T. C. Bond, Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research: Atmospheres, vol.6, issue.10, pp.5380-5552, 2013.
DOI : 10.5194/acp-6-3115-2006

S. Sjogren, Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures, Journal of Aerosol Science, vol.38, issue.2, pp.157-171, 2007.
DOI : 10.1016/j.jaerosci.2006.11.005

B. Miljevic, N. C. Surawski, T. Bostrom, and Z. D. Ristovski, Restructuring of carbonaceous particles upon exposure to organic and water vapours, Journal of Aerosol Science, vol.47, pp.48-57, 2012.
DOI : 10.1016/j.jaerosci.2011.12.005

J. Pagels, A. F. Khalizov, P. H. Mcmurry, and R. Y. Zhang, Processing of Soot by Controlled Sulphuric Acid and Water Condensation???Mass and Mobility Relationship, Aerosol Science and Technology, vol.43, issue.7, pp.629-640, 2009.
DOI : 10.1073/pnas.0804860105

J. Schmid, B. Grob, R. Niessner, and N. P. Ivleva, Multiwavelength Raman Microspectroscopy for Rapid Prediction of Soot Oxidation Reactivity, Analytical Chemistry, vol.83, issue.4, pp.1173-1179, 2011.
DOI : 10.1021/ac102939w

V. Wal, R. L. Tomasek, and A. J. , Soot oxidation: Dependence upon initial nanostructure, Combust. Flame, vol.134, pp.1-9, 2003.

H. Jung, D. B. Kittelson, and M. R. Zachariah, Kinetics and visualization of soot oxidation using transmission electron microscopy, Combustion and Flame, vol.136, issue.4, pp.445-456, 2004.
DOI : 10.1016/j.combustflame.2003.10.013

A. W. Kandas, G. Senel, I. Levendis, Y. Sarofim, and A. , Soot surface area evolution during air oxidation as evaluated by small angle X-ray scattering and CO2 adsorption, Carbon, vol.43, issue.2, pp.241-251, 2005.
DOI : 10.1016/j.carbon.2004.08.028

F. Ouf, Clogging of Industrial High Efficiency Particulate Air (HEPA) Filters in Case of Fire: From Analytical to Large-Scale Experiments, Aerosol Science and Technology, vol.101, issue.2, pp.939-947, 2014.
DOI : 10.1016/S0009-2509(01)00041-0

URL : https://hal.archives-ouvertes.fr/hal-01067972

R. Toossi, Surface analysis of combustion-generated soot particles by X-ray photoelectron spectroscopy, Combustion and Flame, vol.90, issue.1, pp.1-10, 1992.
DOI : 10.1016/0010-2180(92)90132-9

V. Wal, R. L. Bryg, V. M. Hays, and M. D. , Fingerprinting soot (towards source identification): Physical structure and chemical composition, J. Aerosol Sci, vol.41, pp.108-117, 2010.

A. Braun, A study of diesel PM with X-ray microspectroscopy, Fuel, vol.83, issue.7-8, pp.997-1000, 2004.
DOI : 10.1016/j.fuel.2003.08.015

S. Di-stasio and A. Braun, Comparative NEXAFS Study on Soot Obtained from an Ethylene/Air Flame, a Diesel Engine, and Graphite, Energy & Fuels, vol.20, issue.1, pp.187-194, 2006.
DOI : 10.1021/ef058019g

P. Parent, Nanoscale characterization of aircraft soot: A high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study, Carbon, vol.101, pp.86-100, 2016.
DOI : 10.1016/j.carbon.2016.01.040

G. Lammel and T. Novakov, Water nucleation properties of carbon black and diesel soot particles, Atmospheric Environment, vol.29, issue.7, pp.813-823, 1995.
DOI : 10.1016/1352-2310(94)00308-8

V. Zelenay, Aging induced changes on NEXAFS fingerprints in individual combustion particles, Atmospheric Chemistry and Physics, vol.11, issue.22, pp.11777-11791, 2011.
DOI : 10.5194/acp-11-11777-2011

