol ”)))

-2 oy e
nig-1+eh ’

And so if we have |M(0*) i

24 <Cn, |E| < Cnand m(G,o*) < Cn, then for some C/,

1 bom(@7) =Glo™] -
C' ~ PIG: . (%) =Glo*] ~

Potts

!

1 PIG*
<

Moreover, these conditions all occur with probability tending to 1 as C — oo, which proves mutual contiguity. [
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We also recall from PropositionB.2lthat Gy, (0*) and Gpows are mutually contiguous. Write p(c, 7) for the g x g-

overlap matrix of two colorings o, 7, defined by
1 1, —1,:
Pij(U,T)=;|U @Onr (I

Accordingly we write p(01,...,0]) € 2(Q) for the I-wise overlaps, i.e.,

1 1
_ “1p;
Pitniy (010,01 = — ]Olaj (i)

Let p € 22(Q') be the uniform distribution (for any 7). The following proposition marks the main step toward

deriving Theorem[L3lfrom Theorem[2.6 In the following we write G = Gpos and G* = Gy, for brevity.

Proposition 4.5. With din¢(q, B) as in Theorem[IL.3 the following is true.
(1) Foralld < dint(q, B) we have

E(llp(o1,02) = pll2)¢ = 0o(1). 4.3)
(2) Foreverydine(q,p) <d< ((qg— cﬁ)/cﬁ)2 there is € > 0 such that
E(lp(o1,02) ~pll2)¢ >e. (4.4)
To prove Proposition[4.5lwe need a few preparations.

Lemma 4.6. Fix § and suppose that for some d > 0, the average overlap is non-trivial. That is, for some e >0,

p [( ||p(0',r) -p ||2>G(n,md(n),pﬂ) > E] > €. (4.5)

Then there exists § > 0 so that for alld < d' < d + &, the overlap is non-trivial as well, i.e.,

P [(||p(a,'r) - p||2>f}(n,md/(n),pp) > 5] >9.

Call a vector o € Q" nearly balanced if for all w € Q, ||o™ (w)| - n/|Q|| < n®’>. To prove Lemma 6 we need the
following fact.

Lemma 4.7. For all € > 0 there exists § > 0 so that for large enough n for any probability measure p € Q") the
following is true. If

(lo@.n)-pl,), <06 (4.6)
then for any nearly balanced vector G € Q",
(lot@.6)-p],), <e 4.7)
and for any vectort € Q",
(A(a',r))u <eE. (4.8)

Proof. Given € > 0 choose a small enough 1 = 1(¢,Q2) > 0 and a smaller 6 = §(n,Q) > 0 and assume n = n(d) is
sufficiently large. By [17] Corollary 2.2 and Proposition 2.5] there exists K = K(1,Q) > 0 and pairwise disjoint
So,..., Sk < Q" such that

@ pl-1S;1® pl-1S;]is n-symmetric for all i € [K],

(ll) ZiE[K] H(Sl) = ].—T] and
(iii) p(S;) =n/K forall i € [K].

Let us write (-); = {-).1s;] for the average w.r.t. the conditional distribution y[-|S;]. Due to (iii) we can choose &
small enough so that implies

(lo@,1)-p[3) <V  forallieK]. 4.9)

Further, define a random variable R/ (v) = 1{o(v) = s,T(v) = t}. Then

(lp@n-0l;),= * (bu@n-g7%,;= ¥ <(1 )3 Rn(v>—c/‘2)>

s,teq] s,t€lq] ve(n]

2q72

—_—

1
Y |5 Y (Ra@Rg(w); - Y (Ra);+q™*

s,t€q] n v,weln] ve(n]
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Hence, and (i) imply that for all i € [K],

2
1 1
Y (— Y <Rst(v)>,-) —q‘zl =0 +—

s,t€(q] veln]

V& =0 +

2
1
2 (— 2 uy(slsiwu(tlsz’)) —61_2]-

s, teq] veln]

Consequently, for all s, € Q we have |q‘2 - %Zye[n] u,,(sIS,-),uy(tISl-)| < O(y/n). Therefore, for all s € Q

=0/, = 0GL/1n). (4.10)

_ 1
g =— Y HlsIS?

ve(n]

1
a7 =~ Y p(sIS)

veln]

Since a sum of squares is minimized by a uniform distribution, implies that for all i € [K],
1 _
— Y woC1S) =g "1y =0, (4.11)
n ve(n]
Together with (ii) and [I7} Lemma 2.8] equation (ZII) implies that y is £3-symmetric and
1 _
DN [THEr i | Vo 4.12)
n ve(n]
To prove @), let U = 61(i) for some i € [q]. Since & is nearly balanced, we have |U| = n/(2q). For s € [q] let X;
be the number of u € U such that o (u) = s. Then implies that (Xs), = (c/‘1 + 0(e%))|U|. Moreover, because U
is £2-symmetric we have

(X3, = X Mo =s1{o®) =), =UF(Gg™*+O0E).

u,velU
Therefore, Chebyshev’s inequality implies that {1{|X; — g} |U[} > ¢| U|}>u = O(e). Hence, (llp(0,6) ||2)u = 0(¢), giv-
ing (@7).
Proving (£8) is similar. Let x € S4 be a fixed permutation. Let U; = 71(). Summing over all i € [g], either
|771(i)| < £n or as above we have (1{| Xy — g 11U} > E|U|}>N = 0(¢), and so

(q_ Dn xeV

Then summing over all x € S, gives (£.8). O

< q Z(I{T(X)=K(a(x))—1/q)> =0(e).
u

We now make a connection between the normalized agreement with the planted partition and the overlap.

