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ABSTRACT: The tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start 

operating by the end of 2016 as a test bed for the ITER divertor components in long pulse 

operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-

ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus 

reliable tools are required to monitor the local impurity density and avoid W accumulation. The 

WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based 

poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. 

In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm 

developed for Tore Supra and upgraded for WEST are investigated, in particular through a set 

of emissivity phantoms and the standard WEST scenario including reconstruction errors, 

influence of noise as well as computational time.  
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1. Introduction 

The tokamak WEST, for Tungsten (W) Environment in Steady-State Tokamak, will start 

operating by the end of 2016 as a test bed for the ITER divertor components in long pulse 

operation. In this context, radiative cooling of heavy impurities like W is a critical issue for the 

plasma core performances [1]. Thus reliable tools are required to monitor the local impurity 

density and avoid W accumulation. To do so, plasma tomography in the Soft X-ray (SXR) range 

0.1 keV – 20 keV is a useful tool to observe radial and poloidal distribution of impurities. 

Unfortunately, SXR tomography is an ill-posed inverse problem [2] in tokamak plasmas due to 

the limited number of Lines of Sight (LoS) and presence of noise in the measurements. Thus a 

priori information is generally used as additional constraint imposed on the plasma SXR 

emissivity to obtain a physically meaningful solution. The SXR diagnostic of WEST will be 

based on Tikhonov regularization with a Minimum Fisher Information (MFI) method adapted 

from the former Tore Supra tokamak [3, 4]. 
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Figure 1. WEST plasma coverage of the (a) former Tore Supra diodes (b) new GEM based SXR cameras. The red 

part of the former viewing angle is lost due to the WEST upper divertor.  

Unfortunately, most of the former SXR LoS of Tore Supra are lost due to the WEST upper 

divertor. Thus the design of the SXR diagnostic has been refurbished [5, 6] in order to be 

adapted to the WEST configuration, see Fig. 1. The WEST SXR diagnostic will be equipped 

with two new Gas Electron Multiplier (GEM) based poloidal cameras with a total of ~ 200 

pixels, including 50 µm thick Beryllium windows that cut off SXR spectrum below 1 - 2 keV. 

They will work in “photon-counting mode” [7, 8] in contrast with former silicon barrier diodes 

working in “current mode”. Thus the system will perform 2D tomographic reconstructions with 

spectral resolution in tunable energy bands. 

In this work tomographic capabilities of the MFI method initially developed for Tore Supra and 

upgraded for WEST are investigated. The paper is structured as follows. First, the main features 

of the tomography algorithm are described. Secondly, a set of emissivity phantoms is used to 

assess quality of the reconstruction, including computational time and the influence of 

experimental noise. Then, SXR tomographic reconstructions in a WEST scenario [9] are 

presented. Finally, conclusions and perspectives are given for WEST operations. 

2. SXR plasma tomography principles 

1.1 Tikhonov regularization 

In this paper, The SXR plasma emissivity is discretized in the poloidal cross-section of the 

diagnostic on a matrix of Np × Np = Np
2
 square pixels. The tomographic reconstruction of the 

emissivity elements 휀𝑗 from the line-integrated measurements mi is an inverse problem defined 

by the set of equations: 

 

𝑚𝑖 = ∑ 𝑇𝑖𝑗휀𝑗𝑗 + 𝑚�̃�           (2.1) 

 
where 𝑚�̃� denotes the experimental noise on the i-th channel and Tij are the response matrix 

coefficients. Tij corresponds to the i-th chord length in the j-th pixel in the Line of Sight (LoS) 

approximation, as defined by the pinhole-detector geometry. A simple least-square 

minimization of the residual 𝜒2(𝜺) = ‖𝒎 − 𝑇. 𝜺‖
2
 would not be applicable here due to the ill-
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conditioned nature of the problem with quite few lines of sight and presence of experimental 

noise. In order to obtain a physically meaningful solution, a priori information is added through 

a regularization term 𝑅 = 𝜺𝒕 𝐻𝜺 in the functional  = 𝜒2 + 𝜆𝑅, which can be minimized using 

vector differentiation [2]: 

 

𝜺𝟎 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜺

 (𝜒2(𝜺) + 𝜆 𝜺𝒕 𝐻𝜺 ) = ( 𝑇. 𝑇 + 𝜆𝐻𝑡 )
−1

. 𝑇𝑡 . 𝒎        (2.2) 

where the superscript t denotes the matrix transpose operation, H is the regularization operator 

and λ is the regularization parameter. Thus the solution of the tomographic reconstruction is a 

compromise between minimization of the residual and regularization of the solution, determined 

by the value of the free parameter λ. The choice of optimal λ values is discussed in section 1.3. 