A. Braun, Two-process model for the atmospheric weathering, oxidation and ageing of diesel soot, Geophysical Research Letters, vol.32, issue.D19, p.7810, 2009.
DOI : 10.1029/2008GL037077

U. Kirchner, R. Vogt, C. Natzeck, J. Goschnick, M. Single-particle et al., Single particle MS, SNMS, SIMS, XPS, and FTIR spectroscopic analysis of soot particles during the AIDA campaign, Journal of Aerosol Science, vol.34, issue.10, pp.1323-1346, 2003.
DOI : 10.1016/S0021-8502(03)00362-8

M. G. Vernooij, On Source Identification and Alteration of Single Diesel and Wood Smoke Soot Particles in the Atmosphere; An X-Ray Microspectroscopy Study, Environmental Science & Technology, vol.43, issue.14, pp.5339-5344, 2009.
DOI : 10.1021/es800773h

S. Collura, Influence of the soluble organic fraction on the thermal behaviour, texture and surface chemistry of diesel exhaust soot, Carbon, vol.43, issue.3, pp.605-613, 2005.
DOI : 10.1016/j.carbon.2004.10.026

J. Müller, D. S. Su, R. E. Jentoft, U. Wild, and R. Schlögl, Diesel Engine Exhaust Emission:?? Oxidative Behavior and Microstructure of Black Smoke Soot Particulate, Environmental Science & Technology, vol.40, issue.4, pp.1231-1236, 2006.
DOI : 10.1021/es0512069

F. Ouf, J. Yon, P. Ausset, A. Coppalle, and M. Maillé, Influence of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by Transmission Electron Microscopy, Aerosol Science and Technology, vol.41, issue.11, pp.1005-1017, 2010.
DOI : 10.1016/S0017-9310(99)00382-8

L. Ravagnan, sp hybridization in free carbon nanoparticles???presence and stability observed by near edge X-ray absorption fine structure spectroscopy, Chemical Communications, vol.12, issue.167, pp.2952-2954, 2011.
DOI : 10.1039/c0cc03778h

M. J. Bogan, Aerosol Imaging with a Soft X-Ray Free Electron Laser, Aerosol Sci. Technol, vol.44, p.i?vi, 2010.
DOI : 10.1080/02786820903485800

N. D. Loh, Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight, Nature, vol.72, issue.7404, pp.513-517, 2012.
DOI : 10.1038/nature11222

J. T. Jayne, Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, vol.33, issue.1-2, pp.49-70, 2000.
DOI : 10.1080/027868200410840

P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. Mcmurry, Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Science and Technology, vol.117, issue.3, pp.293-313, 1995.
DOI : 10.1002/cjce.5450370401

P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. Mcmurry, Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Science and Technology, vol.117, issue.3, pp.314-324, 1995.
DOI : 10.1016/0021-8502(76)90083-5

E. R. Mysak, D. E. Starr, K. R. Wilson, and H. Bluhm, Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces, Review of Scientific Instruments, vol.81, issue.1, p.16106, 2010.
DOI : 10.1063/1.3276714

O. Sublemontier, X-ray Photoelectron Spectroscopy of Isolated Nanoparticles, The Journal of Physical Chemistry Letters, vol.5, issue.19, pp.3399-3403, 2014.
DOI : 10.1021/jz501532c

URL : https://hal.archives-ouvertes.fr/hal-01080959

S. Benkoula, Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles, Scientific Reports, vol.3, p.15088, 2015.
DOI : 10.1063/1.4829718

URL : https://hal.archives-ouvertes.fr/hal-01228553

A. Lindblad, J. Söderström, C. Nicolas, E. Robert, and C. Miron, A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles, Review of Scientific Instruments, vol.84, issue.11, p.113105, 2013.
DOI : 10.1063/1.4829718

F. A. Barreda, In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection, Scientific Reports, vol.9, p.15696, 2015.
DOI : 10.1038/srep15696