Lemma4.8. SupposeE( || plo,T)-p || 2 ) ¢ > € Thenthereis an algorithm that given G* (¢) outputs a nearly balanced

7(G*(6)) so that ;

E[A@,7(G" (6))] > —. 4.13)
8q

Proof. By Proposition(@,aé) and (G*(6), 6) are identically distributed. Given G, the “obvious” (deterministic)
algorithm is to output a coloring 7 = 7(6) that maximizes <A(a'@, T) ) & with ties broken arbitrarily. To establish that
this algorithm delivers (£.13) it suffices to show that

2

E(A(0g 1)) > 8%. (4.14)
To show @.I4) observe that if E(||p(o,7) = | ,) ¢ > € then
P[(|pta,1)-p|,)s>€] > & (4.15)
Further, assuming that G is such that (|| p(o,7) - 5| »)¢ > € We obtain
(H[pto, ) =p|,>el)e>e (4.16)

In addition, since by Lemma [£.3]the Potts model satisfied BAL, Lemma [3.12]shows that o = 0, T = Ty are nearly
balanced w.h.p. and we are going to show momentarily that

o, T are nearly balanced and ||p(a,‘r) - ,6||2 > = A(o,T) = é (4.17)

so that [@:14) follows from ([@I5) and (Z16).
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Thus, we are left to prove .I7). Consider the g x ¢ matrix M where M;; = p;;(0,7) - 1/g?. Then all row and
columns sums are O(n~'/3) since o and 7 are nearly balanced. The condition |p(a,7) - p||, > £/2 implies that
Zi,j Ml?]. > e2/4. 1f so, then Zi,j [M;j| = €/2, and so Zi,j(Mi,j)+ > ¢/4. This implies that there is some entry M;;
with M;; = e/4q®. Let M’ be the (g — 1) x (g — 1) matrix obtained by removing row i and column j from M. We
claim there is some permutation x’ € Sg-1 so that ¥ M;,,K, @i = 0. This is because the nearly 0 row and column
sums mean that the sum of all entries of M’ is M; jto) =gl 46]2. If we pick a random permutation «’, then in
expectation the sum }_; M;,'K, i = £/2g? and so there exists some x’ with a non-negative sum. Adjoining x’ with
i — j gives a permutation x € S, so that

Y pixiy — 11G* > €l4g>.
i

Now
Ao, 1) =max—L— 3 (1{e (0 =<z () -~ 1/g) = max-—— + L ¥ i 0,7)
R keSg q—-1 q-1%5
1 , e
=1 iré%;(;(pmi) (0,71)-1/¢%) = et
as desired. ]

Proof of Lemmal4.6. Pick a small enough 1 = n(d,¢) > 0 and a smaller § =6(n) > 0. Let d < d' < d + 6. We claim
that 6 = 6, m,,p; and ' =6um «pp have total variation distance less than 7). Indeed, for any coloring o and any
m, m' we find

ElYGm,m pg (0]

P EWGtmmpy ©)]

Hence, if o is nearly balanced, then there is a constant C = C(g) > 0 such that
ElYGum,m pg (0)]

P EW Gtnmpp @]

=(m' - m)ln(l— cp Z /10((1))2).

weQ

<Cm'-m) Y. Ag(w)—1/g)%.

weQ)

—(m'=m)In(1-cg/q)

Therefore, the desired bound on the total variation distance follows from 3I). In effect, we can couple &, 6’ such
that both coincide with probability at least 1 — 7. If indeed ¢ = ¢”, then we obtain G’ from G’ = G* (6) by adding
a random number A = Po((d' — d)n/k) of further constraint nodes according to (ZI) and otherwise G" contains
my random constraint nodes chosen independently of the constraint nodes of G’ so that G” is distributed as
G*(n,mg, pp,6"). Thus, we have got a coupling of G’ and G” such that with probability at least 1 -7 the former is
obtained from the latter by omitting A random constraint nodes.

Using Proposition[3.2] LemmafB.I2]land Lemmal4.8 implies that there is an algorithm that given G/, finds a
nearly balanced partition 7(G’) with A(t(G’,6)) > with probability at least 377. Hence, by applying this algorithm
to the factor graph obtained from G” by deleting A random constraint nodes we conclude that with probability at
least 7 we can identify a nearly balanced 7'(G") such that A(z'(G"),#)) > n. Consequently, Proposition[3.2]yields

2

EQAE (GO mar, Pp10)) gy =TT

>
aPp)
Thus, Lemma[4.7lshows that two samples from pg must have non-trivial expected overlap. O

Lemma4.9. Forall B,d, q we haveE[In Z(G)] = nlng+dnln(1 - cglq)12+o(n).
Proof. Since E[Z(G(n,m, pg))] = nlnqg+dnln(1-cg/q)/2+ o(n), the assertion follows from (3.4). U

Lemma 4.10. For all d > 0 we have %%Ean(G) =1In(1-cp/q) +o(1) and if 4.3) is violated, then %%Ean(G) =
In(1 - cp/q) +Q(1).