1.2 The Minimum Fisher Information method 

The Minimum Fisher Information (MFI) method used here was first developed for Tore Supra 

[4] and is adapted for the WEST configuration. The regularization operator H is defined as: 

 

   𝐻 = (1 − 𝜏) 𝛻⫽
𝑡 . 𝑊. 𝛻⫽ + 𝜏 𝛻⊥

𝑡 . 𝑊. 𝛻⊥   (2.3) 

 

where 𝜵 denotes a discrete approximation of the gradient and W is a ponderation matrix: 

 

{
𝑊𝑖𝑗 =

1

𝜀𝑖
𝛿𝑖𝑗 ,            휀𝑖 > 휀𝑚𝑖𝑛 

𝑊𝑖𝑗 =
1

𝜀𝑚𝑖𝑛
𝛿𝑖𝑗 ,        휀𝑖 < 휀𝑚𝑖𝑛

     (2.4) 

 

with 𝛿𝑖𝑗 the Kronecker’s delta and εmin > 0 the lower bound used for the zero emissivity regions. 

The main upgrade from [4] consists in the decomposition of 𝜵 in two components 𝛻⫽ and 𝛻⊥ 

respectively parallel and perpendicular to the magnetic flux surfaces. The associated factor of 

anisotropic smoothing τ is introduced with 0 ≤ 𝜏 ≤ 0.5 in order to account for the privileged 

parallel transport direction. The effect of τ on the reconstruction is presented in Fig. (3). 

1.3 Role of the regularization parameter λ 

As introduced in Eq. (2.2), the regularization parameter λ quantifies the balance between 

overfitting of measurements and oversmoothing of the solution. Several methods exist to 

determine an optimal λ value like e.g. the L-curve corner selection [10]. In this work, λ is 

calculated with a dynamic regula-falsi method introduced in [11] such that the residual equals 

the experimental noise level. To do so, a normalized residual is defined as: 

𝜒𝑁
2 (𝜆) =

1

𝑁𝑚
∑ [

𝑚𝑖 − 𝑚𝑖
𝑟𝑒𝑐(𝜆)

𝜎𝑖
]

2

𝑖  ≈ 1    (2.5) 

 

where Nm denotes the number of measurements, 𝜎𝑖
2 is the variance of the noise level on the i-th 

channel and 𝒎𝒓𝒆𝒄 = 𝑇. 𝜺𝒓𝒆𝒄 are the retrofit measurements. The benefit of this method is that 

only structures of emissivity above the noise level survive the reconstruction process. 

3. Tomographic tests 

Tomographic tests prior to experimental use are essential to assess the performances and limits 

of the method. In this paper, the quality of the tomographic reconstruction will be assessed 
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thanks to phantom models of emissivity and using the figure of merits RMSem, which represents 

the root mean square of the reconstruction error: 

 

𝑅𝑀𝑆𝑒𝑚 = √
1

𝑁𝑝
2 ∑ (휀𝑖

𝑚𝑜𝑑 − 휀𝑖
𝑟𝑒𝑐)

2
𝑖     (3.1) 

 

where εi
mod

 denotes the emissivity in the i-th element of the model, εi
rec

 is the emissivity in the i-

th element of the reconstructed tomogram, and Np² is the total number of pixels. 

3.1 Phantom models of emissivity 

A set of 4 phantom models (Gaussian, hollow, banana and peaked) is used to mimic various 

experimental emissivity profiles such as impurity poloidal asymmetries, central accumulation 

[12] or hollow shape after a sawtooth crash. Emissivity phantoms give the advantage of 

knowing the initial emissivity distribution in comparison with experimental reconstructions. 