URL : https://hal.archives-ouvertes.fr/hal-01228537

J. Kim, Assessing Optical Properties and Refractive Index of Combustion Aerosol Particles Through Combined Experimental and Modeling Studies, Aerosol Science and Technology, vol.375, issue.5, pp.340-350, 2015.
DOI : 10.1021/es8008503

URL : https://hal.archives-ouvertes.fr/hal-01141939

R. H. Moore, Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator, Aerosol Science and Technology, vol.9, issue.5, pp.467-479, 2014.
DOI : 10.1007/978-3-662-04508-4

L. Mueller, Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator, Analytical and Bioanalytical Chemistry, vol.26, issue.1, pp.5911-5922, 2015.
DOI : 10.1007/s00216-015-8549-x

A. Mamakos, I. Khalek, R. Giannelli, and M. Spears, Characterization of Combustion Aerosol Produced by a Mini-CAST and Treated in a Catalytic Stripper, Aerosol Science and Technology, vol.3, issue.2, pp.927-936, 2013.
DOI : 10.5194/acp-11-2281-2011

J. Yon, A. Bescond, and F. Ouf, A simple semi-empirical model for effective density measurements of fractal aggregates, Journal of Aerosol Science, vol.87, pp.28-37, 2015.
DOI : 10.1016/j.jaerosci.2015.05.003

S. Henning, Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated, Atmospheric Chemistry and Physics, vol.12, issue.10, pp.4525-4537, 2012.
DOI : 10.5194/acp-12-4525-2012

O. B. Popovicheva, N. M. Persiantseva, V. Tishkova, N. K. Shonija, and N. A. Zubareva, Quantification of water uptake by soot particles, Environmental Research Letters, vol.3, issue.2, p.25009, 2008.
DOI : 10.1088/1748-9326/3/2/025009

A. Bescond, Automated Determination of Aggregate Primary Particle Size Distribution by TEM Image Analysis: Application to Soot, Aerosol Science and Technology, vol.15, issue.8, pp.831-841, 2014.
DOI : 10.1080/02786820300908

M. E. Birch and R. A. Cary, Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust, Aerosol Science and Technology, vol.14, issue.3, pp.221-241, 1996.
DOI : 10.1080/15298669191365162

J. C. Chow, The IMPROVE_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a Long-Term Database, Journal of the Air & Waste Management Association, vol.57, issue.9, pp.1014-1023, 2007.
DOI : 10.3155/1047-3289.57.9.1014

C. Miron, Imaging molecular potentials using ultrahigh-resolution resonant photoemission, Nature Physics, vol.451, issue.2, pp.135-138, 2012.
DOI : 10.1016/S0368-2048(98)00280-1

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron stopping powers for 41 elemental solids over the 50 eV to 30 keV range with the full Penn algorithm, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.270, pp.75-92, 2012.

E. Antonsson, Dynamics of the C 1s excitation and decay in CO 2 probed by vibrationally and angularly resolved Auger spectroscopy, Phys. Rev. A, vol.92, pp.41-43, 2015.

K. C. Prince, L. Avaldi, M. Coreno, R. Camilloni, M. Simone et al., Vibrational structure of core to Rydberg state excitations of carbon dioxide and dinitrogen oxide, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.32, issue.11, pp.2551-2567, 1999.
DOI : 10.1088/0953-4075/32/11/307

K. Nakada, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol.54, issue.24, pp.17954-17961, 1996.
DOI : 10.1103/PhysRevB.54.17954

S. Entani, Growth of nanographite on Pt(111) and its edge state, Applied Physics Letters, vol.88, issue.15, p.153126, 2006.
DOI : 10.1063/1.2194867

T. Enoki and K. Takai, The edge state of nanographene and the magnetism of the edge-state spins, Solid State Communications, vol.149, issue.27-28, pp.1144-1150, 2009.
DOI : 10.1016/j.ssc.2009.02.054