Proof. The same calculation as in Lemma[3.3T]shows that
190 . R .
> ﬁEan(G) =E[InZ(G(n,m+1, pp))] — E[In Z(G(n, m, pg))].
Furthermore, with 6 = é'n,m,pﬁ and ¢’ = &n,m+1,pﬁ, Propositions[3.2lwe can identify Gn,m+1, pp) with G* (n,m +
1,pp,6") and G(n,m, pp) with G*(n, m, pg, &) Moreover, Corollary B.29 shows that we can couple &,6" such that
both coincide with probability 1 — O(1/n) and such that |6 A6”| = O(n~1'2) with probability 1 - O(n~2). Further, as
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in the proofofLemmathls coupling extends to a coupling of G’ = G* (n,m+1, pg,é6') and G” = G* (n,m, pg, ")
such that in the case 6 = 6’ we obtain G” from G’ by adding one additional random constraint node e chosen from
D and such that E[In(Z(G")/ Z(G")|6 # '] = O(n''?). Hence, letting (-) = ()¢, we find

%%Ean(G} =E[In(Z(G")/ Z(6))16 = ¢'1+ O(n™"'?) = EIn{ye(a)) o + 0o(1). (4.18)

Further, writing v, w for the two variable nodes adjacent to e and expanding the logarithm, we obtain

oo(,‘l

In(Ye(0)) =In( - (cplio(v) = g (W)}) gy = - Z — (o) =gy
=1

00 Cl 1
=_ZT’3<1‘[ I{O’j(v)zlfj(w)}> : (4.19)
=1 G

j=1
Since v, w are chosen from 210, (£18) and (AI9) yield

10 .
~——ElnZ@& =0~ ¥ Z

v,weV =1

—cgl{o(v) = 6(w)}
Zs rev1—cplia(s) = (0}

<1'[ o) = a](w)}>

G/
Hence, Corollary[3.27]land Propositionyield

10
——EInZ(6G)=0(1) -
nod Cﬁ/q véVl;l ln2

!
-cplio(v) =6(w)}) <Hll{0j(l/) =0j(w)}>
]:

Gl
l I+1
=o() -7 > Z 5 <]'[ 1{aj(v):aj(w)}> —cﬁE<]'[ l{aj(v)zaj(w)}>
ﬁ/q vweV =1 In j=1 G j=1 G
oLy )
=o(1)- + E{ — Hoi(v)=0;(w)} .
q-cp = =1 nzv,wEijl ! ! G
The last expression can be rewritten nicely in terms of /-wise overlaps: we obtain
l
10 . cp 1 s 2
——EInZ(G)=0(1) - E yeeos ‘. 4.20
5 7EInZ(G) =o(D) —cﬁ+1—cﬁ/q,>221(z—1) (lp(ay,...,a0l3)¢ (4.20)

Since [p(01,...,0)l? = g ' for all o1, ...,0, yields the first assertion. Moreover, if E(|p(g1,02) —ﬁ”g)é is
bounded away from 0, then E < lp(o1,02) II§> ¢ is bounded away from q‘z and the second assertion follows. ]

Lemma4.11. Iff,d, k are such thatEln Z(G) = nlng+dnln(1 - cglq)I2+o(n), then the same holds for all d' < d.

Proof. This is immediate from Lemmas[£.9and 4101 O

Proof of Proposition[4.3. 1f {@3) is violated, then Lemma[£T0]shows that %%Ean(G) >1In(1-cp/q)+Q(1). More-
over, by Lemma[4.6lthe set of all d for which (43) is violated contains an interval (dp, dy + 8). Therefore, if (4.3) is
violated for some dj < din(g, B), then Lemmal£.9gives
o N g A din
Elln Z(G(n, m(d)))] = Elln Z(G(n, m(dy)))] +f %Eln Z(G)dd =nlng+ > In(1-cg/q)+Q(n),

do

in contradiction to Corollary[2.7] Lemmal[4.3]and the definition of din¢(q, 8). Thus the first assertion follows.
With respect to the second assertion, pick € = £(g, d) small enough and assume that

P[(llp(a1,02) = pll2)¢ <e] > e. 4.21)

Then a second moment argument shows that EIn Z(G) ~ InE[Z(G)], because d < ((g - cﬁ)/cﬁ)z. Indeed, define
Z(G) = Z(G1{(llp(a1,02) - pll2)¢ < €}. Then (34 and @ZI) imply that E[Z(G)] = Q(E[Z(G)]). Further, for a
given overlap matrix p let

Z5(G) = Z(G)* (1{p(01,02) = p})g.
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Summing over the discrete set of possible overlaps for a given n, we obtain from the definition of Z (G) that

E[Z(G)’=0() Y EZ@ls Y  exp(on)+n(H(p)+din(-2/k+csllpl3)/2); (4.22)
pillp—pll2<e pillp—pll2<e
the last formula follows from a simple inclusion/exclusion argument (cf. Proposition 6]). Moreover, expanding
the exponent to the second order, we see that for d < ((g — cp)/ cﬁ)2 the maximizer is just p. Consequently,
implies that E[Z ()3 = exp(o(n))E[Z (G)]2. Hence, by the Paley-Zygmund inequality, for any fixed € > 0 we have

P[Z(G) =z exp(-en)E[Z(G)]] =P [ Z(G) = exp(—en/2)E[Z (G)]] = exp(0(n)).

Taking ¢ — 0 sufficiently slowly as n — oo and applying Lemma[3.3]twice, we thus get E(ln Z(G)] = InE[Z(G)] + o(n).
Therefore, another application of Lemma[3.3]land Corollary[3.39]yields Eln Z (6) ~InE[Z(G)]. But this contradicts
the assumption din¢(q, B) < d. ]

Proof of Theorem[L.3l The theorem follows from Lemma 4] Lemma [£7] Proposition and Lemma 48] By
Lemma [44] it is enough to prove the theorem for the planted Potts model. First suppose d < diy(g, f). Then by
Proposition[4.5] we have E(Ilp(al,ag) - pllg)é = 0(1). Lemmal[4.7] (4.38), then says that for any 7 = 7(6), (Alg, 1)) ¢ =
0(1), which by Proposition3.2limplies (A(6,7)) g = 0(1).

