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1 Introduction

During the next few years we might expect some dramatic new information from B-mode

experiments either detecting primordial gravity waves or establishing a new upper bound

on r, and from LHC discovery/non-discovery of low scale supersymmetry. A theoretical

framework to discuss both of these important factors in cosmology and particle physics has

been proposed recently. It is based on the construction of new models of chaotic inflation [1,

2] in supergravity compatible with the current cosmological data [3, 4] as well as involving

a controllable supersymmetry breaking at the minimum of the potential [5–9]. In this

paper we will develop supergravity models of inflation motivated by either string theory or

extended supergravity considerations, known as cosmological α-attractors [10–26]. Here we

will enhance them with a controllable supersymmetry breaking and cosmological constant

at the minimum. We find this to be a compelling framework for the discussion of the

crucial new data on cosmology and particle physics expected during the next few years.

Some models of this type were already discussed in [24].

The paper is organized as follows. We begin in section 2 with a brief review of key

vocabulary and features of these and related models with references to more in-depth

treatments. In section 3 we present the α-attractor supergravity models that make manifest

an inflaton shift-symmetry by virtue of having the Kähler potential inflaton independent

— which we will refer to as Killing-adapted form. Section 4 presents a universal rule: given

– 1 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
7

a bosonic inflationary potential of the form F2(ϕ) one can reconstruct the superpotential

W =
(
S + 1

b

)
f(Φ) for the Kähler potentials described in section 3. The resulting models

with f ′(ϕ) = F(ϕ) have a cosmological constant Λ and an arbitrary SUSY breaking M at

the minimum. In section 5 we study more general class of models with W = g(ϕ)+Sf((ϕ)

and the same Kähler potential. For these models it is also possible to get agreement with

the Planck data as well as dark energy and SUSY breaking. Moreover, these models have

nice properties with regard to initial conditions for inflation, analogous to the ones studied

in [27] for models without SUSY breaking and dark energy. We close in section 6 with a

summary of what we have accomplished.

2 Review

2.1 α, and attraction

There is a key parameter α in these models, for which the Kähler potential K = −3α ln(T+

T̄ ). It describes the moduli space curvature [11] given by RK = − 2
3α . Another, also

geometric, interpretation of this parameter is in terms of the Poincaré disk model of a

hyperbolic geometry with the radius
√

3α, illustrated by the Escher’s picture Circle Limit

IV [25, 26]. As clarified in these references, from the fundamental point of view, there are

particularly interesting values of α depending on the original theory. From the maximal

N = 4 superconformal theory, [28–31], one would expect α = 1/3 with r ≈ 10−3. This

corresponds to the unit radius Escher disk [25], as well as a target of the future space

mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for α = 1/9, which corresponds to the GL model [32–34].

From N = 1 superconformal theory [10], one would expect α = 1 with r ≈ 3 × 10−3.

Generic N = 1 supergravity allows any positive α and, therefore an arbitrary r, which has

to be smaller than 0.11 to agree with the current data.

2.2 T and E model attractors, and observables

A simple class of α-attractor models, T-models, have a potential V = tanh2n ϕ√
6α

for the

canonical inflaton field ϕ. These models have the following values of the cosmological

observables [10–13] for α . O(10), where there is an attractor behavior and many models

have the same n-independent predictions

ns = 1− 2

N
, r = α

12

N2
, r ≈ 3α× 10−3 . (2.1)

Once we increase α beyond O(10), expressions for ns and r become somewhat different,

see eqs. (5.2)–(5.4) in [12]. In particular, the value of r can be increased significantly, all

the way to the predictions of the ϕ2n models. Even the simplest of these T-models are

interesting phenomenologically for cosmology. For these models the parameter α can take

any non-zero value; it describes the inverse curvature of the Kähler manifold [11, 13]. The

cosmological predictions of these models, for various values of α, are shown in figure 1. As

one can see, the line with n = 1 begins at a point corresponding to the predictions of the

simplest quadratic model m
2

2 φ
2 for α > 103, and then, for smaller α, it rapidly cuts through

– 2 –
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Figure 1. Examples of supergravity T- models with r-dependence in logarithmic scale in r. For

potentials V = tanh2n ϕ√
6α

, the predictions of these models interpolate between the predictions of

various polynomial models ϕ2n at very large α and the vertical attractor line for α ≤ O(10). When

α → ∞ the models approach the ones with ϕ2n potentials. This attractor line beginning with the

red star corresponds to the predictions of the simplest models V = tanh2n ϕ√
6α

with n = 1.

the region most favored by the Planck data, towards the predictions of the Higgs inflation

model and conformal attractors r ≈ 0.003 for α = 1, continues further down towards the

prediction r ≈ 0.0003 of the GL model [32–34] corresponding to α = 1/9, and then the

line goes even further, all the way down to r → 0 in the limit α→ 0. This fact by itself is

quite striking.