One example of each phantom model is presented in Fig. 2.1(a-d). 

 

 
Figure 2. Phantoms of emissivity with 1(a-d) models, 2(a-d) associated measurements, 3(a-d) reconstructed profiles 

for (a) Gaussian, (b) Hollow, (c) Banana, and (d) Peaked shapes. 
 

Synthetic SXR measurements are derived from these emissivity phantoms considering 2% of 

Gaussian noise level, see Fig. 2.2(a-d), and used as input for the tomography. Resulting 

tomograms are presented in Fig. 2.3(a-d), with an anisotropy factor 𝜏 = 10−2. Effect of τ value 

on the reconstruction is discussed in next section 3.2.  

3.2 Effect of the anisotropy factor τ  

As introduced in Eq. (2.3), the anisotropy factor 0 ≤ 𝜏 ≤ 0.5 gives a privileged parallel 

transport direction. Given the magnetic equilibrium is well determined, such anisotropic 

regularization is better adapted to the plasma configuration and leads to an increase of the 

quality of the reconstruction. This is illustrated in Fig. 3 with the banana phantom model, for τ 

values from τ = 0.01 (anisotropic smoothing) to τ = 0.5 (isotropic smoothing) and 2% of noise. 

The disadvantage of introducing the magnetic equilibrium in the reconstruction is the associated 

increase of the computational time in the regularization process as presented in Fig. 5.  
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Figure 3. Effect of anisotropy factor τ on the reconstruction of the Banana phantom with  

(a) τ = 0.01 (b) τ = 0.10, (c) τ = 0.25 and (d) τ = 0.50. 
 

3.3 The optimized regularization parameter λ 

The optimized regularization parameter λ is determined as described in section 1.3, such that the 

normalized residual 𝜒𝑁
2 (𝜆)  ≈ 1 with a tolerance of 5% on convergence of 𝜒𝑁

2 . This method 

allows finding a regularization parameter quite close to the best solution in terms of RMSem 

minimization, as illustrated in Fig. 4 with the Gaussian phantom model and for different noise 

levels from 1% to 10%. 

 

 
Figure 4. λ optimization with the Gaussian phantom and different noise levels with (a) residual XN², regularization 

term R and (b) reconstruction error RMSem versus λ. Vertical dashed lines correspond to the solution of Eq. (2.5).  
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3.4 Choice of the plasma spatial resolution  

In this section, we discuss the optimal choice of the plasma spatial resolution Np x Np. First, the 

Tikhonov regularization is by nature only adapted to under-determined problems. As a result we 

should use a number of pixels Np² > NLoS ~ 200, thus Np ≥ 15. Then a set of 25 phantoms of the 

4 models with different sizes as introduced in section 3.1 is used to assess the quality of the 

reconstruction against the grid size, as presented in Fig. 5(a) for 3 different Gaussian noise 

levels of 2, 5 and 10% in measurements. The benefit and computational cost of anisotropic 

regularization is highlighted in Fig 5(b-c). 

 

 
Figure 5. (a) Reconstruction error RMSem, (b) benefit of anisotropic regularization (τ = 0.01), and (c) associated 

computational time versus spatial resolution Np. 
 

Fig. 5(a) shows a global increase of the quality of the reconstruction with Np. On the other hand, 

the computational time is an increasing exponential function of Np. Np > 50 is time consuming 

(> 1s) and does not lead to a significantly better reconstructions while Np < 25 leads to quite 

poor reconstructions without any benefit in computational time (~10-50ms). As a result, Np ≥ 

25 could be used for real-time or automatic post-processing analysis with dedicated fast 

computing units like e.g. FPGA, while Np ≥ 50 could be used for finer analysis. 