For the second part of Theorem [L.3] suppose that d > din¢(g, f). We can assume d < ((q —cg)/ cﬁ)2 since if
d> ((qg- cﬁ)/cﬁ)z, the algorithm of Abbe and Sandon succeeds w.h.p. With dint(q,8) < d < ((g - cﬁ)/cﬁ)z,
Proposition [4.5] says that there is some £ > 0 so that E(Ilp(al,ag) - p||2>(‘; > ¢. Then for some § > 0, the first part
of Lemma B8] implies that there is an algorithm that returns 7 = 7(G) so that E[A(¢,7(G))] > §, completing the
proof. O

4.3. Proofof Theorem[I.2l To derive Theorem[I.Zlabout the graph coloring problem from Theorem[2.6lsome care
isrequired because we need to accommodate the ‘hard’ constraint that no single edge be monochromatic. Indeed,
if we cast graph coloring as a factor graph model, then the weight functions are {0, 1}-valued. As in Section[ZI]lwe
work with the Potts antiferromagnet to circumvent this problem. Thus, let Q = [g] for some g = 3 and let g
wp be as in Section A1l Let m;(d) = my(n) = [dn/2] and my = my(n) = Po(dn/2). Lemma A1 shows that the
event G occurs with a non-vanishing probability and throughout this section we always tacitly condition on &.
Moreover, G(n,m, pw) denotes the factor graph model where cg = 1, i.e., the weight function (@1 is {0, 1}-valued.
If Z(G(n,m, ps)) > 0, then we define the Gibbs measure via 2.4); otherwise we let tg(;,m,p.) be the uniform
distribution on Q". Of course none of the results from Section[3apply to § = co directly. But the plan is to apply
Theorem [2.2]to the Potts antiferromagnet and take f — co. To carry this out we need to apply a few known facts
about the random graph coloring problem.

Lemma 4.12 ([3]). Forany q =3 and any({ > 0 the property
Agr =1Z(G(n,mg, pso)) 2 "}

has a non-uniform sharp threshold. That is, there exists a sequence (g, (M) such that for any € > 0,

lim P|G(n,my, (n-¢(n), po)) € g | =1 and r}iggoP G(n,my,  (n)+e(N), Poo)) € g | = 0.

n—oo

Lemma 4.13. Ifd >0, > 0 are such that for a strictly increasing sequence (n;); we have

1 R d
lilrninfn—Ean(G(nl, mg(ny), pp)) > Ing+ 3 In(1- cplq)+ 0, (4.23)
—c0 N
for all large enough > 0, then
limsup E[Z(G(ny, mg(ny), peo)) ™ ™1 < q(1 = 1/q)%'2. (4.24)
[—o00

Proof. By Proposition[3.2land Lemma[3.3] (£.23) implies
1 d
lilrninf—Ean(G’k (n,mg(ny), pp,0™)) >Ing+ > In(1-cg/q) +0. (4.25)
—oo Nj
Further, we claim that implies that for large enough S

1 d
lilminfn—Ean/;(G* (n;,mg(ny), Poo, ™)) >Ing+ > In(1-cp/q)+61/2, (4.26)
—o0 N
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where Zg(G) = ¥4 [14erc) ¥p(o(0a)). In words, we generate a random graph with the weight distribution po, but
evaluate the free energy at inverse temperature . To get from to (4.26), we simply observe that by (2.1) the
factor graphs G* (n;, my(n;), poo, ™) and G*(nl,md(nl),pﬁ,a*) can be coupled such that they differ in at most
2exp(—pB)dn/2 constraint nodes with probability 1 — O(n~2). Since altering a single constraint node shifts the free
energy at inverse temperature 8 by no more than f in absolute value, we obtain (4.26).

By comparison, the first moment bound implies that

1 d
limsup —Eanﬁ(G(nl, mg(ny), Ppoo)) <Ing+ —1In(1 - cplq). (4.27)

I—co M 2
Furthermore, by Azuma’s inequality both anﬁ(G(nl,md(nl),poo)) and anﬁ(G*(nl,md(nl),poo,a*)) are tightly
concentrated. Therefore, there exists > 0 such that

d
P nl_1 In Z5(G™ (n;, mq(ny), poo, ™)) <Ingq + > In(1-cp/q)+6/2| < exp(-Q(n)),
d
P|n; ' InZg(G(n;, ma(n)), peo)) = Ing + > In(1-cp/q) +6/2| < exp(-Q(n)),
and thus the assertion follows from Lemma 6.2]. O

Callo: V — Q balancedif o' (w)| € {[n/]1QI1, Ln/1Q]} for all w € Q. Let B(n, Q) be the set of all balanced ¢. Further,
for a factor graph G define the “balanced” partition function as

ZG= ) gl
GeB(n,q)

and let fig(-) = ug(-*B(n,Q)) be the corresponding “balanced” Gibbs measure. Furthermore, let us write & = 6,0
for a uniformly random element of B(n,Q). Finally, let G(n, m, pp) be the balanced version of the factor graph
distribution (34, i.e.,

P[G=G|=Z(GP[G=GI/E[Z(G)]  forevery possible G. (4.28)

The proof of Proposition[B.Z2lextends to balanced assignments, which shows that G enjoys the Nishimori property;
this was actually already observed (with different terminology) in [3]. Formally, we have

Fact4.14. The pairs (6,G* (n, m, peo, @) and (aé(n,m,poo)’ G(n,m, Poo)) are identically distributed.
We recall that for two color assignments 0,7 : V — Q the overlap is p(0,7) = (p;; (0, 7)) jeq, where
pijo,7)=n"to M HnTT ()l
Thus, p(0,7) € 2(Q x Q). For p e 2(Q x Q) let ||p||§ = Zi)jEQ pij and write p for the uniform distribution.