The simple E-model attractors have a potential of the form V0

(
1 − e−

√
2
3α
ϕ
)2n

. For

n = 1, α = 1 it gives the potential of the Starobinsky model, with the prediction r ≈ 0.003.

We will generalize both T-models as well as E-models, which both fit the data from Planck

very well, to describe SUSY breaking and dark energy, at the minimum of the generalized

potential.

Other models which make related predictions include the fibre inflation model [35] and

the Starobinsky-like models developed in [36]. Note that in figures 1 and 2, as well as in

the figures 3 and 5, we show the predictions for the number of e-foldings N = 60. But this

number may be significantly lower, depending on the mechanism of reheating [37]. This

may somewhat change the predictions for ns and r. In particular, for N = 50 the value of

ns at α . 10 in all of our models decreases by ∆ns ∼ 0.0067.

2.3 Stabilizers

In supergravity models of inflation, the task of SUSY breaking after inflation is often

delegated to the so-called hidden SUSY breaking sector, requiring the addition of new su-

perfields constrained to not participate in inflation. The scalars from such superfields have
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Figure 2. The cosmological observables (ns, r), in a logarithmic scale in r, for simple examples of

E-models, with V = (1 − e−
√

2
3αϕ)2n with n = (1/2, 3/4, 7/8, 1, 3/2, 2, 3) starting from the right,

increasing to the left, with the vertical line for n = 1 in the middle. When α → ∞ the models

approach the ones with ϕ2n potentials. The attractor line, common for all n, starts below r ≈ 10−3

and goes down, unlimited.

to be strongly stabilized, so as to not affect the inflation driven by the inflaton sector of

the model. In this paper we describe models of chaotic inflation with the inflaton chiral

superfield, and with a nilpotent superfield stabilizer.1 This new approach to generic SUSY

breaking was suggested recently in [5] using generic supergravity models including the infla-

ton multiplet as well as a nilpotent multiplet [45, 46]. Note that the non-inflaton goldstino

multiplet plays an important role for consistency of inflation, including stabilization of the

second scalar belonging to the inflaton multiplet. This was explained in [49, 50] develop-

ing on the pioneering work [51]. In these models the glodstino multiplet was a ‘stabilizer’

superfield and was a standard chiral superfield.

2.4 Shift symmetry and Z, T, and Φ variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and

controllable supersymmetry breaking have been studied in [5–8]. The basic feature of all

such models is as follows. At the potential’s minimum supersymmetry is spontaneously

broken. With the simplest choice of the Kähler potential, the models are given by K =
1
2(Φ−Φ̄)2 +SS̄, W = g(Φ)+Sf(Φ), S2(x, θ) = 0, where the superpotential depends on two

functions of the inflaton field Φ. The difference with earlier models [49–51], is the presence

of an S-independent function g(Φ) in W and the requirement that S is nilpotent. The

1The nilpotent multiplet describes the Volkov-Akulov fermionic goldstino multiplet with non-linearly

realized spontaneously broken supersymmetry [38, 39]. The relation to chiral nilpotent multiplets was

studied in [40–43]. In cosmology we use the recent implementation of nilpotent multiplets suggested in [44].

These nilpotent multiplets are deeply related to the physics of the D-branes [45–48].

– 4 –
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mass of the gravitino at the minimum of the potential, W = m3/2 = g(0), is non-vanishing

in these new models, and SUSY is broken in the goldstino direction with DSW = M 6=
0. In [49–51] the mass of the gravitino was vanishing. Typically the minimum of the

potential is these models had an unbroken supersymmetry in Minkowski minima. But in

new models in [5–8] with g(Φ) 6= 0 we find instead either de Sitter or Minkowski minima

with spontaneously broken SUSY.