K. Suenaga and M. Koshino, Atom-by-atom spectroscopy at graphene edge, Nature, vol.110, issue.7327, pp.1088-1090, 2010.
DOI : 10.1038/nature09664

M. Kiguchi, Magnetic edge state and dangling bond state of nanographene in activated carbon fibers, Physical Review B, vol.84, issue.4, p.45421, 2011.
DOI : 10.1103/PhysRevB.84.045421

E. Velez-fort, Edge state in epitaxial nanographene on 3C-SiC(100)/Si(100) substrate, Applied Physics Letters, vol.103, issue.8, p.83101, 2013.
DOI : 10.1063/1.4818547

URL : https://hal.archives-ouvertes.fr/hal-01053514

S. Hao, Magnetic edge-states in nanographene, HNO3-doped nanographene and its residue compounds of nanographene-based nanoporous carbon, Physical Chemistry Chemical Physics, vol.16, issue.3, pp.6273-6282, 2014.
DOI : 10.1039/c4cp00199k

A. P. Hitchcock, S. Beaulieu, T. Steel, J. Stöhr, and F. Sette, ???1,3???butadiene, and perfluoro???2???butene. Carbon???carbon bond lengths from continuum shape resonances, The Journal of Chemical Physics, vol.80, issue.9, p.3927, 1984.
DOI : 10.1063/1.447274

N. Ess, N. P. Ivleva, E. D. Kireeva, F. Ouf, and R. Niessner, In situ Raman microspectroscopic analysis of soot samples with different OC content : Structural changes during oxidation, Carbon, vol.105, p.81377, 2016.

E. Belenkov, Formation of Graphite structure in Carbon crystallites, Inorganic Materials, vol.37, issue.9, pp.928-934, 2001.
DOI : 10.1023/A:1011601915600

D. Solomon, Micro- and nano-environments of C sequestration in soil: A multi-elemental STXM???NEXAFS assessment of black C and organomineral associations, Science of The Total Environment, vol.438, pp.372-388, 2012.
DOI : 10.1016/j.scitotenv.2012.08.071

R. A. Rosenberg, P. J. Love, and V. Rehn, ) near-edge x-ray-absorption fine structure of graphite, Physical Review B, vol.33, issue.6, pp.4034-4037, 1986.
DOI : 10.1103/PhysRevB.33.4034

J. M. Mane, Alignment of Vertically Grown Carbon Nanostructures Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, vol.05, issue.13, pp.966-983, 2014.
DOI : 10.4236/msa.2014.513098

R. Gago, I. Jiménez, and J. Albella, Detecting with X-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation, Surface Science, vol.482, issue.485, pp.482-485, 2001.
DOI : 10.1016/S0039-6028(01)00939-6

R. Mclaren, S. A. Clark, I. Ishii, and A. P. Hitchcock, -shell electron-energy-loss spectra of the fluoroethenes and 1,3-perfluorobutadiene, Physical Review A, vol.36, issue.4, pp.1683-1701, 1987.
DOI : 10.1103/PhysRevA.36.1683

URL : https://hal.archives-ouvertes.fr/in2p3-00606029

A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Direct evidence for atomic defects in graphene layers, Nature, vol.430, issue.7002, pp.870-873, 2004.
DOI : 10.1103/PhysRevLett.89.155501

C. Ehlert, W. E. Unger, and P. Saalfrank, C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory, Physical Chemistry Chemical Physics, vol.110, issue.27, p.14083, 2014.
DOI : 10.1039/c4cp01106f

J. H. Warner, Y. C. Lin, K. He, M. Koshino, and K. Suenaga, Atomic Level Spatial Variations of Energy States along Graphene Edges, Nano Letters, vol.14, issue.11, pp.6155-6159, 2014.
DOI : 10.1021/nl5023095

E. Papirer, R. Lacroix, J. Donnet, G. Nanse, and P. Fioux, XPS Study of the halogenation of carbon black-part 1. Bromination, Carbon, vol.32, issue.7, pp.1341-1358, 1994.
DOI : 10.1016/0008-6223(94)90121-X