Lemma 4.15 ([I8] Proposition 5.6]). For any q = 3 there exist € > 0 such that for every0 < d < (q — 1)? there is ng >0
such that for all n > ng and all and all m < dn/?2 the following is true. Let

Z%(G(n,m, po) = |{(0,7) € B(n,1q)) x B(n,[q)) : |l p(0,T) - pll2 < € and o, are q-colorings of G(n, m, peo)}| .
Then E[Z®(G(n,m, pso)] < € 'E[Z(G(n, m, po)]?.

Corollary 4.16. Foranyq=3,0<d < (q—1)? is such there exist 5 > 0, ng > 0 such that for all n > ny the following
is true. Suppose that m < dn/2 is such that

P[(”p(a,r)—p”Z)ﬂGmmp <8|=2/3. (4.29)

Then
p [Z(G(n, m, peo)) = q"(1 - 1/q)%"2 exp(~ In? n)] > 6.

Proof. Let € >0 be the number promised by Lemma[I5]and pick § = (g, g) > 0 small enough. Define
726 =261 {(|lp, 1)~ pll,),, <5}

(Thus, Z(G) = 0if Z(G) =0.) Combining and (4.29), we obtain

E[Z(G(n,m, po))] 2 E[Z(G(n, m, peo))1/10. (4.30)
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Moreover, by construction Z satisfies Z (G(n, m, poo))2 <27%G(n,m, Poo)), provided 6 is small enough. Hence, by
Lemma 415

4
E[Z(G(n,m, peo))’] < —EIZ(G(n, m, poo))I”. 4.31)
Combining and (4.371) and applying the Paley-Zygmund inequality, we find

ELZ(G(n,m,po))® _ €

P[Z(G(n,m, peo)) 2 EIZ(G(1n, m, poo))1 /8] = PEZ (GO, m, po))] - 128

(4.32)

Since a standard calculation shows that E[Z(G(n, m, po))] = n9* q"(1—1/g)™ (cf. [8, Section 3]) and m < dn/2,
shows that for all m' < m,

2
> —, 4.33
128 ( )

as desired. O

P [Z(G(n) m, poo)) = n_qqu’l(l _ 1/q)dl’l/2/8

The following statement is a weak converse of Corollary[4.16]

Lemma 4.17. Foranye >0 and any0< d' < d" <100(q—1)? there is § > 0 such that the following is true. Assume
that (n;); is a subsequence such that

ot 9%, P (1602l <] <1 3
Then
dll
hmsup E [InZ(G(n;, myn(ny), peo)] >Ing +— ln(l —1/g)+6. (4.35)
=00

Proof. Fact[LI4] shows that the Nishimori property extends to the balanced graph coloring problem. Thus, we
obtain G(n, m, peo) by first choosing & € B (n, [¢]) uniformly and then generating G* (1, m, peo, @). In effect, we can
couple G(n,m, psy) and G(n, m+ 1, pso) such that the first is obtained by generating G' = G* (n, m, poo, &) and the
second, denoted G”, results by adding one single random constraint node e incident to a random pair of variable
nodes with distinct colors under . Hence, with (-) = (-) figr We obtain

Z(GH)

Eln 76 - Eln(y.(a)) =0 +

- n2(1—1/q) ZZ

le>1

n2(111/q) L Eld-liew =W n(1—(Lo () =ow))]

l
1-1e(v)=aw)}) <H Ho;(v) = U'j(w)}>] .
j=1
Since by the Nishimori property we can identify ¢ with a sample from the Gibbs measure, we obtain

Bl Z(G”) ! I+1
nm—o(l) T 1/6/):;)1; gl{aj(v)—aj(w)} - gl{aj(v)—aj(w)}

l
_— 1{o;i(v)=0i(w)} )+o(1). (4.36)
,;,l;l(l—l)nz(q 1) <]Hl / / >

Write p(07,...,07) € 22(Q}) for the I-wise overlap; thatis, p;; ;(01,...,0 ] 10 (l])| Then (4.38) yields
Z(G" 1 q 2
Eln =o(l) - + Ellp(o,...,a)]5). (4.37)
Z(G) g-1 ,2221(1—1)(61—1) (lpto Olz)
Hence, if welet &; = E(Ilp(al,...,m)llg) — g~ ' =0, then #37) becomes
_ - Z(G" q¢i
ElInG(n,m+1, pso)] —ElIn G(n, m, pso)] = Eln =o(1)+In(1-1/g) + _—. (4.38)
P P Z(G) q ,ZZZ I0-1)(g-1)
Moreover, implies that
EllnG(n, m, peo)] =In g + %ln(l— 1/g) + o(n). (4.39)

Finally, since [@34) guarantees that ¢; is bounded away from 0, (£.38) and imply (£35). O
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The following observation shows that we can extend to sufficiently large but finite S.

Lemma 4.18. Assume that d > 0 is such that for some 6 > 0 and some subsequence (n;); we have

hmsup E[an(G(m,m(d np),00)] >Ing+ iln(l —-1/q) +26. (4.40)

[—o00

Then for all large enough p we have

d
llmsup E[an(G(nl,m(d ny), cp)| >lnq+—ln(1—1/q)+6 (4.41)

[—o00

Proof. By Corollary[3.27for any d, ﬁ the distribution of ¢ and the uniform distribution on balanced assignments
can be coupled such that the distance is O(v/n) with probability 1 - O(n~2). Hence, we can couple G(n,m(d),1)
and G(n, m(d), cp) such that they differ on no more than exp(—f)dn constraint nodes with probability 1 — o(n~2).
Since altering a constraint node affects In Z (G(n, m(d), cp)) by no more than f in absolute value, we can choose

B = B(0) large enough so that implies (£.41). O
With the notation from define
(A-c/q)" ! ) d (1) (1 13 ()
PBrows(m;q,d,¢) =E ? ;1 1:[ Cﬂl-n (o) ]| - m/\ 1—; e’ (@Mpy” (]|

In the case of the Potts antiferromagnet, %(d, ) from Theorem 2] specializes to Bpous (71; g, d, cp)-

Lemma 4.19. Forallme @f (Q) we have Bpois(m; q,d, 1) = limﬁ_,Oo Brotts (M3 d, g, cp)-

Proof. This follows from the dominated convergence theorem because A is bounded and continuous on [0,1]. [
Lemma 4.20. Ifd < dgcond, then PBpots(q,d,1) =Inq + gln(l -1/q).