From the point of view of string theory and N ≥ 2 spontaneously broken supergravity,

another class of Kähler potentials, such as K = −3α ln(T + T̄ ), is more interesting due

to their geometric nature and symmetries. The same models in Poincaré disk variables

are given by K = −3α ln(1 − ZZ̄). It is particularly important that these models have a

boundary of the moduli space at

ZZ̄ → 1 , Z → ±1 , T → 0 , T−1 → 0 (2.2)

where T = 1+Z
1−Z , T−1 = 1−Z

1+Z [10, 13, 25]. Inflation takes place near the boundary which

leads to an attractor behavior when many models lead to the same inflationary predictions.

A simple way to explain it is to refer to a geometric nature of the kinetic terms of the form

3α
∂T∂T̄

(T + T̄ )2
|T=T̄=t =

3α

4

(
∂t

t

)2

=
3α

4

(
∂(t−1)

t−1

)2

(2.3)

The kinetic term has a pole behavior near t−1 → 0, near the boundary of the moduli

space T−1 → 0. This explains why the potentials can be changed without a change in

cosmological observables and r depends on the residue of the pole, i.e. on α [23]. We may

therefore change our potentials by small terms depending on t−1 without changing the

observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1

or the half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27],

where

T = e

√
2
3α

Φ
, Z = tanh

Φ√
6α

. (2.4)

In the context of our moduli space geometry the variables Φ represent the Killing adapted

frame where the metric is inflaton independent. We will therefore call them Killing

variables.

Our purpose here is to generalize the models in [10–13] to break N = 1 SUSY spon-

taneously. The new models with S2(x, θ) = 0, which are compatible with established

cosmological data and designed to be compatible with the future data on r and m3/2 will

depend on four parameters: α, describing the Kähler geometry, M , defining the scale of

SUSY breaking by goldstino DSW = M , and µ, related to scale of inflationary energy and

b. The role of b is the following: at the minimum

V =
(
b2 − 3

)M2

b2
, ⇒ b2 = 3 , V = 0 . (2.5)

It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic

de Sitter minima require a universal condition that the goldstino energy M2 exceeds the
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negative gravitino contribution to energy where m2
3/2 = M2

b2
.

V = M2 − 3m2
3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua

of the string landscape type, including the case

Λ = M2 − 3m2
3/2 =

(
1− 3

b2

)
M2 ∼ 10−120 . (2.7)

3 Killing-adapted α-attractor supergravity models

We study here the following N = 1 supergravity models, which can be described in disk

geometry coordinates of the moduli space Z,

K = −3α log
(

1− ZZ̄
)

+ SS̄ , S2(x, θ) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)

The geometry has the SU(1, 1) symmetry

ds2 = KZZ̄dZdZ̄ = −3α
dZdZ̄

(1− ZZ̄)2
. (3.2)

Alternatively, we can use the half-plane coordinates T

K = −3α log
(
T + T̄

)
+ SS̄ , S2(x, θ) = 0 , W = G̃(T ) + SF̃ (T ) . (3.3)

The geometry has an SL(2,R) symmetry

ds2 = KT T̄dTdT̄ = −3α
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane

geometry where 3α = R2
E corresponds to the radius square of the Escher disk [25].

We will now perform a Kähler transformation [26, 27] so that our new Kähler potential

is inflaton shift-symmetric. First we use the original disk and half-plane variables and

redefine the Kähler and superpotentials as follows

K = −3

2
α log

[
(1− ZZ̄)2

(1− Z2)(1− Z2
)

]
+ SS̄ , S2(x, θ) = 0 , W = A(Z) + SB(Z) . (3.5)

where

A(Z) + SB(Z) = (1− Z2)−3α/2(Ã(Z) + SB̃(Z)) . (3.6)

In half-plane case

K = −3

2
α log

[
(T + T̄ )2

4T T̄

]
+ SS̄ , S2(x, θ) = 0 , W = G(T ) + SF (T ) . (3.7)

where

G(T ) + SF (T ) = T−3α/2
(
G̃(T ) + SF̃ (T )

)
. (3.8)
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Since we have performed a Kähler transform of the type

K → K +
3α

2
log[(1−Z2)(1−Z̄2)], W → (1− Z2)−3α/2W W → (1−Z̄2)−3α/2W. (3.9)

K → K +
3α

2
log[4T T̄ ], W → T−3α/2W W → T̄−3α/2W. (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is

manifestly inflaton-independent. The choice of coordinates Z = tanh Φ
6α and T = e

