Skip to Main content Skip to Navigation
Journal articles

An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

Abstract : In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (View the MathML source≈20pJ/word on-die to ≈10,000 pJ/word≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scatter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of ×2×2 to ×2.5×2.5 speed-up in double precision for particle shape factor of orders 11–33. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles).
Document type :
Journal articles
Complete list of metadatas

https://hal-cea.archives-ouvertes.fr/cea-01426502
Contributor : Caroline Lebe <>
Submitted on : Wednesday, January 4, 2017 - 3:47:18 PM
Last modification on : Monday, August 31, 2020 - 6:33:27 PM

Links full text

Identifiers

Citation

H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, J.-L. Vay. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Computer Physics Communications, Elsevier, 2016, 210, pp.145-154. ⟨10.1016/j.cpc.2016.08.023⟩. ⟨cea-01426502⟩

Share

Metrics

Record views

180