Proof. The lower bound is attained at the distribution 7 = & g0 i.e., the atom sitting on the uniform distribution
on Q. The upper bound is immediate from the definition (L7 of d cond- O

In order to derive an upper bound on d; cong We use the following observation.

Lemma 4.21. Foranyd; > (q—1)? there exists 5 > 0 such that for all d > d, the following is true. W.h.p. there is an
assignment T g, ., .y Such that
(A e ma ), > 5.

:“G(n mg,Poo)

Proof. We begin by observing that it suffices to prove the statement for d = d;. By the Nishimori property for
balanced colorings from Fact@14] G(n, my, pso) is distributed as G’ = G* (n, my, poo, @). Furthermore, if we obtain
G" from G’ by deleting each constraint node with probability 1 — d;/d independently, then G” is distributed as
G*(n,my,, pso,@). Hence, setting 7 = 747, we see that (A(, TG/)>ﬂG/ > 6 w.h.p.

Thus, assume that d = d; and fix some (g — 12 <d <d. The algorithm of Abbe and Sandon [2] delivers the
following:

for some 6’ > 0 w.h.p. the algorithm returns 76+ (4,m,, poo,o*) SUCh that A(G™*, 76 (n,m ), peo.o™)) >0 (4.42)

We are going to use this algorithm to achieve the same for the balanced planted coloring model.

Given an instance of Gy = G(n, my, Poo, @), delete a uniformly random set of en vertices to form the graph G;
for some suitable € = €(d, d’,§’) > 0 such that n; = (1 —€)n is an integer. Let o'} be & restricted to the vertices that
remain after deletion. Then G; is distributed as G(n;, M _c10E2)d> Poo,d’). Hence, by choosing an appropriate ¢
we can ensure that G; and G(n;, my, po,0”') have total variation distance o(1). Moreover, o and the uniformly
random map o}, , are mutually contiguous. Hence, so are G; and G(n, my, poo, ™). Thus, (£42) applies to Gy
and we extend the assignment produced by that algorithm to an assignment of n vertices by assigning colors at
random to the en deleted vertices. Consequently, choosing d — d' and thus ¢ sufficiently small, we deduce from
) that there is an algorithm such that

for some &’ > 0 w.h.p. the algorithm returns 7’ such that A(é, 1’ T )>6. (4.43)

G*(n,my,poo,0) (n,my,poo,d)
Since TG* (10, Poos) depends on the graph G*(n, m,, pwo, ) only, the assertion follows from (£.43) and the Nishi-
mori property. O
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Corollary 4.22. We have dgcond < (q—1)? forall g = 3.
Proof. Combining Lemma@2I]with Lemma@7land Lemma&I7 we conclude that for every d > (g — 1)? there is
6 > 0 such that 4
1 -
limsup ;E [InZ(G(n,mg, poo)| >Ing + > In1-1/g) +6.

n—oo
Therefore, Lemmal4.18|shows that for (4.41) holds for some subsequence (n;) for all large enough . Consequently,
Theorem[2.2] Lemma[3.4land Lemmal@3lyield Bpotis(q, d, cg) >Ing+ % In(1-1/¢g)+6 for all large enough S. Hence,
Lemma.I91shows that d cond < d. O

Remark 4.23. For q =5 the upper bound dgcond < (4 — 1)? actually follows from a simple first moment argument.
As a final preparation we need the following elementary observation.

Lemma 4.24. Assume that d > 0, 1> 0 are such that for some strictly increasing sequence (n;) ;> there is a sequence
m(ny) such that

lim P[Z (G, m(n), peo)) = g™ (1= 11q)™ ™ exp(-nm)] = 0.

—00

Then
lim max P[Z(G(n;,m, pso)) = g (1—1/9)" exp(-nn;/2)] = 0.

l—ocom(n;))<sms<n+m(ng)

Proof. We use two-round exposure. Thus, for m > m(n;) we think of G(n;, m, 1) as being obtained from G(n;, m(n;),co)
by adding m — m(n;) random constraint nodes. Then for each g-coloring o of G(n;, m(n;),co) we have

P[0 is a g-coloring of G(1n;, m, peo)|0 is a g-coloring of G(n;, m(ny), peo)] < (1 —1/g)™~ ™ +om,
Therefore,
E[Z(G(n1, m, pe))|G(ny, m(ny), Poo)] < Z(Gny, m(ny), poo)) (1 = 1/ gy~ m+e )
and the assertion follows from Markov’s inequality. 0

Proof of Theorem[L.2 From Lemma 422 we know that dgcond < (q — 1)2. Hence, assume for contradiction that

dy < dgcond < (g —1)% but
liminfE{/ Z(G(n, ma,, peo)) < q(1 - 1/g)4'2,

Then there exist a subsequence (7;); and 1 > 0 such that

lim E(Z(G(ny, ma, (), Peo))M1 = g(1—1/g)""% exp(-3n). (4.44)

Set { = q(1- 1/6])d1/2 exp(—2n) and let (#(n)), be the sharp threshold sequence from Lemma [£I2] Then (£.44)
implies that limsup,_. ., u(n;) < d;. Hence, there exists d; < d» < dq,cond <(g- 1)2 such that

lim PIZ(G(r, mg, (), Do) = (1 =1/ )% exp(—n)] = 0.