√
2
3α

Φ

in the disk/half-plane geometry corresponds to a Killing-adapted choice of coordinates where

the metric does not depend on ϕ = Re Φ. We find that in these coordinates with Killing

variables Φ = ϕ+ iϑ

K = −3α log
[

cosh
Φ− Φ̄√

6α

]
+ SS̄ . (3.11)

and

ds2 = −3α
dZdZ̄

(1− ZZ̄)2
= −3α

dTdT̄

(T + T̄ )2
=

∂Φ∂Φ̄

2 cos2
(√

2
3α ImΦ

) . (3.12)

The superpotential is now

W = A
(

tanh
Φ√
6α

)
+ S B

(
tanh

Φ√
6α

)
= G

(
e

√
2
3α

Φ
)

+ SF
(
e

√
2
3α

Φ
)
. (3.13)

Note that in our models ϑ = 0 during inflation and therefore the new holomorphic variable

Φ during inflation becomes a real canonical variable ϕ. This is also easy to see from the

kinetic terms in these variables, which are conformal to flat,

ds2 =
dϕ2 + dϑ2

2 cos2
√

2
3αϑ

. (3.14)

At ϑ = 0 they are both canonical ds2|ϑ=0 = dϕ2+dϑ2

2 . Thus, we will work with α-attractor

models (3.1), (3.3) in the form

K = −3α log
[

cosh
Φ− Φ̄√

6α

]
+ SS̄ , W = G

(
e

√
2
3α

Φ
)

+ SF
(
e

√
2
3α

Φ
)
. (3.15)

Here one should keep in mind that our original half-plane variable T is related to Φ as

follows, T = e

√
2
3α

Φ
. We will use the following notation

G
(
e

√
2
3α

Φ
)
≡ g(Φ) , F

(
e

√
2
3α

Φ
)
≡ f(Φ) . (3.16)

To summarize, in Killing variables the α-attractor supergravity models are

K = −3α log
[

cosh
Φ− Φ̄√

6α

]
+ SS̄ , W = g(Φ) + Sf(Φ) . (3.17)

We find that the potential at Φ = Φ̄ and at S = 0 is given by

Vtotal = 2|g′(ϕ)|2 − 3|g(ϕ)|2 + |f(ϕ)|2 , (3.18)

– 7 –
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since the Kähler covariant derivatives are the same as simple derivatives

DΦW = ∂ΦW = g′(Φ) , DSW = ∂SW = f(Φ) , (3.19)

and at Φ = Φ̄, S = 0, K = 0 and the inverse kinetic terms KSS̄ = 1 and KΦΦ̄ = 2.

4 Reconstruction models of inflation with SUSY breaking and de Sitter

exit

In the form (3.17) our α-attractor models can be used to provide a de Sitter exit from

inflation as well as supersymmetry breaking at the minimum of the potential, without

changing any of the advantages in describing inflation. One of the simplest possibilities for

such models is to require that

g(Φ) =
1

b
f(Φ) , (4.1)

K = −3α log

[
cosh

Φ− Φ̄√
6α

]
+ SS̄ , W =

(
S +

1

b

)
f(Φ) . (4.2)

In Killing variables we find that at Φ = Φ̄ and at S = 0

DΦW = ∂ΦW =
1

b
f ′(Φ) , DSW = ∂SW = f(Φ) . (4.3)

The expression for the potential at Φ − Φ̄ = S = 0 is now very simple and is given by

V =

(
1− 3

b2

)
|f(ϕ)|2 +

2

b2
|f ′(ϕ)|2 . (4.4)

Assume that at the minimum of the potential at Φ = 0

f(0) = DSW = M 6= 0 , f ′(0) = bDΦW = 0 . (4.5)

This means that at the minimum supersymmetry is broken only in the direction of the

nilpotent superfield S and unbroken in the inflaton direction, since b 6= 0.

We take b2 > 3. This provides an opportunity to have de Sitter vacua with positive

cosmological constant Λ in our inflationary models so that

V |Φ=0 = Λ , Λ ≡
(

1− 3

b2

)
M2 , b2 =

3

1− Λ
M2

. (4.6)

The cosmological constant is extremely small, Λ ∼ 10−120, so we would like to make a

choice of f in (4.1) such that the inflationary potential is presented by the second term

in (4.4). In such case, with account of ϑ = 0 condition we can use the reconstruction

method analogous to the one in [6], where it was applied to canonical shift symmetric

Kähler potentials with Minkowski vacua. We will show here how to generalize it for de

Sitter exit from inflation and our logarithmic Kähler potentials.

