Large-Scale Chaos and Fluctuations in Active Nematics
Abstract
We show that " dry " active nematics, e.g. collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, band-like structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of the relatively simple and well-known (deterministic) hydrodynamic equations describing these systems in a dilute limit, and of a self-propelled particle Vicsek-like model for this class of active matter. In this last case, revisiting the status of the strong fluctuations and long-range correlations now considered as landmarks of orientationally-ordered active phases, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous density fluctuations are present in the homogeneous quasi-ordered nematic phase and characterized by a non-trivial scaling exponent.
Domains
Physics [physics]
Origin : Files produced by the author(s)
Loading...