Consequently, if we fix dy < d3 < dy < d cond With dy — dp sufficiently small, then Lemma4.24]yields
lim max P[Z(G(n;, m, peo)) = g™ (1 —1/q)" exp(-n/2)] = 0.

l—'ood3n1/2<m<d4n1/2
Therefore, Corollary[4.16]shows that for any fixed d3 < d5 < dg < d4 there is € > 0 such that
liminf max P[ (o,1)-pl[, )~ <el<1.
l—o00 dsn;/2<m<dgn;/2 <||,D p||2>G(nl’mvpoo)

Hence, Lemma[ZI7yields

1 ~ d
limsup —E [InZ(G(n;, mgy(n)), poo)| >Ink + 76 In1-1/g) +86.
!

l—o00

Further, applying Lemmal4.18 we obtain

1 . d,
limsup n_E [InZ(G(ny, mgg(ny), pp)] >Ing + 761n(1 —1/g)+6  foralllarge enough f.
!

l—o00
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Since Lemma[4.3lshows that the Potts antiferromagnet meets the assumptions of Theorem[2.2] we conclude
1 . d,
Brotts (4, ds, cg) = limsup —E [In Z(G(n;, mg, (ny), pp)| =Ing + ?6 In(1-1/g)+6
l—oco N1
for all large enough B. Finally, Lemma[4.I9]shows that then

d
Brots(q,ds, 1) >1In g+ fln(l ~1/q),

which contradicts the fact that ds < dg cond-

Conversely, assume that d is such that Bpgs(7;q,d,1) >Ing + %ln(l —-1/qg) form e QE(Q). Then Lemma [4.19]
implies that there is § > 0 such that %Bpos (7; g, d, cg) > Ing + gln(l - cg/ q) + 6 for all large enough . Therefore,
Lemmal[3land Theorem 2.2]imply that for all large enough f§ and n > ny(f),

%Ean(G(n, m(d), pp)) >Ing+ gln(l —cplq)+6812.

Consequently, Lemma@I3lyields limsup,,_ . E {/Z(G(n, m(d), poo)) < (1 -1/ q)%'2. O

4.4. Proof of Theorem[I.4l Here we prove Theorem[L.4lon LDGM codes. We will apply Theorem[2.2]as follows. Let
Q={x1}, ¥ ={y1,p-_1} with

k
yio)=1+1-2nJ-[]o;
i=1

for o € Q, J € {+1}. The prior is uniform: p(y;) = p(y-1) = 1/2. In particular, the distribution on ¥ conditioned
on the planted assignment is exactly as in the description of the LDGM codes:

1+ (1-2n)-T1% 0y
1+@1-2n) 15 0i+1-(1-2n 1% |0
: k —
_ 1-n if [l_,0i=1
n if Hlea,-z—l.

Plya=vy1lo(0a) = (o1,...01)] =

Recall that ¢ = Q| > eak Elw(1)], so in this setting we have ¢ = E[y(1)] = 1. We also compute

di
Y Ely@hy@) = 3 [20-nIn2-2n) +2nln(2n)]

T7eQk

k&1Qx

= %[ln2+nlnn+ 1-nIn1-n)]l.

Now a distribution 7’ € 222 ({+1}) corresponds exactly to a distribution 7 € 2 ([—1,1]) via the map 05.”) = 2;15.”’) (nH-
1. So the Bethe formula becomes:

d(k-1
)= S £ T L vt =avwaeo T] w2 0] - L0 £ w147 )

geQi=11eQk Jj#h; TeQk
£ e £ a-eoneTou,o))
oe{£l}i=1 Te{+1}k-1 j=1

dk-1 k /

- (k Iaf1+ Zk(l—zn)]-_]"[rjy;”)(rj)) (4.45)

Te{£1} =1
1 w || dk-1 5 o
=E|ZA Y ]"[ 1+(1- 2n)01b]—[0k,+j -——A 1+-2nJ-[[07"]]. (4.46)

oef+l}i= j=1

Now we check the three conditions SYM, BAL, and POS. Both SYM and BAL are immediate since the function
7— E[w(7)] is constant over all 7 € {1}k,
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Now recall the POS condition:

E[1- X w(a)ny(m(a])) +k-D1- ¥ w(a)]‘[y(”’(aj))l

oeQk oeQk Jj=
k I
-x (1- ¥ wou o) [[aw)) ] =0
i=1 oeQk j#i

Let J € {£1} be chosen uniformly. Then v = v and

1 k
(- % WU)HII(”’(%)) = (@-2mJ) H(Zoﬂi’”) ,
oeQk —1\0o
k
(- ¥ W(a)ﬂu“”(aj)) = ((1-2p))) H(Z(Tu(”))
oeQk

/—\\

1
- Y yopo; )Hll(n)((fj)) =@-2mn'
oeQk J#i

;U’l?ﬂ) 1_[ (Zoy(ﬂ))

j#i
Hence, if we let

(ZU#“”) ] :

(Z Uﬂ(’”) ] :
then POS becomes
E [((1 —zn)])’] (X’C +k-1)Yk- kXYk_l) >0.
Crucially, if / is odd then E [((1 - 217)])1] = 0. Moreover, if [ is even than X, Y = 0. Since
X+ k-DYF—kXY*¥ 120 ifX,Y=0

the assertion follows.
Now with

Sk, d,n) = sup
nePy((-1,1])

Theorem[22land (.46) give

L k dk—1
H(1+o]b(1—2n)negc”g+]))— (k N
]

oe{+1} b=1

1+Ja-2m ] 0“”)]

j=1

lim —I(a ,G)=(1+d/k)In2+nlnn+ 1 -n)In(l-n) - FL(k,d,n),

n—oon
completing the proof of Theorem[T.4]
4.5. Further examples. Finally, we compile just a few further examples of well known models that satisfy the con-

ditions SYM, BAL and POS. The first one is a hypergraph version of the Potts antiferromagnet related to the hyper-
graph g-coloring problem.