If the potential during inflation is expected to be given by the function

V (ϕ) = F2(ϕ) . (4.7)

– 8 –
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we have to take

∂ϕf(ϕ) =
b√
2
F(ϕ) , (4.8)

and

f(ϕ) =
b√
2

∫
F(ϕ) f(ϕ)|ϕ=0 = M . (4.9)

In these models the value of the superpotential at the minimum defines the mass of gravitino

as follows

Wmin =
f

b
|Φ=0 =

M

b
=
M√

3

(
1− Λ

M2

)1/2

= m3/2 , (4.10)

where Λ = M2 − 3m2
3/2. The total potential at ϑ = 0 is therefore given by

V total = Λ
|f(ϕ)|2

M2
+ |F(ϕ)|2 , (4.11)

with

V total
min = Λ = M2 − 3m2

3/2 . (4.12)

To get from the supergravity model (4.2) to the Planck, LHC, dark energy potential (4.11)

requires stabilization of the field ϑ at ϑ = 0. We have checked that for all values of α

during inflation, up to slow roll parameters, the main contribution to the mass to Hubble

ratio is of the form
m2
ϑ

H2
≈ 6
|f |2

|f ′|2
� 1. (4.13)

Here the mass of ϑ is defined with a proper account taken of the non-trivial kinetic term.

Equation (4.13) implies that ϑ quickly reaches its minimum at ϑ = 0 at the bottom of the

de Sitter valley, and inflation proceeds due to a slow evolution of ϕ. However, near the

minimum of the potential, where the slow roll parameters are not small, a more careful

evaluation of the mass of ϑ has to be performed. We will do it in examples below.

4.1 The simplest T-model with broken SUSY and dS exit

We would like to have the inflationary part of the the potential to be

Vinfl(ϕ) = αµ2 tanh2 ϕ√
6α

. (4.14)

This means that

F =
√
αµ tanh

ϕ√
6α

(4.15)

and

f(ϕ) =
√

3αµ b log

[
cosh

ϕ√
6α

]
+M . (4.16)

At ϕ = 0 one has f(ϕ) = M . A complete supergravity version of the model is

K = −3α log

[
cosh

Φ− Φ̄√
6α

]
+SS̄ , W =

(
S+

1

b

)[√
3αµ b log

[
cosh

Φ√
6α

]
+M

]
. (4.17)

– 9 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
7

Figure 3. Cosmological predictions of the simplest T-model (4.18) with SUSY breaking and a

non-vanishing cosmological constant Λ ∼ 10−120.

The total potential has a part proportional to the cosmological constant Λ as well as the

second part describing inflation:

Vtotal = Λ
|f(ϕ)|2

M2
+ αµ2 tanh2 ϕ√

6α
. (4.18)

The issue of the ϑ field stabilization which is required to get from (4.17) to (4.18)

presents an example of the general case. We find that during inflation
m2
ϑ

H2 is positive and

large, ϑ quickly reaches 0. However, near the minimum of the potential, the evaluation of

the mass of ϑ shows that it is positive under condition that α & 0.2. Thus for r & 10−3 the

model is safe without any stabilization terms even at the de Sitter minimum. For smaller

α the bisectional curvature term has to be added to the Kähler potential, to stabilize ϑ.

It is given by an expression in disk variables of the form A(Z, Z̄)SS̄(Z − Z̄)2.

The cosmological predictions of this model are represented by the straight vertical

line in figure 1. A more direct comparison with the Planck results is provided by a figure

presented in [24], which we reproduce here as figure 3.

Note that this model in disk variables and in a different Kähler frame was already

presented in eqs. (3.20) and (3.21) in [24]. An interesting property of the model (4.18) is

that the amplitude of scalar perturbations does not depend on α and is determined only

by µ ≈ 10−5.

4.2 The simplest E-model with broken SUSY and dS exit

We are looking at the inflationary α model with

Vinfl = m2
(

1− e−
√

2
3α
ϕ
)2

. (4.19)
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This means that

F = m
(

1− e−
√

2
3α
ϕ
)

(4.20)

and

f(ϕ) =
mb√

2

(
ϕ+

√
3α

2
e
−
√

2
3α
ϕ − 1

)
+M . (4.21)

At ϕ = 0 one has f(ϕ) = M .