C. Moreno-castilla, M. López-ramón, F. Carrasco-mar??nmar??n, M. V. Lopez-ramon, and F. Carrasco-marin, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, vol.38, issue.14, 1995.
DOI : 10.1016/S0008-6223(00)00048-8

H. Saathoff, The AIDA soot aerosol characterisation campaign 1999, Journal of Aerosol Science, vol.34, issue.10, pp.1277-1296, 2003.
DOI : 10.1016/S0021-8502(03)00363-X

W. Y. Li, A. A. Iburahim, K. Goto, and R. Shimizu, The Absolute AES is Coming; Work Functions and Transmission of CMA, J. Surf. Anal, vol.12, pp.109-112, 2005.

T. Fabish and M. Hair, The dependence of the work function of carbon black on surface acidity, Journal of Colloid and Interface Science, vol.62, issue.1, pp.16-23, 1977.
DOI : 10.1016/0021-9797(77)90060-1

L. Zhou and M. R. Zachariah, Size resolved particle work function measurement of free nanoparticles: Aggregates vs. spheres, Chemical Physics Letters, vol.525, issue.526, pp.525-526, 2012.
DOI : 10.1016/j.cplett.2011.11.045

M. Schnippering, M. Carrara, A. Foelske, R. Kötz, and D. J. Fermín, Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study, Scientific RepoRts | 6:36495 | DOI: 10.1038, pp.725-730, 2007.
DOI : 10.1039/B611496B

K. H. Homann and H. Wolf, Charged soot in low-pressure acetylene/oxygen flames, Symposium (International) on Combustion, vol.21, issue.1, pp.1013-1021, 1986.
DOI : 10.1016/S0082-0784(88)80332-1

H. Calcote, Mechanisms of soot nucleation in flames???A critical review, Combustion and Flame, vol.42, pp.215-242, 1981.
DOI : 10.1016/0010-2180(81)90159-0

R. T. Ball and J. B. Howard, Electric charge of carbon particles in flames, Symposium (International) on Combustion, vol.13, issue.1, pp.353-362, 1971.
DOI : 10.1016/S0082-0784(71)80038-3

D. Matter, M. Mohr, W. Fendel, A. Schmidt-ott, and H. Burtscher, Multiple wavelength aerosol photoemission by excimer lamps, Journal of Aerosol Science, vol.26, issue.7, pp.1101-1115, 1995.
DOI : 10.1016/0021-8502(95)00040-J

H. A. Michelsen, Modeling laser-induced incandescence of soot: a summary and comparison of LII models, Applied Physics B, vol.37, issue.3, pp.503-521, 2007.
DOI : 10.1007/s00340-007-2619-5

URL : https://hal.archives-ouvertes.fr/hal-00618142

D. M. Wood, Classical Size Dependence of the Work Function of Small Metallic Spheres, Physical Review Letters, vol.46, issue.11, pp.749-749, 1981.
DOI : 10.1103/PhysRevLett.46.749

E. Carvou, L. Garrec, J. Mitchell, and J. B. , Characteristics of Arcs Between Porous Carbon Electrodes, IEEE Transactions on Plasma Science, vol.41, issue.11, pp.3151-3158, 2013.
DOI : 10.1109/TPS.2013.2283581

URL : https://hal.archives-ouvertes.fr/hal-00876869

R. Reinmann, A. Saitzkoff, and F. Mauss, Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor, SAE Technical Paper Series, pp.175-185, 1997.
DOI : 10.4271/970856

D. Molina, F. Restrepo, and I. Bedoya, Combustion monitoring system on a natural gas fuelled spark ignition engine with high compression ratio using ionization current sensors, Energy and Sustainability VI, pp.209-218, 2015.
DOI : 10.2495/ESUS150181

A. Saitzkoff, R. Reinmann, T. Berglind, and M. Glavmo, An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor, SAE Technical Paper Series, pp.157-167, 1996.
DOI : 10.4271/960337