Lemma 4.25. LetQ = [q] forsomeq =2, letk =2, >0 and letV = {y} where
Y:oE€ QF — exp(—fl{o) = =0}).
Then BAL, SYM and POS hold.
Proof. As in the Potts antiferromagnet SYM is immediate from the symmetry amongst the colors. Further, let

cg =1—exp(—p). Then

k
yo)=1-cs ) []loi=1}.

TeQi=1
Hence, for any € 22(Q) we have

k
Y y@[[ued=1-cs Y po)*.

oeQk i=1 oeQ
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Thus, BAL follows from the convexity of x € [0,1] — xk. Moving on to POS, we fix 7,7’ € ?}’f (Q). In the present case
the condition boils down to

k=1
0=k[( Y Hf‘(m(")) +k-D( 2 l_[ﬂ(”)(a)) (Zu(”)(a)j[[lp;”)(a)] |

0eQ j=1 0eQ j=1 geQ)
Using the mutual independence of p(l”) , p(l” ), ..., the expression simplifies to
k k-1 k
Ty 0’1€Q ] 1

Clearly the last expression is non-negative (because x* —kx yk‘1 +(k-1)y* = 0 for all x, y = 0), whence POS follows.
O

As a second example we consider the random k-SAT model at inverse temperature § > 0. We represent the
Boolean values by +1 rather than 0,1 to simplify the calculations. Moreover, the vector J represents the signs with
which the literals appear in a given clause.

Lemma4.26. LetQ={+1},k=2,>0andletVY ={y;:]€ (+1}%} where

vy:oeQf—1—(1—exp(- ﬁ))]‘[“éla’
i=1

Let p be the uniform distribution on V. Then BAL, SYM and POS hold.

Proof. Let cp=1- exp(—p). The assumption SYM is satisfied because for any i € [k], T = +1 we have
27F Y Y o) =28
Jel+1ikgeQkio;=1;

Moreover, BAL holds because

pe2@~—~2% Yy Y w](a)l—[u(aj =1-cp2F

Je{+1}k geQk

is a constant function. To check POS, we follow similar steps as in the interpolation argument from [81]. Fix 7,7’
We need to show that

k l () ! (') !
os27fch ¥ E[( X ]‘[(1+]]a])y”(aj)) +k-1( ¥ ]‘[(1+]]a,)p” @)

]e{+1}’C oeQk j=1 oeQk j=1
(m " !
—Z( Y A+JioppP ) |1 A+Jjo)p; (Uj)) ]
i=1 geQk JELkN}
1 ; () ! £ () g () (") !
/3 T /3 T
=cp ¥ E[([Te"0p) +&-d([Te"up) - X (e0n TT 1™0p) ]
Je(+11k j=1 j=1 i=1 JelkI\{i}
Since ygm , pi” ),...are independent, the last expectation simplifies to
k k k-1
Dt +k-DE| Y g™ -kE| Y ™) u(f”(])l] .
Je{£1} Je{£1} Je{£1} Jeixl}
The last expression is non-negative because x* — kxy*~! + (k—1)y* = 0 for all x, y > 0. O

Finally, let us check the conditions for the random k-NAESAT model at inverse temperature § > 0. Again we
represent the Boolean values by +1 and the literal signs by a vector J.

Lemma 4.27. LetQ ={+1}, k=2, >0andletV = {1//] : J € {135} where

1+ Ji0; 1- ]lal

yrioeQF—1-(1-exp(- ﬁ))ﬂ —(1-exp(- ﬁ))H
i=1

Let p be the uniform distribution on W. Then BAL, SYM and POS hold.

55



Proof. Let cg =1~ exp(-f). SYM holds because for any i € [k], T = £1 we have

27F Y Y wye)=2F-2¢

]E{J_rl}kaer:oizr,-

and BAL holds because

k
pe2@—2"% Y Y yio) [[uop=1-cp2'*
Je{x1}k geQk j=1

is a constant. To check POS, fix 7, 7’. Then POS comes down to

k k 1 k , k , 1
o= ¥ E[([TePup+TTuP ) + k=0T up+ a7 1))
Jetx1k o j=1 j=1 j=1 j=1

k , ’ l
=Y (w00 T1 e up+rPen T e en) ]
i=1

jelk\i} etk
Lk () Lt (") k£ () (")
=y > E(TTeGnip+G=D T [1Tei 6ni =2 [T st [To5 (snj) |-
Je{+11k s1,...,51€{£1} h=1j=1 h=1j=1 i=1h=1 J#L
Due to the independence of the pﬁ”), yﬁ” ’), ..., the last expression boils down to
! k 1 k
E| ¥ [TePen| +&-DE| Y T snn
SuesSiElEl} [ Jel1}h=1 Je{xl} h=1
! I k-1
~kE| Y [T |El Y [T 6sun|
Jelx1} h=1 Jelx1} h=1
which is non-negative because x* — kxy*~! + (k- 1)y¥ = 0 for all x,y = 0. O
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