Thus our complete model is

K = −3α log

[
cosh

Φ− Φ̄√
6α

]
+SS̄ , W =

(
S+

1

b

)[
mb√

2
(Φ+

√
3α

2
e
−
√

2
3α

Φ−1)+M

]
. (4.22)

The total potential has a part proportional to the cosmological constant Λ as well as the

second part describing inflation:

Vtotal = Λ
|f(ϕ))|2

M2
+m2

(
1− e−

√
2
3α
ϕ
)2
. (4.23)

The issue of the ϑ field stabilization which is required to get from (4.22) to (4.23) has

been studied separately and again confirms the general case as discussed below eq. (4.12)

concerning inflationary part. And again near the minimum of the potential, the evaluation

of the mass of ϑ shows that it is positive under condition that α > 0.2. For smaller values

of α, the bisectional curvature term has to be added to the Kähler potential, to stabilize ϑ.

It is of the form A(Z, Z̄)SS̄(Z − Z̄)2 in disk variables. This model for α = 1 in half-plane

variables in case of Λ = 0 was proposed in [9] in eqs. (28), (37). For the generic case of

α 6= 1 a related model was given in eqs. (4.23), (4.24) in [24].

More general models can be constructed following the rules for this class of models

proposed above in eqs. (4.7) - (4.11).

5 General models of inflation with SUSY breaking and dark energy

We have learned above how to build supergravity models by reconstructing superpotentials

to produce a given choice of the bosonic inflationary potential V (ϕ) = F2(ϕ) with our

logarithmic Kähler potential K = −3α log
[

cosh Φ−Φ̄√
6α

]
+SS̄ in Killing variables. The exact

answer for W = g(Φ)+Sf(Φ) can be obtained under condition g(Φ) = 1
bf(Φ) and requires

simply an integration so that f(ϕ) is reconstructed by integration f(ϕ) = b√
2

∫
F(ϕ).

Obviously this can be carried out in any variables as long as one takes care of the Kähler

measure relating the variables used to the functional form of the canonical variables, but

it is particularly transparent in Killing-adapted variables as the measure is unity.

Instead of the reconstructing strategy we may start with our models in (3.17) with

superpotentials of the form

W = g(Φ) + Sf(Φ) (5.1)

without a constraint that g(Φ) = 1
bf(Φ). In such case the potentials are given by Vtotal =

2|g′(ϕ)|2 − 3|g(ϕ)|2 + |f(ϕ)|2.
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Near the minimum of the potential one has to check that we still satisfy the require-

ments that DSW = M 6= 0 and DΦW = 0 to preserve the nice de Sitter exit properties with

SUSY breaking as described in eq. (2.5). In these models we end up with more complicated

bosonic potentials describing some combination of our α-attractor models. However, these

models are still capable to fit the cosmological observables as well as providing the level

of SUSY breaking in dS vacua with a controllable gravitino mass. Some examples of these

models were given in [24], in eqs. (2.4), (3.15) and (2.7), (3.17). Here we will present an

example where in disk variables the superpotential is relatively simple whereas the poten-

tial is not simple but satisfactory for our purpose. We take the inflaton shift-symmetric

Kähler potential and the superpotential of the form

K = −3

2
α log

[
(1− ZZ̄)2

(1− Z2)(1− Z2
)

]
+ SS̄ , S2(x, θ) = 0 ,

W =

(
S +

1− Z2

b

)(√
3αm2 Z2 +M

)
. (5.2)

The same model in Killing variables Φ, where Z = tanh Φ√
6α

, is

K = −3α log

[
cosh

Φ− Φ̄√
6α

]
+ SS̄,

W =

(
1

b
cosh−2

(
Φ√
6α

)
+ S

)(√
3αm2 tanh2

(
Φ√
6α

)
+M

)
. (5.3)

The potential at S = 0 and ϑ = 0 has the form Vtotal = 2|g′(ϕ)|2−3|g(ϕ)|2 + |f(ϕ)|2, where

in our case

g(ϕ) =
1

b
cosh−2

(
Φ√
6α

)(√
3αm2 tanh2

(
Φ√
6α

)
+M

)
,

f(ϕ) =
√

3αm2 tanh2

(
Φ√
6α

)
+M . (5.4)

We have checked that the mass of the field ϑ is positive everywhere for all α > 0.02 and

that during inflation the ratio
m2
ϑ

H2 = 6. This can be also seen from the figure 4, where we

plotted our potential. The inflationary de Sitter valleys are of the same width everywhere

for larger and larger values of ϕ.