4. Application to the standard WEST scenario 

4.1 A scenario from WEST physics basis 

In this section, we apply the minimum Fisher method on SXR emissivity profiles extrapolated 

from the standard WEST physics basis [9] H-mode scenario with P = 12 MW of Radio 

Frequency heating power and Ip = 0.6 MA of plasma current. Electron density ne and 

temperature Te profiles are shown in Fig. 6(a). In this scenario, the tungsten density profile nW is 

assumed to be flat with nW  ~ 10
16 

m
-3

 and its concentration cW = 5.10
-4

 at the separatrix. For 

simplicity, the spectral response of the GEM detector will be assumed here to be η = 1 in the 

SXR range ℎ𝜈 ∊ [0.1 – 20 keV], including the 50µm thick Beryllium filter that cuts off energies 

below 1 – 2 keV. The GEM spectral response characterization is the subject of ongoing parallel 

work [13]. The SXR emissivity is calculated as follows, considering only W impurities:  

휀
𝜂

= 𝑛𝑒
2. [𝐿𝐻

𝜂 (𝑇𝑒) + 𝑐𝑊. 𝐿𝑊
𝜂

(𝑇𝑒 )]    (4.1) 



 

 
– 7 – 

where 𝐿𝑊
𝜂

 and 𝐿𝐻
𝜂

 denote the filtered cooling factors of tungsten and deuterium. They are 

calculated according to Eq. (4.2):  

{
𝐿𝑊

𝜂
= ∑ 𝑓𝑊,𝑞 . (𝐾𝑊,𝑞

𝜂,𝑏𝑏
+ 𝐾𝑊,𝑞

𝜂,𝑓𝑏
+ 𝐾𝑊,𝑞

𝜂,𝑓𝑓
)𝑞

𝐿𝐻
𝜂

= 𝐾𝐻
𝜂,𝑓𝑓

                                                   
   (4.2) 

where the W fractional abundances fW,q and line radiation (𝐾𝑊,𝑞
𝜂,𝑏𝑏

) are computed using 

respectively ionization-recombination coefficients and photon emissivity coefficients from the 

OPEN-ADAS database. Analytic formulae from [14] are used to compute Bremsstrahlung 

(𝐾𝑊,𝑞
𝜂,𝑓𝑓

, 𝐾𝐻
𝜂,𝑓𝑓

) and radiative recombination (𝐾𝑊,𝑞
𝜂,𝑓𝑏

) contributions. Deuterium is fully ionized 

where the SXR emissivity is significant inside the separatrix. Dielectronic recombinations are 

not included here as well as transport effect on 𝐿𝑊
𝜂

 [15] for simplicity. W line radiation is the 

dominant contribution overall. 

Figure 6. (a) Temperature and density profiles of the WEST standard scenario (b) filtered cooling factors computed in 

the SXR range and (c) extrapolated SXR emissivity in the poloidal cross-section of the diagnostic. 

4.2 Associated SXR tomography 

The tomographic algorithm is then tested on the W dominated emissivity, as well as on the 

Deuterium emissivity only to account for a pure plasma case. The resulting reconstruction error 

maps are presented on Fig. 7.1-2(c) and show that the tomography is valid for both emissivity 

reconstruction due to impurities and main ions in a realistic case with < 10% reconstruction 

error in the region of interest where 𝑇𝑒 ≳ 1 − 2 𝑘𝑒𝑉. 

 
Figure 7. Tomographic inversion of 1(a-c) Tungsten and 2(a-c) Deuterium emissivity calculated in section 4.1, with 

(a) SXR emissivity, (b) associated measurements assuming 2% Gaussian noise, and (c) 2D reconstruction error map. 
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5. Summary 

In this paper, the SXR tomography originally used for Tore Supra has been adapted and 

upgraded for the WEST configuration. In particular, the regularization parameter λ is now 

routinely optimized using the 𝜒𝑁
2 (𝜆)  ≈ 1 method, and the magnetic equilibrium can be included 

with the anisotropy factor 0 ≤ 𝜏 ≤ 0.5 to improve the reconstruction, but with an increase of the 

associated computational cost. 

Tomographic capabilities for the new SXR diagnostic of WEST have been well-tested using a 

set of phantom models of emissivity and including influence of noise in the measurements. 

Finally, the tomographic reconstruction has been validated for the standard scenario from 

WEST physics basis including the presence of W impurities. 
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