The predictions of this class of models for ns and r practically coincide with the

predictions of the models discussed in sections 4.1 and 4.2 for α = O(1). However, at

α� 1 the predictions are somewhat different. We show these predictions in figure 5 by a

thin green line for 20 > α > 1/3 and for the number of e-foldings N = 60. The top of the

line indicated by the dark red star corresponds to α = 20. The line ends at the pink star

corresponding to α = 1/3. We see that the predictions of this model in the large interval

20 > α > 1/3 belong to the dark blue region favored by the Planck data.

Thus in the last two sections we have presented several supergravity models where δρ
ρ ,

ns and Λ take their known observable values, whereas the gravitino mass m3/2 and the

tensor-to-scalar ratio r are free parameters which can take a broad range of values.
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Figure 4. The potential for the supergravity model in eq. (5.3) as a function of ϕ and ϑ. It has a

de Sitter minimum at ϕ = ϑ = 0 where Vmin = Λ. Supersymmetry is broken at this minimum with

DSW = M , the mass of gravitino is m2
3/2 = M2

3

(
1− Λ

M2

)
. The inflationary de Sitter valleys have

a nice feature known for models with Minkowski minimum with unbroken SUSY, studied in [27].

These valleys provide nice initial conditions for the inflation to start in these models.

Figure 5. Predictions of the model 5.2 for 20 > α > 1/3 are shown by the thin green line. The

top of the line indicated by the dark red star corresponds to α = 20. The line ends at the pink star

corresponding to α = 1/3.
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6 Discussion

In this paper we have pursued a program of describing the main features of the universe

evolution, early universe inflation and current acceleration compatible with the data, as well

as providing an explanation of the possible origin of the supersymmetry breaking and the

mass of gravitino, compatible with the future data from particle physics. Certain features of

our four-parameter ‘primordial’ supergravity models are motivated by the non-perturbative

string theory. The origin of the nilpotent superfield S2(x, θ) = 0 in these constructions

is related to the D-brane physics, where one finds the fermionic Volkov-Akulov goldstino

multiplet [38–44] on the world-volume of the D-branes [47, 48].

Our new cosmological models in string theory inspired supergravity suggest a possi-

ble bottom-up N = 1 supergravity models of inflation which might lead to a successful

phenomenology of the early universe and the one which is accelerating now. These models

also address the supersymmetry breaking issues. They differ from more traditional string

cosmology models which were developed during the last decade, the latest models being

discussed in [52–54] and other papers. Our models have fundamental connections to string

theory via the nilpotent superfield associated with the fermions on the D-branes. Another

connection is via logarithmic Kähler potentials which are required for N ≥ 2 supergravity

and are present in string theory motivated supergravity. And finally, the value of the pos-

itive cosmological constant in our models can be only explained with the reference to the

string landscape.

Indeed, the cosmological constant is incredibly small, Λ ∼ 10−120, quantum corrections

can significantly change it. However, if string theory allows exponentially many metastable

vacua with different values of Λ, then some of them are bound to belong to the anthrop-

ically allowed range not much different from Λ ∼ 10−120 [55–67]. The full string theory

description of this scenario, including quantum corrections, is beyond current reach, but

one may expect that the resulting theory in the low energy limit should be described by

N = 1 supergravity with some phenomenological Kähler potential K and superpotential

W . Our goal in this paper was to develop a proper supergravity framework and find po-

tentials K and W which can play this role and simultaneously describe inflation, SUSY

breaking and the cosmological constant.

The mass of gravitino, m3/2, and the level of gravity waves, r, are free parameters in

our new cosmological models, to be determined by the future experiments. The progress

in this direction was based on a better understanding of moduli stabilization and on the

use of supergravity models with the universal spontaneous supersymmetry breaking via

a fermionic goldstino multiplet. The reason for such universality is the following: the

nilpotency condition S2(x, θ) = 0 for S = s +
√

2 θ ψs + θ2Fs can be satisfied only if

Fs 6= 0. In such case the sgoldstino is not a fundamental scalar anymore but is given by a

bilinear combination of fermionic goldstino’s divided by the value of the auxiliary field Fs

s =
ψsψs
2Fs

. (6.1)

There is no non-trivial solution if SUSY is unbroken and Fs = 0, i.e. only s = ψS = 0

solve the equation S2(x, θ) = 0. Thus by requiring to have a fermion Volkov-Akulov
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goldstino nilpotent multiplet in supergravity theory we end up with the universal value of

the supergravity potential at its minimum, with eK |FS |2 = M2

V = eK(|FS |2 − 3|W |2) = M2 − 3m2
3/2 = Λ > 0 . (6.2)

The new always positive goldstino contribution originates in an updated version of the

KKLT uplifting via the the D3 brane, with manifest spontaneously broken supersymme-

try [47, 48].

Our minimal supergravity models depend on two superfields, one of them typically

represented using either a Poincare-disk variable Z, or a half-plane variable T . A new

variable Φ which we used extensively in this paper describes the same geometry but in

a Killing adapted frame where the metric does not depend on the inflaton direction. We

call Φ a Killing variable. We explained the relation between these three holomorphic

variables in section 3. The canonically normalized inflaton in our models is ϕ = Re Φ. The

inflaton partner scalar ϑ = Im Φ is supposed to vanish, which happens automatically during

inflation in the models considered in this paper. In all our models in Φ-variables the inflaton

shift-symmetric Kähler potential is K = −3α ln
[

cosh Φ−Φ̄√
6α

]
+ SS̄ and the superpotential

is W = g(Φ) +Sf(Φ). The nilpotent multiplet S does not have fundamental scalars, it has

only a fermionic goldstino.

In models with a canonical Kähler potential for the nilpotent multiplet K = SS̄ sta-

bilization of ϑ in all models presented in this paper does not require any additional stabi-

lization terms, as long as α > 0.2. For smaller α one can stabilize ϑ by adding a bisectional

curvature term to the Kähler potential of the form (in disk variables) A(Z, Z̄)SS̄(Z− Z̄)2.

Thus, in presence of the nilpotent superfield S the problem of stabilization of the direc-

tion orthogonal to the inflaton is solved during inflation as well as at the minimum of

the potential.

An unexpected benefit from the new tools for moduli stabilization during inflation

was realized very recently. Many examples of previously known supergravity models, com-

patible with current and future cosmological observations, can now easily describe dark

energy via tiny de Sitter vacua, and spontaneous breaking of supersymmetry. In this paper

we provide examples of such generalizations of α-attractor models [10–26]. These models

interpolate between various polynomial models ϕ2m at very large α and attractor line for

α ≤ 1, see figures 1, 2. Therefore they are flexible with regard to data on B-modes, r.

They provide a seamless natural fit to Planck data. For these kinds of cosmological models

we have shown that it is possible to break supersymmetry without an additional hidden

sector, with a controllable parameter of supersymmetry breaking. With inflationary scale

∼ 10−5Mp the scale of supersymmetry breaking can be M ∼ (10−13− 10−14)Mp, compati-

ble with the discovery of supersymmetry at LHC. With M � 100− 1000 TeV we will have

equally good inflationary models, compatible with an absence of observed supersymmetry

at LHC. In fact, such inflationary models are even easier to construct.

In this paper we developed two methods of constructing inflationary models with super-

symmetry breaking and de Sitter minimum. One is the reconstruction method in section 4,

which allows to take any desirable inflationary models, in particular our α-attractor mod-

els, and enhance them by SUSY breaking and a small cosmological constant. An advantage
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of this method, following [6–9, 24], is that it is powerful and easy. It requires only a simple

integration of a given function. Thus one can obtain nearly arbitrary inflationary poten-

tials, just as it was done in [49, 50], so one can fit any set of observational data in the

context of supergravity-based models of inflation. Moreover, in all of these models one

can introduce SUSY breaking of any magnitude without introducing extra scalars such as

Polonyi field. It can be done while preserving all desirable inflationary predictions. Thus

from the purely phenomenological point of view, the reconstruction method is a great tool

offering us enormous flexibility.

On the other hand, this method does not use specific advantages of the cosmological

attractors, including their geometric origin and stability of their predictions with respect

to the change of the inflationary potential. In this sense, the method used for deriving the

model described in section 5, as well as of some other similar models found earlier in [24],

preserves the attractor features of the theory by construction, for all values of the SUSY

breaking parameters and arbitrary cosmological constant. Some of the features of these

models (the existence of a dS valley of a constant width and depth shown in figure 3) play

an important role in solving the initial conditions problem for inflation in these models.

The details of this analysis can be found in [27] for α-attractor models with a Minkowski

minimum and unbroken SUSY. Here we see that in generic models with de Sitter exit and

controllable SUSY breaking, initial condition problem for inflation is solved just as in the

simpler case studied in [27].
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